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Today’s agenda

In this lecture begin our discussion of predictive analytics. We
discuss linear methods for prediction, although many of the
concepts covered will be applicable to other methods. Some of the
ideas should be familiar from other courses, particularly STATS
330/762. Today we will cover

I Linear models

I Least squares

I Prediction error

We will use the California housing data as a running example.

See The Elements of Statistical Learning, Ch3, Introduction to
Statistical Learning Ch 3.
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Basic prediction setup

y : The output (response variable, target), the quantity
to be predicted, assumed numeric for today’s lecture;

x1, . . . , xk : The inputs (explanatory variables, features) the
variables used for prediction;

f̂ : the predictor, the mathematical function used to
combine the inputs to produce the prediction.

We assume that there is a relationship of the form

y = f (x1, . . . , xk) + error

that connects the inputs to the outputs, but f is unknown. The
errors are assumed to be unpredictable. We select our predictor f̂
from some class of predictors. In today’s lecture we assume this
class is the class of linear functions.
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Linear predictors

This is the simplest prediction method, but is often surprisingly
competitive with the more sophisticated methods we will start to
discuss next week. Linear predictors are linear functions of the form

f (x1, . . . , xk) = b0 + b1x1 + · · · + bkxk

so that the predicted target is a linear combination of the features.

We need to choose the best predictor in this class. we do this by
choosing the b’s to minimize the sum of squared errors

(y − b0 − b1x1 − · · · − bkxk)2.
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Choosing the b’s

Suppose we have rectangular set of data where columns correspond
to variables and rows to cases, which we can represent by

(xi1, . . . , xik , yi ), i = 1, 2, . . . , n

where the subscript i indexes the cases, xi1, . . . , xik are the values
of the inputs for the ith case, and yi is the output for the ith case.
Our problem is to minimize the sum of squared errors

n∑
i=1

(yi − b0 − b1xi1 − · · · − bkxik)2

as a function of the coefficients b0, b1, . . . , bk . This is a standard
mathematical problem and very robust computer algorithms exist
for solving it. See e.g. STATS 310 and STATS 760 for more
details.
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Computing the predictor

If b̂0, b̂1,..., b̂k are the minimizing values, then the predictor for
new data x1, . . . , xk is

ŷ = b̂0 + b̂1x1 + · · · + b̂kxk .

The b̂’s (and many other things) are computed by the R function
lm. A generic function call (for k = 4) is

my.model <- lm(y~x1+x2+x3+x4, data=data.df)

where the data is in a data frame data.df, containing inputs x1,
x2, x3, x4 and output y. The coefficients b̂0,b̂1,...,b̂k are
computed by

coefficients(my.model)
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The California data

The California dataset contains information on 20,640 California
“block groups”. We will use 10,000 for this example, holding the
rest back for future use. The variables are

medval : The median value of houses in the block group (the output);

medinc : The median income of residents of the block group;

medage : The median age of residents of the block group;

rooms : The total number of rooms in houses in the block group;

bedrooms : The total number of bedrooms in houses in the block group;

pop : The population of the block group;

house : The number of households in the block group;

lat : The latitude of the block group;

long : The longitude of the block group.

The 10,000 block groups are in the data frame california.df.
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Fitting the linear model

We want to develop a predictor to predict the log of the median
value. To fit the model (using log(medval) as the output and the
other variables as inputs), and calculate the coefficients, type

california <- lm(log(medval)~ medinc + medage + rooms +

bedrooms + pop + house + lat + long, data = california.df)

> coefficients(california)

(Intercept) medinc medage rooms bedrooms

-1.139141e+01 1.777315e-01 3.554765e-03 -3.022942e-05 4.675074e-04

pop house lat long

-1.947238e-04 3.077543e-04 -2.762629e-01 -2.716643e-01
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Making predictions

In the example, we held out 10,640 observations. We will use these
data to make some predictions. The new data are in the data
frame newCalifornia.df. To predict the log median income for
these 10,640 block groups, we type

> predictions <- predict(california, newdata = newCalifornia.df)

> head(predictions)

1 2 3 4 5 6

12.98445 12.34761 12.20270 12.17361 12.08313 12.09673

> log(newCalifornia.df$medval[1:6])

[1] 13.02276 12.47266 12.54789 12.27139 12.16160 11.93492
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Prediction error

How well have we predicted the house prices? In other words, what
sort of error do we expect? One measure of this error is the
expected squared error, the average squared error over a large
number of future predictions. If we have some new data ( a “test
set”) where we know the actual output (as we did for the
California data) , we can calculate the average squared error
directly. For the California data we get

> actuals <- log(newCalifornia.df$medval)

> mean((predictions - actuals)^2)

[1] 0.1181294

Thus, our estimate of the expected squared error is about 0.1181.
Note that this is measured on the log scale. This estimate is
known as the test set estimate or the out-of-sample estimate.
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Why not use the original data?

