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Introduction

Today's agenda

In this lecture we continue our discussion of prediction methods, introducing
some more non-linear methods. Today we will cover

> Projection pursuit

> MARS

> Trees

» Neural networks

» Use of the caret package
We will use the Boston housing data from Introduction to Statistical Learning
as a running example. Note: references to HTF refer to Hastie, Tibshirani and

Friedman, The Elements of Statistical Learning, 2nd Ed

Alan Lee Department of Statistics STATS 784 Lecture 5




Projection Pursuit

Projection pursuit

These are a generalized form of additive model: we first project the
x-vector onto one of several directions ay,...ap in X-space,

T T
. . a; X an X
making new features (derived features) vi = 3—, ..., vjy = -
aj a1 ayam
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Projection Pursuit

Projection pursuit (cont)

We then use an additive model in the new variables:

f(x) = o1(v1) + - dm(vm),

We now have to choose both the directions a and the ¢'s. The ¢'s
are smooth functions estimated using the backfitting algorithm.
The predictor is

f(x) = o1( alx) + -~ dm(afsx)

The ¢'s and the &'s are functions of the training set. The ¢’s are
called ridge functions.

R function: ppr Ref: HTF p389 (Ch 9)

Alan Lee Department of Statistics STATS 784 Lecture 5

Page 5/37



Projection Pursuit

Example: Boston housing data

library (MASS)
data(Boston)
ppr.fit = ppr(log(medv)~., data=Boston,
sm.method = "spline", max.terms = 4, nterms = 6)

summary (ppr.fit)
par (mfrow=c(2,2))
plot(ppr.fit)
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Projection Pursuit

Output of summary function

Call:
ppr(formula = log(medv) ~ ., data = Boston, sm.method = "spline",
max.terms = 6, nterms = 4)

Goodness of fit:
4 terms 5 terms 6 terms

9.387864 8.511150 8.132592

Projection direction vectors:

term 1 term 2 term 3 term 4
crim -0.0921213253 -0.0102906139 -0.0243395696 0.0245737567
zn 0.0052038340 0.0276757684 0.0070986183 -0.0017145470
indus 0.0034796721 -0.0928573557 -0.1199240669 0.1656041283
chas 0.1009101123 0.5728053710 0.5807235777 -0.1380548831
nox -0.7900875794 -0.5121167030 -0.2468754818 -0.4480900748
rm 0.4642344114 -0.4496035938 0.7092952288 0.6750359155
age -0.0030929265 0.0230042046 -0.0080653738 0.0147565288
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Projection Pursuit

Output (cont)

age -0.0030929265 0.0230042046 -0.0080653738 0.0147565288
dis -0.3056872201 -0.4222035565 -0.2299029019 0.5092284924
rad 0.0341271098 0.0183595612 -0.0610274999 0.0670092951
tax -0.0023340337 0.0013227690 -0.0017514283 0.0014680500
ptratio -0.1568562836 0.1350668289 0.0692735106 0.0282272552
black 0.0033962754 -0.0023332774 0.0031164110 0.0002259702
lstat  -0.1493314182 -0.0249080780 0.1491038740 -0.1778495657

Coefficients of ridge terms:
term 1 term 2 term 3 term 4
0.34249326 0.10440649 0.09643623 0.09491871

Equivalent df for ridge terms:

term 1 term 2 term 3 term 4
5.07 5.10 5.08 5.07

Note: the RSS is 9.387864 and the R? is 89%.
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Projection Pursuit

Example: Boston housing data
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Projection Pursuit

Example: Boston housing data

Points to note:

» Up to max.terms ridge terms are added, then deleted one at a time
until nterms are left.

» The projection directions are chosen using a Gauss-Newton method
which can be implemented as repeated weighted least squares
calculations.

> The algorithm alternates between updating phi’s (using smoothing)
for fixed directions, and new directions (for fixed phi's). Typically
the ridge functions are added one at a time and not updated.

» The ridge functions are removed using a least squares criterion,
similar to backward elimination.

