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Introduction

Today's agenda

In this lecture we continue our discussion of linear methods for
prediction, concentrating on methods for estimating prediction
error. We treat

» Cross-validation and bootstrap estimates of prediction error
» Subset selection techniques
Again, we will use the California housing data as a running

example.

See The Elements of Statistical Learning, Ch7, Introduction to
Statistical Learning Ch 5, and Applied Predictive Modelling, Ch 4.
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Estimating prediction error

Methods for estimating PE

We discuss three:

» The test set estimate (requires a new data set with inputs and
outputs)

» Cross validation (does not require a new data set, but uses a
type of test set estimate)

» The Bootstrap (uses repeated bootstrap samples)
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Estimating prediction error

The test set estimate

As we have seen, this is simple but requires a new data set
containing both inputs and outputs. It may not be very accurate if
the test set is not very large.

Would we be better combining the test and training sets and using
the combined set to fit the model? A bigger sample size will give a
predictor with smaller variance.

We would then have to use another method (such as CV or
bootstrap) to actually estimate the prediction error.
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Cross-validation

Cross-validation

In cross validation, we split the data randomly into 10 parts, use
one part for the test set and the remaining 9 parts for the training
set, and estimate the PE with the test set estimator.

We repeat this process using a different tenth as the test set each
time. We average the resulting 10 PE estimates to get a final
estimate. We can repeat for different random splits and average.

This is (10-fold) cross-validation. (Could also split into 5 parts -
5-fold CV). See later for a discussion about which is best.
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Cross-validation

Cross-validation in R

There are several options. In the R330 package, there is a function cross.val
that will calculate a cross-validation estimate of prediction error. In the
package bootstrap, there is a function crossval that can be used with linear
models (as well as many others). The package caret which we will look at
later, is even more comprehensive. For the California data, we have

> # cross.val from R330 package

> library(R330)

> cross.val(california, nfold = 10, nrep = 20)
Cross-validated estimate of root

mean square prediction error = 0.3434868

> 0.34348687°2

[1] 0.1179832

Compare with apparent error of 0.116821 and a test set error of 0.114515. (

Since the sample is so big, there is not much difference between these.)
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Cross-validation

Choice of k in k-fold CV

Both the conditional and unconditional prediction errors depend on the
size of the training set: the bigger the training set the better the
predictor and the smaller the PE.

Suppose we want to estimate PE corresponding to a training set of size
n. When using k-fold CV, we are using a predictors based on a training
sets of size (k — 1)n/k, and estimating the average error of these
predictors, which will be biased upwards.

On the other hand, the estimates of the error are based on test sets of
size n/k. These estimates will be less accurate as k increases.
Thus

> For large k, CV(k) is more variable, less biased.

» For small k, CV(k) is more biased, less variable.

k=5 or k =10 is a good compromise choice.
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Cross-validation

Standard error of CV

The CV estimate is based on random splits of the training data:
two successive applications of the function cross.val will result
in different estimates. We can run the function several times and
calculate the standard deviation of the results ( this is not quite
the true SD as the results from different splits are not independent,
but should not be too bad.)

> cvvec = numeric(20)

> for(i in 1:20){
cvvec[i] = cross.val.mod(california, nfold=10,nrep=1)
}

> mean(cvvec)

[1] 0.1180739

> sd(cvvec)

[1] 0.0002110114

There is not much variability in the CV estimate, due to the large
sample size. CV10 appears to be biased upward.
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The Bootstrap

The Bootstrap

The basic idea here is to mimic new data by resampling the training
set, i.e. taking repeated bootstrap samples from the training set.

Suppose the training set contains n cases. To take a bootstrap
sample, we take a random sample of size n with replacement from
the training set. Thus, some of the cases in the training set will be
duplicated in the bootstrap sample, and others won’t be included
at all.

The probability a given case won't be included in the bootstrap
sample is (1 — %)” which for large n is approximately e™! = 0.368
(The probability that a case will be included is thus about 0.632.)
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The Bootstrap

Bootstrap approaches

A possible bootstrap approach might be to fit the model to a
bootstrap sample, and use the original sample as a test set. This
doesn’t work too well as the test and training sets are too similar.

An alternative is to use the bootstrap sample as both test and
training set. This really will be an underestimate. If we take the
difference between the two estimates (called the optimism), we get
a (possibly too small) estimate of the amount by which the
in-sample error underestimates PE.

We could average the optimisms over B bootstrap samples and
add the result to the in-sample error to get a corrected PE
estimate. This turns out to work quite well.
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The Bootstrap

The .632 estimator

The percentage of the original data that appears in a bootstrap sample is
on average about 63.2%, so if we use the bootstrap sample as a training
set and the original sample as a test set there will be considerable
overlap, and the error estimate will be too small. The estimate is
(denoting the predictor based on bootstrap sample b by f, and the
original data set by (x;,y;))

B n
é > % > (i — ()2 Z Z
b=1 i=1 i=1

For 62% of the samples we are using a data point to estimate the error
that was also used to fit the model. A better estimate would be

Z Z »

i=1 be(;

where C; is the set (of size |C;|) of bootstrap samples that do not contain

(i, yi)
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The Bootstrap

The .632 estimator (cont)

It can be shown that this estimate is very similar to “half-fold CV”
with k = 2. This will tend to be an overestimate of PE. If we
average this estimate with the underestimate err we should get a
better result. This leads to the “0.632" estimate

(1 — 0.632)erT + 0.632¢(©)

The choice of these weights is motivated by a rather complicated
argument we will not go into. (See Efron (1983) if you want the
full monty.) A modification (the 0.632+ estimator, Efron 1997)
uses different weights.

