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Today’s agenda

In the next two lectures we continue our discussion of prediction
methods, moving from linear methods to more general non-linear
methods. Today we will cover

I smoothing

I gams

We will use the Boston housing data from Introduction to
Statistical Learning as a running example. Note: references to
HTF refer to Hastie, Tibshirani and Friedman, The Elements of
Statistical Learning, 2nd Ed
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The Boston housing data

The Boston housing data may be found in the MASS R package: it
consists of data on 506 Boston suburbs. The target is the median value
of owner-occupied homes, and there are 13 features. Type

> library(MASS)

> data(Boston)

> ?Boston

to see more details on the variables. The first two lines are

crim zn indus chas nox rm age dis rad tax

1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296

2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242

ptratio black lstat medv

1 15.3 396.9 4.98 24.0

2 17.8 396.9 9.14 21.6
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Prediction Recap

Here we use data to make predictions about the future.

It’s tough to make predictions, especially about the
future.

Yogi Berra, New York Yankees

Suppose our data follow a model

y = f (x1, . . . , xK ) + ε

relating a target y to features x1, . . . , xK , where f is some unknown
smooth function, and K is possibly large.

We want to find an “automatic” estimate of f , to be used to predict
future values of the response.

We do this by selecting an estimate of f from some class of functions (for

example linear functions, as in the last lecture) by using some goodness

of fit criterion, such as least squares.
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Training Sets
We assume we have available a “training set”, a set of data (usually rectangular)
consisting of observations on both the target and potential features (inputs). Our task
is to use these data to “train the predictor” i.e. to

I Choose a predictor f̂ from some set of functions, hopefully a rich flexible set.
(This is called “fitting the model” or “training the predictor”. The selected
predictor will be an approximation to the true f , hopefully a good one.

I Choose inputs to use from those in the training set. Not all may be used.

There are many possible classes of functions, for example linear functions, neural
networks, trees, gams. They should be flexible (approximate the true unknown
function well) and reasonably easy to fit.
Having fitted the model, given new data x1, . . . , xk we predict the corresponding value
of y by

f̂ (x1, . . . , xk ).
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Smoothing

If the number of inputs is small, say one or two, we can use
smoothing techniques such as loess that is used at stage 2. This is
based on the idea that the true relationship f between the inputs
and the output is a smooth function.

If the number of inputs is large, we must use other methods and
other classes of functions - see in a few slides.
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Smoothing: loess

You can read about loess on p280 of ISLR.

I Assume that the number of inputs is small and that the
variables are all continuous.

I At each data point, fit a weighted regression, with weights
given by a kernel. Points close to the data point under
consideration have higher weights. The regression can be
quadratic or linear.

I Use regression to predict the fitted value at that point.

I Repeat for every point (subset if too many).

I Implemented using the R function loess.
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Smoothing splines
Data are (xi , yi ), i = 1, . . . n, where xi is of low dimension. (in fact dimension 1 for the
rest of the discussion). Choose the function f to minimise

n∑
i=1

(yi − f (xi ))2 + λ

∫
|f

′′
(x)|2dx .

Note:

I The first term measures the goodness of fit: how close f is to the response data.

I The integral measures the size of the second derivative: in other words the
smoothness of the function f .

I The parameter λ controls the trade-off between these two requirements of
smoothness and goodness of fit, and is chosen by cross-validation.

I The minimising f is a “spline” ( a piecewise cubic) with “knots” at every
x-value in the data
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Example: smoothing splines

library(MASS)

data(GAGurine)

plot(GAG~Age, pch=19,data=GAGurine, main =

"Plot of GAG versus Age in Years")

#use GCV to choose smoothing parameter

smooth = smooth.spline(GAGurine$Age, GAGurine$GAG)

lines(smooth$x, smooth$y, lwd=3, col="red")
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The fit
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Regression splines

I Piecewise cubics

I Choose knots i.e. equally spaced or at percentiles

I Generate a “spline basis” in R

I Fit using linear regression

y = b1f1(x) + b2f2(x) + · · · + bk fk(x)
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Example: regression splines

