
Department of Statistics 
 
STATS 784: Data Mining 
 
 
Assignment 2 2016 Model Answer 
 
Question 1 
 

 
Question 2 
 

1. Read the training and test data into R 
 
infile = "https://www.stat.auckland.ac.nz/~lee/784/Assignments/training.csv" 
training.df = read.csv(infile, header=TRUE, stringsAsFactors = FALSE) 
 
 
infile2 = "https://www.stat.auckland.ac.nz/~lee/784/Assignments/test.csv" 
test.df = read.csv(infile2, header=TRUE, stringsAsFactors = FALSE) 
 

2. Fit a tree to the x and y coordinates separately and calculate the 
predicted values for the test set.  Print out the first 10 values of each 
predictor. 
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First the x-coordinate: 
 

library(rpart) 
fit.xtree = rpart(left_eye_center_x~., data=training.df[,-2], cp=0.001) 
plotcp(fit.xtree) 
x.cp=printcp(fit.xtree) 
x.cp[order(x.cp[,4])[1],1] # extract cp for the smallest CV error 
[1] 0.02106293 
 

Unfortunately the minimum CV error is quite variable, but repeating this code 
several times indicates that cp=0.02 is not an unreasonable choice. 
 
Let’s go with this. 
> x.tree.pruned = prune(fit.xtree, cp=0.02) 
 
> # training error 
> mean(residuals(x.tree.pruned)^2) 
[1] 2.19279 
 
> # test error 
> x.predict = predict(x.tree.pruned, newdata=test.df[,-2]) 
> mean((x.predict-test.df[,1])^2) 
[1] 3.946122 

 

 
Figure 1. CP plot for the tree with cp=0.001 
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Printing out the first 10 values: 
 
> head(predict(x.tree.pruned),10) 
 [1] 65.97659 68.10075 64.63368 65.97659 65.97659 64.63368 66.42259 66.59466 
 [9] 65.97659 65.97659 

 
 
Doing the same thing for the y-cordinate, we selected cp of 0.01 as a 

reasonable choice. 
 
[10 marks] 
 
 
3. Estimate the prediction error using the test set estimate, and CV and the 

bootstrap on the training data. Compare. 

 
First the test and training errors: 
 
> # training error 
> mean(residuals(x.tree.pruned)^2) 
[1] 2.19279 
 
> # test error 
> x.predict = predict(x.tree.pruned, newdata=test.df[,-2]) 
> mean((x.predict-test.df[,1])^2) 
[1] 3.946122 
 
> y.predict = predict(fit.ytree, newdata=test.df[,-1]) 
> # training error 
 
> mean(residuals(fit.ytree)^2) 
[1] 0.887749 
> # test error 
> mean((y.predict-test.df[,2])^2) 
[1] 3.423971 
 

Now do the cross-validation and the bootstrap 
 
library(bootstrap) 
 
theta.fit <- function(x,y){ 
data=data.frame(y=y,x) 
rpart(y~.,data=data, cp=0.02) 
} 
theta.predict <- function(fit,x){ 
  predict(fit, newdata=data.frame(x)) 
} 

    sq.err <- function(y,yhat) { (y-yhat)^2} 
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# x-coordinate 
pixels = training.df[,-c(1,2)] 
x = training.df[,1] 
> CV5 = numeric(10) 
> for(i in 1:10){ 
+ results.cv.x = crossval(pixels,x,theta.fit,theta.predict, ngroup=5) 
+ CV5[i] = mean((results.cv.x$cv.fit - x)^2) 
+ } 
> mean(CV5) 
[1] 3.53789 
# y-coordinate 
 
> y = training.df[,2] 
> CV5.y = numeric(10) 
> for(i in 1:10){ 
+ results.cv.y = crossval(pixels,y,theta.fit,theta.predict, ngroup=5) 
+ CV5.y[i] = mean((results.cv.y$cv.fit - y)^2) 
+ } 
> mean(CV5.y) 
[1] 3.847702 
 