The original paper introducing ppr is by Jerry Friedman and Walter
Stuezle (Friedman and Stuezle, 1981). See HTF p389 for more

information.
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MARS

MARS

MARS = Multivariate Adaptive Regression Splines

Alan Lee

>

Consider transformations of the predictors x; of the form max(0, x; — t) and
max(0, t — xj) where t is one of the data values of variable x;. These are called
hinge functions or linear splines, see picture on next slide.

Fit a model using forward selection as in linear regression, adding terms of the
type
B1 max(0, x; — t) + B2 max(0, t — x; — t)

with products of these terms with terms already in the model, choosing them to
minimise the residual sum of squares. (See HTF p 322 for details). Only
products of one or two terms are usually considered.

Stop adding terms when some preset number of terms is reached.

This model will probably be too complicated (will overfit) so drop some fixed
number of terms one at a time, choosing them to give the mimimum increase in
the RSS. The fixed number to drop can be chosen by generalised
cross-validation (see HTF)

R function: mars, earth Ref: HTF p 321 (Ch9)
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MARS

The MARS basis functions

(z—t)+

Basis Function
00 01 02 03 04 05

0.0 0.2 0.4 0.6 0.8 1.0

t
x
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MARS

Example: Boston housing data

library(earth)

data(Boston)

mars.fit = earth(log(medv)~., data=Boston,
nk=30, degree=2)

summary (mars.fit)

par (mfrow=c(2,2))

plot(mars.fit)

Fitting 30 terms, allowing products of pairs of terms.
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MARS

Example: Boston housing data

library(earth)

data(Boston)

mars.fit = earth(log(medv)~., data=Boston,
nk=30, degree=2)

summary (mars.fit)

par (mfrow=c(2,2))

plot(mars.fit)

Fitting 30 terms, allowing products of pairs of terms.
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MARS

Example: Boston housing data

Call: earth(formula=log(medv)~., data=Boston, degree=2, nk=30)

(Intercept)

h(rm-6.405)

h(307-tax)

h(tax-307)

h(19.2-ptratio)

h(ptratio-19.2)

h(172.91-black)

h(6.12-1stat)

h(lstat-6.12)

h(7.99248-crim) * h(lstat-6.12)
h(crim-7.99248) * h(lstat-6.12)
h(18.1-indus) * h(6.405-rm)
h(indus-18.1) * h(6.405-rm)
h(0.507-nox) * h(19.2-ptratio)
h(nox-0.507) * h(19.2-ptratio)

Alan Lee

coefficients

3.
.28197546
.00141749
.00028142
.05277268

0
0
0
0

-0.
-0.

0.
-0.

0.
-0.
-0.
-0.
-0.
-0.

11665848

03033980
00089799
04406193
04705400
00256829
00060203
01436065
07137486
41489781
21330718
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MARS

Example: Boston housing data

h(0.693-nox) * h(lstat-6.12) 0.16775948
h(nox-0.693) * h(lstat-6.12) 0.13471965
h(rm-6.405) * h(ptratio-19.1) -0.21945542
h(6.405-rm) * h(lstat-23.79) 0.03854071
h(1.5894-dis) * h(tax-307) 0.00501698
h(dis-1.5894) * h(tax-307) 0.00012695
h(1.6102-dis) * h(lstat-6.12) -0.07052066
h(dis-1.6102) * h(lstat-6.12) -0.00683820
h(tax-403) * h(19.2-ptratio) -0.00408753

Selected 24 of 29 terms, and 9 of 13 predictors

Termination condition: Reached nk 30

Importance: lstat, rm, crim, dis, tax, ptratio, indus, nox, black,
Number of terms at each degree of interaction: 1 8 15

GCV 0.02089385 RSS 8.269019 GRSq 0.8751958 RSq 0.9019985

Alan Lee Department of Statistics STATS 784 Lecture 5

Page 1



Plots

Alan Lee
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Trees

Regression trees (CART)

» This class of functions consists of multi-dimensional step
functions, constant on regions of feature-space.

» They can be defined by means of a tree structure, that
enables a nice explanation of how the function behaves.

» We illustrate with a simple example involving a an output y
and a single input x.

