Lecture 11: Imputation

Alan Lee

Department of Statistics STATS 784 Lecture 11

August 28, 2017

Outline

Introduction

MCAR etc

Multiple imputation

Iris data

missForest

An experiment

Today's agenda

Introduction

In this lecture we present a further discussion of imputation, filling in "missing values" in a data set.

MCAR, MAR and NMAR

MCAR: data is completely missing at random: "missingness" is independent of the data values. In this situation using only the complete data (cases having no missing values) will give an unbiased result, but with a smaller sample size than if no data was missing. Can result in ignoring a large proportion of the data.

MAR: data is missing at random: "missingness" depends only on the non-missing data (and thus in principle the missing values can be predicted from them).

NMAR: not missing at random - "missingness" depends on the missing and non-missing data. Not much can be done in this situation.

Basic idea of multiple imputation

- ► For each variable in turn, impute a missing value by drawing from the conditional distribution of the variable, given the rest of the data.
- This amounts to predicting the missing value, and adding small amount of noise to the prediction.
- Use the imputed data to construct a predictor.
- Repeat this several times to obtain multiple predictors.
- Average or "majority vote" to get a final predictor.

R packages

- ▶ The packages mice and mi do multiple imputation using a variety of prediction methods.
- ▶ The package missForest is based on a different idea, see later.
- See the tutorial at https://www.analyticsvidhya.com/blog/2016/03/tutorial-powerful -packages-imputing-missing-values/ for more information on other packages.

Summarizing patterns of missing data

This is best done visually.

- Use barcharts of missing value proportions.
- ▶ Use the image function to show where the missing values are in the data set.
- Use the md.pattern in the mice package for a text summary of the missing value patterns.

Example: Fisher iris data

50 samples of iris from each of 3 species: Setosa, Versicolor and Virginica

Variables measured: sepal length and width, petal length and width

Example: the (missing) iris data

For the setosa data, we made data values go missing (replaced with NA's) in 10% of the size data. Similarly, for versicolor and virginica, 5% and 15% were set to NA. This we have a dataset that is MAR, none of the species values are missing.

Example: missingness patterns

- > library(mice)
- > md.pattern(iris.miss)

```
Species Sepal.Length Sepal.Width Petal.Width Petal.Length
102
 21
  8
                       10
                                    10
                                                 10
                                                               24 54
```

Plots

Example: Code

```
# plot of missings
par(mfrow=c(1,2))
k = dim(iris.miss)[2]
freq = numeric(k)
for(i in 1:k) freq = apply(iris.miss, 2,
         function(x)mean(is.na(x)))
barplot(freq, col="yellow")
```

Example: Code, pt 2

```
NAvec = as.vector(is.na(iris.miss))*1
reverseRows = function(A) A[rev(row(A)[,1]),]
image(t(reverseRows(NAmat)), col=my.col, axes=FALSE)
axis(1, at = seq(0,1, length=k), labels = colnames(NAmat),
    tick=FALSE)
vars = seq(0,150, by=15)
vars[1]=1
ticks = 1-vars/150
axis(2, at = ticks, labels = paste("V", vars, sep=""),
    tick=TRUE)
```

Or, use the functions in the VIM package.

Example: Code, pt 2

```
NAvec = as.vector(is.na(iris.miss))*1
reverseRows = function(A) A[rev(row(A)[,1]),]
image(t(reverseRows(NAmat)), col=my.col, axes=FALSE)
axis(1, at = seq(0,1, length=k), labels = colnames(NAmat),
    tick=FALSE)
vars = seq(0,150, by=15)
vars[1]=1
ticks = 1-vars/150
axis(2, at = ticks, labels = paste("V", vars, sep=""),
    tick=TRUE)
```

Or, use the functions in the VIM package.

Example: Imputing the Fisher iris data

```
# do imputation with mice package
imputed_Data = mice(iris.miss, m=5, maxit = 50,
method = "pmm", seed = 500)
for(i in 1:5){
data = complete(imputed_Data,i)
# Discriminant analysis of imputed data
fit.qda = qda(Species~., data = data)
predClasses = predict(fit.qda)$class
qdaTable = table(predClasses, iris$Species)
print(qdaTable)
```

Example: Fisher iris data (cont)

predClasses	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	1
virginica	0	2	49
predClasses	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	2
virginica	0	2	48
predClasses	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	47	2
virginica	0	3	48
101			
predClasses			
setosa	50	0	0
versicolor	0	49	4
virginica	0	1	46
predClasses	setosa	versicolor	virginica
setosa	50	0	0
versicolor	0	48	2
	0	40 2	48
virginica	0	2	48

missForest

Imputation: Another idea

- Start with a guess for the missing values, using one of the simple imputation methods. Or, alternatively, keep the missing values - RF's can handle them.
- ► For each variable in turn, predict the missing values using a random forest with the other variables as targets. Fill in the missing values.
- Iterate this until no change.
- Use the imputed data to construct a predictor.