# Average height and weight of American women 30-39

> women

height weight

1 58 115

2 59 117

3 60 120

4 61 123

5 62 126

6 63 129

7 64 132

8 65 135

9 66 139

10 67 142

11 68 146

12 69 150

13 70 154

14 71 159

15 72 164
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R code

> round(bs(women$height, df = 5),5)

1 2 3 4 5

[1,] 0.00000 0.00000 0.00000 0.00000 0.00000

[2,] 0.45344 0.05986 0.00164 0.00000 0.00000

[3,] 0.59694 0.20335 0.01312 0.00000 0.00000

[4,] 0.53380 0.37637 0.04428 0.00000 0.00000

[5,] 0.36735 0.52478 0.10496 0.00000 0.00000

[6,] 0.20016 0.59503 0.20472 0.00009 0.00000

[7,] 0.09111 0.56633 0.33673 0.00583 0.00000

[8,] 0.03125 0.46875 0.46875 0.03125 0.00000

[9,] 0.00583 0.33673 0.56633 0.09111 0.00000

[10,] 0.00009 0.20472 0.59503 0.20016 0.00000

[11,] 0.00000 0.10496 0.52478 0.36735 0.00292

[12,] 0.00000 0.04428 0.37637 0.53380 0.04555

[13,] 0.00000 0.01312 0.20335 0.59694 0.18659

[14,] 0.00000 0.00164 0.05986 0.45344 0.48506

[15,] 0.00000 0.00000 0.00000 0.00000 1.00000

reg.spline<- lm(weight ~ bs(height, df = 5), data = women)

plot(women$height, women$weight)

lines(women$height, predict(reg.spline))
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The fit
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Curse of dimensionality

Why doesn’t smoothing work in higher dimensions?
I Consider n points scattered at random in a K -dimensional

unit cube.
I Let D be the distance between another random point and the

closest of the n points. E.g for d = 2, n = 4:
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Median of D

n=100 n=200 n=500 n=1000 Max

dim = 1 0.005 0.002 0.001 0.001 1.000
dim = 2 0.052 0.036 0.023 0.016 1.414
dim = 5 0.298 0.250 0.207 0.178 2.236
dim = 10 0.674 0.614 0.555 0.505 3.162
dim = 20 1.221 1.157 1.094 1.045 4.472
dim = 100 3.504 3.444 3.378 3.332 10.000
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Conclusions

I Smoothing doesn’t work in high dimensions: points are too far
apart, and smoothing works by averaging responses of cases
whose covariates are close together.

I Solution: pick estimate of f from a class of functions that is
flexible enough to match true f reasonably closely.

I We need to be able to compute the estimate easily.
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Classes of functions and models

We will consider the following:

I Linear functions (see last lecture)

I Additive functions (additive models)

I Projection Pursuit

I MARS

I CART (regression trees)

I Neural networks
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Generalised Additive Models (gams)

In the regression (i.e. continuous target) case, these are functions
of the form

f (x) = α + φ1(x1) + · · · + φk(xk),

where the φ’s are smooth functions that are to be selected. We fit
the model by the backfitting algorithm, that relies on smoothing in
one dimension at a time. This allows us to avoid the curse of
dimensionality, at the expense of a certain lack of flexibility. Note
that to make α unique, we require that the averages of the φ’s are
zero.
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The backfitting algorithm

Illustrated for three features:

Step 1: Set α = y , φ2(x) = x , φ3(x) = x .

Step 2: Calculate r1 = y − φ2(x) − φ3(x).

Step 3: Plot r1 versus x1 and smooth the plot using your
favourite smoother. Let r̂1 be the smoothed version.
Our first guess for φ1 is r̂1 − r̂1.

Step 4: Set r2 = y − φ1(x) − φ3(x) and smooth as above to
get φ2 = r̂2 − r̂2.

Step 5: Set r3 = y − φ1(x) − φ2(x) and smooth as above to
get φ3 = r̂3 − r̂3.