Alan Lee Department of Statistics STATS 784 Lecture 3

Page 13/34



The Bootstrap

Summary

Let PE(test,training) denote the estimate of prediction error
obtained by calculating the test set error when using the data set
“test” as the test set and the data set “training” as the training
set. The different estimates of PE are

» In-sample: PE = PE(training, training) = err

> Test set estimate PE = PE(test, training)

» err + opt: PE = err + PE(data, bs) — PE(bs, bs)

bs=bootstrap sample

> 0.632: 0(1 — 0.632)&rr + 0.632¢(%)

The test set estimate estimates the conditional error, while the

bootstrap and CV estimates are better estimates of the
unconditional error.
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The Bootstrap

An example

To compare the various estimators, we conducted a small
simulation, using data pairs (x;,y;),i = 1,...,n sampled from a
bivariate normal distribution with means 0, variances 1 and
correlation p. We want to evaluate the prediction error when using
least squares regression (with no intercept) as a predictor.
Consider the case where p is 0.3 and the training set has sizes

n = 20,50,100. We got the estimates on the next slide (averaged
over 1000 replications, with B = 50 bootstrap samples in each).
Note: LOOCV is leave-one-out CV, PE is the unconditional PE.
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The Bootstrap

Results

The table shows estimates of PE using different methods, for sample
sizes n = 20, 50, 100.

n=20 n=>50 n =100
PE = 0.959 PE =0.930 PE = 0.920
Mean SD Mean SD Mean SD
err 0.871 0.281 0.901 0.184 0.898 0.129
CV5,rep=1 0.987 0.337 0.944 0.196 0919 0.132
CV5, rep=10 0.981 0.319 0.944 0.194 00919 0.132
CV10, rep=1 0.972 0.317 0.942 0.194 0.918 0.132
CV10, rep=10 0.973 0.316 0.941 0.193 0.918 0.131

LOOCV 0970 0315 0.939 0.192 0917 0.131
err+opt 0.956 0.311 0.938 0.195 0.915 0.131
0.632 0.964 0.312 0.937 0.192 0915 0.131

The opt+err method looks good. The apparent error err underestimates.
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Estimatir ediction error C The Bootstrap

Boxplots of 1000 reps

1000 simulations, sample size 20 1000 simulations, sample size 20 1000 simulations, sample size 20
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The Bootstrap

Points to note

» The apparent error underestimates, but the effect reduces
with increasing sample size.

» The CV estimates are overestimating the unconditional PE ,
but the bootstrap estimates are doing well.

» For n =20 CV5 is slightly more biased than CV10.

» Repeating the CV estimates for different splits is not having

much effect for 10 fold, but is slightly improving the estimate
for 5-fold.
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The Bootstrap

Bootstrap: the California data

The R 330 package has a function err.boot that will calculate a
bootstrap estimate of PE. The package bootstrap has a function
bootpred that can be used with linear models (as well as many
others). The package caret will calculate both CV and bootstrap
estimates for a variety of models.

> err.boot(california, B=50)
$err

[1] 0.116821

$Err

[1] 0.117288

Very similar to the CV10 estimate! NB: err is the apparent error
estimate, ERR the err + opt estimate. See the code handout for
bootpred and caret.
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The Bootstrap

The bootstrap package

This package contains functions for more general cross-validation
and bootstrapping (not just for linear regression). We will illustrate
its use with the California data. First, cross-validation (data in
data frame california.df):

library(bootstrap)

theta.fit <- function(x,y){lsfit(x,y)}

theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}
sq.err <- function(y,yhat) { (y-yhat) 2}

y =log(california.df[,1])

x = california.df[,-1]

cv10Errs = crossval(x,y, theta.fit, theta.predict,ngroup=10)
cv10 = mean((y-cvbErrs$cv.fit) "2)

cv10

[1] 0.1181994

V VV V V V VVVYV
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The Bootstrap

The bootstrap package (cont)
And the bootstrap

> boot = bootpred(x,y,nboot=200, theta.fit, theta.predict,

+ err.meas=sq.err)
> bootOpt = boot[[1]] + boot[[2]] # boot + opt estimate
> bootOpt

[1] 0.1181497

> boot632 = boot[[3]] # boot632 estimate
> boot632

[1] 0.1177459
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The Bootstrap

The caret package

caret = "classification and regression training”. It is a package
for efficiently computing the PE of several different models, when
we are trying to find the best predictor. It will compute both CV
and bootstrap estimates. We illustrate its use with some sample
code on the next slide. There is a useful website:
https://topepo.github.io/caret/