# bootstrap results 
results.boot.x = bootpred(pixels, x,  theta.fit, theta.predict, 
err.meas=sq.err, nboot=50) 
> results.boot.x 
[[1]] 
[1] 2.19279 
 
[[2]] 
[1] 1.042388 
 
[[3]] 
[1] 3.304834 
 
$call 
bootpred(x = pixels, y = x, nboot = 50, theta.fit = theta.fit,  
    theta.predict = theta.predict, err.meas = sq.err) 
 
>  2.19279+ 1.042388 
[1] 3.235178 
> 3.304834 
[1] 3.304834 
 
results.boot.y = bootpred(pixels, y,  theta.fit, theta.predict, 
err.meas=sq.err, nboot=50) 
> results.boot.y 
[[1]] 
[1] 1.96758 
 
[[2]] 
[1] 1.033014 
 
[[3]] 
[1] 3.323163 
 
$call 
bootpred(x = pixels, y = y, nboot = 50, theta.fit = theta.fit,  
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    theta.predict = theta.predict, err.meas = sq.err) 
 
> 1.96758+1.033014 
[1] 3.000594 
> 3.323163 
[1] 3.323163 

 
 
Summarizing these in a table, we get 

 
 x-cordinate y-coordinate 

Training 2.19 0.89 
Test 3.95 3.42 
CV5 3.54 3.85 
Err+opt 3.30 3.00 
632 3.23 3.32 

 
Points to note: 
 
• The model for the y-coordinate is overfitting, the test error is much more 

than the training error. 
• The CV estimates are quite variable (running the code again produces a 

different result, even averaging 10 times.) 
• Bootstrap generally less than CV. 

[10 marks ] 
 
4. Print out the first 25 images in the test data (on one page) and mark the 

position of the predicted eye centre. 

    # define a function to drew a single face 
   
plotImage = function(imagevec){ 
imagemat = matrix(imagevec,96,96) 
for(i in 1:96)imagemat[i,] = rev(imagemat[i,]) 
image(1:96, 1:96, imagemat, col = gray((0:255)/255), axes=FALSE) 
} 

 
# draw 25 images from the test data 
 
par(mfrow=c(5,5), mar = c(0,0,0,0)) 
for(i in 1:25){ 
 plotImage(unlist(test.df[i,-c(1,2)])) 
 points(x.predict[i],96-y.predict[i], pch=19, cex=1.5, col="red") 
} 
par(mfrow = c(1,1), mar = c(5, 4, 4, 2) + 0.1) 
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[10 marks] 
 
5. Fit random forests and see if there is any improvement in the PE over 

fitting a single tree. You may want to use caret to tune the random 
forests. 

For this part we will work with a reduced data set for the two models, as caret 
and random Forest run too slowly using the full set of 9216 features. The tree 
we fitted to the x-coordinate with cp=0.001 used only a small fraction of the 
available variables. This is not surprising, as pixels in the lower part of the 
image are unlikely to contribute much to predicting the eye position.  
 
We can extract the variables used in the model, and create a formula including 
just those variables using the following code: 
 
> head(fit.xtree$variable.importance) 
   V3621    V3717    V3622    V3423    V3520    V3519  
461.2292 437.0245 306.8044 305.0914 251.6629 233.4213  
> length(fit.xtree$variable.importance) 
[1] 361 
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Thus, there are 361 variables used out of the 9216 available. To create the 
formula: 
 
formula.x = as.formula(paste("left_eye_center_x~", 
    paste(names(fit.xtree$variable.importance), collapse="+"), sep="")) 

 
Then we can explore different cp values using caret 
 
> tree.CV.x <- train(formula.x, data=training.df[,-2], 
+     method = "rpart",   
+     tuneGrid = my.grid,  
+     trControl = trainControl(method="cv", number=5, repeats=10))  
> tree.CV.x 
CART  
 