Repeat steps 2–4 until no further change.
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Example: first iteration
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Red lines are smooth estimates of φ1, φ2, φ3.
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Example: second iteration
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Red line are smooth estimates of φ1, φ2, φ3.
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Example: third iteration
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Red lines are smooth estimates of φ1, φ2, φ3, blue lines are the
actual functions: the model y = x1 + x2

2 + sin(x3) + error was
used to generate the data.
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Example: Boston housing data

library(MASS)

data(Boston)

library(mgcv)

# use logs as target

gam.stuff = gam(log(medv) ~ s(crim) + s(zn) + s(indus) +

factor(chas) + s(nox) + s(rm) + s(age) + s(dis) +

factor(rad) + s(tax) +s(ptratio) + s(black) +

s(lstat),

data=Boston, family=gaussian())

summary(gam.stuff)
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Boston housing data (cont)

Formula:

log(medv) ~ s(crim) + s(zn) + s(indus) + factor(chas) + s(nox) +

s(rm) + s(age) + s(dis) + factor(rad) + s(tax) + s(ptratio) +

s(black) + s(lstat)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.824106 0.061884 45.636 < 2e-16 ***

factor(chas)1 0.043694 0.027655 1.580 0.114828

factor(rad)2 -0.001444 0.052593 -0.027 0.978107

factor(rad)3 0.104128 0.047967 2.171 0.030472 *

factor(rad)4 0.043428 0.042143 1.030 0.303339

factor(rad)5 0.071866 0.044981 1.598 0.110815

factor(rad)6 0.036157 0.052403 0.690 0.490560

factor(rad)7 0.131475 0.056039 2.346 0.019404 *

factor(rad)8 0.133793 0.056912 2.351 0.019162 *

factor(rad)24 0.618078 0.181891 3.398 0.000739 ***
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Boston housing data (cont)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(crim) 3.041 3.795 26.812 < 2e-16 ***

s(zn) 1.000 1.000 0.642 0.423241

s(indus) 8.108 8.680 3.776 0.000165 ***

s(nox) 8.961 8.997 20.004 < 2e-16 ***

s(rm) 4.827 5.972 17.004 < 2e-16 ***

s(age) 1.000 1.000 1.000 0.317835

s(dis) 8.630 8.957 5.299 8.06e-07 ***

s(tax) 2.701 3.374 8.742 4.90e-06 ***

s(ptratio) 1.000 1.000 34.930 6.58e-09 ***

s(black) 4.733 5.736 2.740 0.013430 *

s(lstat) 5.155 6.321 34.123 < 2e-16 ***

R-sq.(adj) = 0.885 Deviance explained = 89.8%

GCV = 0.021815 Scale est. = 0.019264 n = 506

The R2is 89% - a linear model has an R2 of 79%
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Boston housing data (cont)

par(mfrow=c(3,4))

plot(gam.stuff)
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Effective degrees of freedom

For both smoothing splines (with a fixed λ) and regression splines,
the fitted values (ŷ) and and the target are related by the equation

ŷ = Sy ,

where S is a matrix that depends on x and λ but not on y .

The trace (i.e. sum of the diagonal elements) of S is called the
effective degrees of freedom (edf) of the smooth. This is by
analogy with linear regression where the same thing happens: here
the trace is the model degrees of freedom. The EDF relates to how
smooth the fitted function is: an EDF of 1 means the function is
essentially linear, an edf of 2 means the function is roughly
quadratic and so on.
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Prediction

To use the gam predictor to predict a future value, we use the
same code as we did for linear models. In fact, all the prediction
methods we discuss use identical code. Suppose we want to
predict the median price of a house in a suburb whose fetaures are
in a data frame newHouse:

> newHouse

crim zn indus chas nox rm age

222 0.40771 0 6.2 1 0.507 6.164 91.3

dis rad tax ptratio black lstat

3.048 8 307 17.4 395.24 21.46

> newHousePred = predict(gam.stuff, newdata=newHouse)

> exp(newHousePred)

18.71334

Recall that we modelled log median price, and the median prices
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