Could we use the training set (the data used to fit the model) to
estimate the expected squared error? This is called the training
error estimate or the apparent error. To do this, we could type

> mean((predict(california) - log(california.df$medval))^2)

[1]0.1131505

The apparent error estimate is a bit smaller, which is typical: in
most cases it underestimates the expected squared error.
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Prediction and models: generalities

Suppose we have a target y and features x , related by an
(unknown) function f , plus some random noise, so that

y = f (x) + ε.

The function f is arbitrary, we make no assumptions about it. We
have training data Z = (xi , yi ), i = 1, . . . , n, which we use to fit
some model and construct a predictor f̂Z of f . At this stage we will
assume that f̂Z is a linear function, obtained by fitting a linear
model as previously discussed.

Future y ’s with features x will be predicted by f̂Z (x). The Z
subscript indicates the training data and emphasizes that f̂Z is a
function of the training data. Note that this assumes that the
future data are generated by the same mechanism as the
training data.
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Prediction error: theory

The conditional prediction error (that is assuming a fixed
training set Z and squared error loss) is

PE (Z ) = E [(Y0 − f̂Z (X0))2]].

Here, the expectation is with respect to a single future observation
Z0 = (X0,Y0), so we are averaging the squared error over all future
observations. If we have a test set, the test error estimate is an
unbiased estimator of the conditional PE. Note that this assumes
that new observation comes from the same distribution as the
training data.

If we average the conditional prediction error over all possible
training sets, we get the unconditional prediction error

PE = EZ [PE (Z )].
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Prediction error: more theory

A third type of prediction error is when we want to predict at some
fixed value of the features, say x0. If the corresponding target is
Y0, we may be interested in the error when predicting Y0, but
averaged over all training sets: This is

PE = EZ [PE (Z )]

where now PE (Z ) is E [(Y0 − f̂Z (x0))2]] i.e. the features in the test
observation are now fixed. In this case we can split up the error in
a nice way:[
Y0 − f̂Z (x0)

]
= [Y0−E [Y0]]+

[
E (Y0) − E [f̂Z (x0)]

]
+
[
E [f̂Z (x0)] − f̂Z (x0)

]
.
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Prediction error: still more theory
Since these three components are uncorrelated, we get (squaring
and taking expectations over both Y0 and Z )

E
[
(Y0 − f̂Z (x0))

2
]

= E
[
(Y0 − E [Y0])

2
]
+
[
(E(Y0)− E [f̂Z (x0)])

2
]
+Var(f̂Z (x0))

= σ2 + BIAS2 +Variance.

The quantity σ2 is the essential variability of the target (at
features x0) and doesn’t depend on the prediction formula we
select. Sometimes called the “irreducible error”.

The other two terms do depend on the prediction formula, and can
be made smaller by a good choice of model. Typically, models that
are too simple will have large bias and small variance, while models
that are too complex will have small bias and large variance. This
is called the Bias/Variance tradeoff.
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Example: polynomial regression

Suppose we have some data (100 data points) which follow an
(unknown) cubic model

Y = 1 + 0.5x + 2x3 + N(0, 1)

where the x ’s have a uniform distribution on [0, 1]. We want to
make a prediction of the value of the target Y0 when x0 = 0.7.

We could consider predictors based on fitting polynomials of
degree 0, 1, 2 . . . , 7. In the figure on the next slide, we have plotted
100 data points, and the results of fitting these 8 polynomials.
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The plot
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Bias and variance

Here we plot three realisations of 100 data points with fitted lines
over the range (0.6, 0.8):
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Bias and variance (Cont)
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Points to note:

I If the model is too simple (i.e. degree 0 or 1) the variance is
less but the bias is big,

I If the model is too complex (i.e. degree 5, 6, 7) the bias is
less but the variance is big,

I Interestingly, the model with the smallest PE was degree 2
(not degree 3) The 2-degree model has a sufficiently small
bias to offset the larger variance of the 3-degree model.
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Apparent error and test error
Lets revisit a 6 degree polynomial (shown as a red solid line).
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The apparent error estimate for this data set is 0.208, but the estimate of out-of
sample error (based on a test set of 100) is 0.234. The true conditional PE (averaging
over all test sets of size 100) is about 0.268.

Note that the estimate of out-of sample error is not very good here: it is quite

variable.
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