 953 samples 
9216 predictors 
 
No pre-processing 
Resampling: Cross-Validated (5 fold)  
Summary of sample sizes: 761, 763, 762, 762, 764  
Resampling results across tuning parameters: 
 
  cp     RMSE      Rsquared   RMSE SD     Rsquared SD 
  0.010  1.810037  0.2295849  0.11344762  0.05599240  
  0.015  1.837394  0.1995643  0.09130515  0.04161033  
  0.020  1.844103  0.1870761  0.10467826  0.05067258  
  0.025  1.883172  0.1545290  0.10968738  0.05208872  
  0.030  1.907965  0.1183185  0.11047588  0.06664810 
 

 
In the light of this, our choice of cp=0.02 doesn’t seem too bad, given the 
variability in the CV estimates.  Compare 1.844103 ^2= 3.40 for the reduced model 
to 3.88 for the full model, so the reduced model is doing a bit better. 
 
Using caret in this way, we can see the results for the reduced models, using cp=0.02 and 
0.01 for x and y. 
 

 
 x-cordinate y-coordinate 

Training 2.19 1.62 
Test 3.91 3.35 
CV5 3.21 3.25 
Err+opt 3.47 3.80 
632 3.12 3.14 

 
The results are broadly similar, suggesting that not much is lost by using 

the reduced variables. 
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Now we fit a random forest. The software default is 1/3 of the number of 

features, in this case 361/3 about 120, so we used values of mtry as 100,110, 
120,130,140. 

 
> my.grid <- expand.grid(.mtry=c(100, 110,  120, 130, 140)) 
> rf.CV <- train(formula.x, data=training.df, 
+     method = "rf", 
+     ntree=200,   
+     tuneGrid = my.grid,  
+     trControl = trainControl(method="cv", number=5, repeats=10)) 
> rf.CV 
Random Forest  
 
 953 samples 
9217 predictors 
 
No pre-processing 
Resampling: Cross-Validated (5 fold)  
 
Summary of sample sizes: 763, 763, 763, 762, 761  
 
Resampling results across tuning parameters: 
 
  mtry  RMSE      Rsquared   RMSE SD    Rsquared SD 
  100   1.440508  0.5035774  0.1724213  0.1142423   
  110   1.446948  0.4940041  0.1782463  0.1196643   
  120   1.453582  0.4853469  0.1657095  0.1091293   
  130   1.449397  0.4871280  0.1620692  0.1052647   
  140   1.452793  0.4824016  0.1763763  0.1161318   

 
RMSE was used to select the optimal model using  the smallest value. 
The final value used for the model was mtry = 100. 

 
Seems like the default setting is OK. 
 

We could use caret fit the bootstrap as well, but an alternative is to fit the 
model directly and use the fact that the model fit also calculates an OOB 
estimate of PE: 

 
fit.rf120 = randomForest(formula.x, data = training.df, ntree=200,mtry=120) 
fit.rf120$mse[200] 
[1] 2.027798 

 
Compare this with 1.4535822 = 2.11. If we use caret for the bootstrap, we 

get  
> rf.boot <- train(formula.x, data=training.df, 
+     method = "rf",   
+     ntree=200, 
+     tuneGrid = my.grid,  
+     trControl = trainControl(method="boot", number=50)) 
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> rf.boot 
Random Forest  
 
 953 samples 
9217 predictors 
 
No pre-processing 
Resampling: Bootstrapped (50 reps)  
Summary of sample sizes: 953, 953, 953, 953, 953, 953, ...  
Resampling results across tuning parameters: 
 
  mtry  RMSE      Rsquared  
  100   1.474113  0.4591610 
  110   1.470690  0.4606809 
  120   1.474715  0.4565168 
  130   1.474185  0.4558633 
  140   1.471538  0.4580095 
 
RMSE was used to select the optimal model using  the smallest value. 
The final value used for the model was mtry = 110. 
 

This value of 1.474715^2 = 2.174784 comperes well with the value of OOB 
estimate (2.02). 
 
The RF errors are in the table below. 
 

 x-cordinate y-coordinate 
Training 2.06 1.78 
Test 2.34 1.47 
CV5 2.10 1.79 
Err+opt 2.17 1.93 
OOB 2.03 1.80 

 
   
These errors are consistently lower than those in the tree table above, so the 
RF is doing a better job at predicting. 
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