The book " Applied Predictive Modeling” is also useful. ( written
by the author of caret) , and see also the Statistical Software
article by Max Kuhn “Building Predictive Models in R using the
caret Package” (link on the lectures page)
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The Bootstrap

The caret package: CV usage

> library(caret)
> CV10 = train(log(medval)” medinc + medage + rooms +
+ bedrooms + pop + house + lat + long,

+ data = california.df,

+ method = "Im", # you get this from the website
+ trControl = trainControl(method="cv", number=10,
+ repeats=20))

> CV10

Linear Regression
Resampling results:

RMSE Rsquared
0.3429905 0.6376908
> 0.34299057°2
[1] 0.1176425
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The Bootstrap

The caret package: bootstrap usage

> boot = train(log(medval)” medinc + medage + rooms +

+ bedrooms + pop + house + lat + long,

+ data = california.df,

+ method = "Im", # you get this from the website

+ trControl = trainControl (method="boot", repeats=200))
> boot

> boot

Linear Regression

Resampling results:
RMSE Rsquared
0.3442151 0.6350016

> 0.344215172

[1] 0.118484
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Variable selection

Variable selection

Should we use all the variables available, or just some of them? Of
course, we should include all variables we think might be important
features, identified by conversations with subject matter experts.
But using all available variables might overfit and lead to poor
predictions, as we saw in the polynomial example.
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Variable selection

Model complexity

When fitting models to a training set, we do not want to use a
model that has too many variables. Such a model will attempt to
capture not only the true function f but will also model the errors,
as in the polynomial example. Future data will have the same f
but different errors, which will not be well predicted by a
too-complex model. Thus, a too-complex model will have a small
training set error, but a large PE (test set error, the error expected
when predicting future data.)
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Variable selection

Model complexity(cont)

Sfize Correct

0 model

orTor @ Test set
Training set

Model Complexity

As we add more variables, the in-sample error goes down, but after
a certain point, the true PE stars to rise.
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Variable selection

Methods for variable selection

In linear prediction (and other kinds a well), we might want to identify a subset
of variables that predicts well. There are several approaches possible:

» All possible subsets: If the number of variables is not too great, we could
examine all possible subsets of variables (If there are k variables there will
be 2¥ possible subsets).

» We could add variables one at a time, choosing the variable that gives the
best improvement in the estimated PE. This is called forward selection.

» We could start with all the variables, then delete variables one at a time,
choosing the variable that gives the best improvement in the estimated
PE. This is called backward elimination.

» A combination of the last two: stepwise regression.
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Variable selection

Measuring PE inprovement

How do we measure the PE improvement? Since there are a lot of
comparisons, CV or the bootstrap may be too computationally
intensive.

Using the in-sample error is no good, since adding a variable will
always decrease the in-sample error.

One quick way is to use a penalized form of the in-sample error,
the AIC, which is proportional to the in-sample error plus the
quantity 2p52/n, where p is the number of estimated coefficients
in the predictor, and 62 is an estimate of the error variance. This
is the method used in R.
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Variable selection

Example: the California data, forward selection

> null.model = 1m(log(medval)~1, data=california.df)
> selected = step(null.model, scope = formula(california),
direction = "forward", trace=0)
> selected
Call:
Im(formula = log(medval) ~ medinc + medage + house + pop + lat +
long + bedrooms + rooms, data = california.df)
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Variable selection

Example: the California data, backward elimination

> selected = step(california, scope = formula(california),
direction = "backward", trace=0)

In this case the same model is selected.
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Variable selection

Example: the California data, stepwise

> selected = step(california, scope = formula(california),
direction = "both", trace=0)

Again, the same model is selected.

Alan Lee Department of Statistics STATS 784 Lecture 3

Page 32/34



Variable selection

Example: the California data, all possible subsets

v

allpossregs(california)
rssp sigma2 adjRsq Cp AIC BIC cv

1 1848.761 0.185 0.430 5815.345 15815.34 15829.77 184.987
2 1773.865 0.177 0.453 5176.804 15176.80 15198.43 177.543
3 1296.345 0.130 0.600 1094.859 11094.86 11123.70 129.780
4 1274.979 0.128 0.607 914.131 10914.13 10950.18 127.674
5 1188.281 0.119 0.633 174.653 10174.65 10217.92 119.747
6 1174.588 0.118 0.637 59.553 10059.55 10110.02 118.360
7 1171.280 0.117 0.638  33.253 10033.25 10090.94 118.056<----—---—----
8 1168.210 0.117 0.639 9.000 10009.00 10073.89 118.052<---—-—-----

medinc medage rooms bedrooms pop house lat long
1 0 0 0o 0 0o 0

0ONO O W N
[N TN
HHROOOR
HHBrOoOOOOO
[ T - =)
LR RrRBOOO
moooooo
R R RPERPRBO
bR R RRROO

Divide the CV entries by n/10 = 1000 to get the actual CV estimates.
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Variable selection
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