Advantages and disadvantages

- Works for any data set. Modeling the conditional distributions can be tricky for mixed data sets, since the conditional distribution needs to be estimated.
- ▶ Doesn't take account of the uncertainly in the imputation process.
- ▶ No method of adjusting the PE to account for the imputation.

▶ When considering splits, we only consider splits of the form X < c where c is one of then non-missing values of X.

- ▶ We evaluate the splitting criterion ignoring the missing values.
- ► For each split, we identify "surrogate splits" splits using different variables that result in similar partitions of the feature space.
- ▶ We use these if a case has a missing value in the primary split, when assigning cases to regions.
- ▶ When calculating the value of the tree in a region, we ignore missing values in the target.

Since trees cope, so do random forests.

Using the missForest package

- ▶ The function missForest in the package of the same name cycles through the variables in the data set, predicting the missing values of that variable using a random forest, using the other variables as features. This process may be repeated several times.
- ► The outputs are a imputed data set with the missing values filled in, and a set of prediction errors, giving the OOB prediction error for each variable. These give a measure of the success of the imputation.
- ▶ See the article "Using the missForest Package" and the Bioinformatics article by Stekhoven and Bühlmann on the web page for more information.
- ► The function is very easy to use with sensible defaults. You can tweek the random forest settings if desired.

Doing the imputation

The imputed data is in the data frame iris.imp\$ximp.

Example: QDA

```
fit.qda = qda(Species~., data = iris.imp$ximp)
predClasses = predict(fit.qda)$class
qdaTable = table(predClasses, iris$Species)
```

predciasses	secosa	versicolor	viiginica
setosa	50	0	0
versicolor	0	48	1
virginica	0	2	49
> mean(is.	na(iris.	miss))	

[1] 0.08133333

In fact, this is the same table that results from the complete data, so we have paid no price for the 8% of missing data.

satasa warajaalan wirminiaa

An experiment

Suppose we have data following a multivariate normal distribution with mean zero and covariance matrix Σ where

$$\Sigma_{ij} = \left\{ \begin{array}{ll} 1, & i = j \\ \rho, & i \neq j. \end{array} \right.$$

The data consist of n = 200 draws from this distribution. The target is the first variable in the data set and the remaining 19 variables are the features.

An experiment (cont)

We have four data sets:

- 1. A training set, as above.
- 2. A test set generated in the same way.
- 3. A "missing" data set where the values of the training set have been set to NA with probability π .
- 4. An "imputed" data set where the missing values have been inputed using missForest.

We calculate (1) the test set estimate of prediction error, using a linear predictor and the complete data, (2) the test set estimate of prediction error, using a linear predictor and the imputed data, and (3) a CV estimate of the prediction error, using the imputed data.

Results

We show these 3 quantities for different values of ρ and π .

	$\pi=$ 0.05			$\pi=0.10$		
	Comp	Imp	CV	Comp	Imp	CV
$\rho = 0.5$	0.60	0.60	0.54	0.57	0.57	0.53
$\rho = 0.6$	0.47	0.47	0.42	0.47	0.47	0.42
$\rho = 0.7$	0.35	0.36	0.30	0.34	0.35	0.31
$\rho = 0.8$	0.24	0.24	0.21	0.24	0.24	0.22
$\rho = 0.9$	0.12	0.12	0.11	0.12	0.12	0.11
	π	= 0.15)	π	= 0.20	
	$\frac{\pi}{Comp}$	= 0.15 Imp	CV	π Comp	= 0.20 Imp	CV
ho = 0.5						
$\rho = 0.5$ $\rho = 0.6$	Comp	Imp	CV	Comp	Imp	CV
1 '	Comp 0.59	Imp 0.60	CV 0.53	Comp 0.57	Imp 0.58	CV 0.52
$\rho = 0.6$	Comp 0.59 0.48	Imp 0.60 0.48	CV 0.53 0.41	Comp 0.57 0.47	Imp 0.58 0.47	CV 0.52 0.40

Points to note

- ▶ The effect of the missing values is negligible: Imp error is never much more than the the Comp error.
- ► The CV estimate under-estimates, so while the predictions aren't much affected, the estimate of error is.
- ▶ The degree of underestimation doesn't seem to depend much on either ρ or π , and is around 85-90%.

References

- Analytics Vidhya. Tutorial on 5 Powerful R Packages used for imputing missing values. https://www.analyticsvidhya.com/blog/2016/03/ tutorial-powerful-packages-imputing-missing-values/
- Stekhoven, D.J. (2011). Using the missForest Package. https://stat.ethz.ch/education/semesters/ss2013/ams/paper/missForest_1.2.pdf
- Stekhoven, D.J. and Bühlman, P. (2012). MissForest non-parametric missing value imputation for mixed-type data. Bioinformatics, 28, 112-118.
- van Buuren, S. and Groothuis-Oudshoorn, K. (2011) mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45 (3).