Ref: ISLR p302, V&R p251, HTF p305 (Ch9)
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Trees

Regression trees (cont)
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Trees

Regression trees (cont)

x< 0,6373

x< 0,8332
1.354

2.372 3.207
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Trees

Regression trees (cont)

To fit a regression tree, we “grow” the tree by adding two “child” nodes
to an existing node. We start with the “root” node, containing all the
observations. This corresponds to te whole feature space. To add nodes:

> Split the data contained in a node (region) into two complementary
subsets S and S’, according as x; < c or x; > c. The split will
depend on the variable used (x;) and the threshold (c). In practice
only the data values need be used for c.

» Work out the reduction in sum of squares:

Residual SS of data at node(= Z(y -3

—Residual SS of data in S — Residual SS of data in S

We do this for all possible splits at all the nodes (regions).
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Trees

Regression trees (cont)

» Choose the split that gives the biggest reduction in the RSS. The
two new nodes correspond to two new regions.

» Carry on this process until some stopping rule is satisfied. One such
could be to only split nodes (regions) that contain more that a fixed
number of observations (say 5).

» Since each split enlarges the model, the R? goes up with each split.
We could stop if the R? increases by less than a set amount.

» The terminal nodes correspond to regions of feature-space that
partition the space. The value of the fitted function f on a region is
the mean of the y values of the observations contained in that
region.

» This algorithm is called recursive partitioning. It is a “greedy
algorithm” in that it only looks on step ahead, and can’t go
backwards.
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Trees

Example: the cherry tree data

mytree = rpart(volume~height + diameter, data=cherry.df,
method="anova", cp=0.001, minsplit = 5)

First split Second split
o1 o7
o274
o328
557 0557
o554 o554
83m 515 o317 583515
.35
lo a26
£ £
2 55.93 2 3053 55.93
* T 22 a3%3
s
o287
o208
T T T T
18 20 14 16 18 20
Diameter Diameter
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Trees

Cherry trees (cont)

mytree = rpart(volume~height + diameter, data=cherry.df,
method="anova", cp=0.001, minsplit = 7)

Final split
E diameter< 16.15
o
e
66.35
o557
=D
a7 B3m 1S
us
2 o a26
£
g 1268 | 352 66.35
] S22 | Jws
ofses
T 5176 105, damey<iios
of209 17.74 21.36
T T T T
14 16 18 20
Diameter
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Trees

Pruning

If the tree is grown too much, the process can result in a tree that
is too complex. To obtain a tree that will predict better, we
“prune” the tree. Suppose we delete all nodes that are below some
fixed node. This results in a subtree, T say. Define the residual
sum of squares for a subtree as the sum of the RSS = > .(y — 7)?
summed over the terminal nodes. Consider the criterion

Residual SS of T + a x Number of terminal nodes of T,

where « is some fixed number. We choose the tree that minimizes
this criterion. The value of a can be chosen by cross-validation.

R function: rpart
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Trees

Pruning: cp

An equivalent method is to stop growing the tree when the best
split increases the R? by an amount less that some cut-off number,
called cp (complexity parameter) in the R rpart function. This is
equivalent to the previous method if we set cp = a/(RSS of the
null model).

A good strategy is to over-grow the tree, and then prune it back.
For each subtree, we can work out a cross-validated estimate of
the prediction error for that tree, and select the subtree with the
best PE. R has a pair of functions that do this nicely: printcp
and plotcp.

We illustrate the process with the Boston housing data.
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Trees

Pruning: cp

Lets fit a model with cp=.005, and won't split regions having less
than 5 points.

library (MASS)

data(Boston)

library(rpart)

tree.fit = rpart(medv™., data=Boston,
method="anova", cp=0.005, minsplit=5)

now the cp plot (see next slide):

plotcp(tree.fit)

and the printed equivalent

printcp(tree.fit)

vV V V V

vV & V #
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Trees

plotcp

size of tree
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Trees

printcp

Regression tree:

rpart(formula = medv ~ ., data = Boston, cp = 0.005, minsplit = 5)
Variables actually used in tree construction:

[1] crim dis lstat nox ptratio rm

Root node error: 42716/506 = 84.42, n= 506

CP nsplit rel error xerror xstd
1 0.4527442 0 1.00000 1.00679 0.083185
2 0.1711724 1 0.54726 0.66069 0.061169
3 0.0716578 2 0.37608 0.44361 0.048990
4 0.0590015 3 0.30443 0.43166 0.051017
5 0.0337559 4 0.24542 0.34445 0.043491
6 0.0266130 5 0.21167 0.31577 0.043494
7 0.0235724 6 0.18506 0.27651 0.041791
8 0.0108593 7 0.16148 0.27291 0.041823
9 0.0074304 8 0.15062 0.25940 0.041483
10 0.0072654 9 0.14319 0.26175 0.041486
11 0.0070714 10  0.13593 0.26175 0.041486
12 0.0061263 11 0.12886 0.27324 0.044665
13 0.0050000 12 0.12273 0.26560 0.044499
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Neural Networks

Neural networks

Neural networks were first introduced in the field of artificial intelligence, and as HTF
remark (section 11.3 of the Elements of Statistical Learning)

There has been a great deal of hype surrounding neural networks,
making them seem magical and mysterious. As we make clear in this
section, they are just nonlinear statistical models, much like the projection
pursuit regression model discussed above.

The neural network function is made up of non-linear transformations (using the
sigmoid function) of linear combinations of the predictors:

F(x) =ao+ > Bro(con + D ainxi)
h i
where o(x) = exp(x)/(1 + exp(x)). (This is called the sigmoid function). Thus, we
assume that our target y is releted to our features x by
y = f(x) + noise

where f is the NN function above. The parameters g, 8, and aqy are called weights.
By varying the weights, a very flexible family of functions is obtained.

Ref: HTF p392 (Ch9)
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Neural Networks

Neural networks: the picture

This function can be thought of as describing the action of a
“neural network” :

Predictor Predictor Predictor | [ Predictor
A B C P
Hidden . Hidden
Unit1 Unit H
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Neural Networks

Fitting neural networks

» Since the NN function depends on a finite set of parameters
(weights), the function can be fitted by non-linear least
squares, using a specialized iterative algorithm (see HTF p
391 for details).

» The choice of starting values is important as the objective
function has multiple local minima - several starts should be
tried.

» It is advantageous to add a “regularization penalty”
(proportional to the sum of the squared weights) to the least
squares criterion to assist the optimization process. If this is
done the input data should be standardized.

R function: nnet
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Neural Networks

Example: Boston housing data

library(nnet)

data(Boston)

nnet.fit = nnet(log(medv)~., data=Boston, size = 6,
linout=TRUE, decay = 0.01, maxit = 500)

Typically the weights are not of too much interest (although they
can be seen using the summary function), and the neural network
is treated as a black box predictor. The RSS from this fit was
7.956961 and the R? ws 91%.
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Model complexity and model tuning

» For linear predictors, complexity is the number of variables

» For ppr, measured by the number of ridge functions

» For MARS, the number of terms fitted in the forward selection
> For Trees, the size of the tree, as controlled by cp

> For Neural nets, measured by the number of units in the hidden layer

Caution: Models that are too complex will not be good for prediction -
model noise as well as signal

Choose a model with moderate complexity, one that minimizes the PE.
This involves searching over the tuning parameters (size of hidden layer,
value of cp etc) and selecting the tuning parameters that minimize the
PE. We can use the caret package for this. caret = "classification and
regression training”. We illustrate its use with some sample code on the
next slide. See also the caret website

http://topepo.github.io/caret/index.html
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Example: use of caret

Note: The arguments decay and size (the number of hidden layer
units) are parameters used in the nnet function we used to fit a neural
network. They need to be "tuned” to find the best predictor. The
parameters maxit, trace and linout are additional parameters
controlling the fitting process, but these do not change.

library(caret)
my.grid <- expand.grid(.decay = c(0.001), .size = c(4,6,8))
nn.CV <- train(y~., data = data,
method = "nnet",
maxit = 1000,
tuneGrid = my.grid,
trace = FALSE,
linout = TRUE,
trControl = trainControl(method="cv", number=5,
repeats=100))
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Caret output

> nn.CV

Neural Network

506 samples 13 predictor

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 404, 406, 404, 405, 405
Resampling results across tuning parameters:

decay size RMSE Rsquared RMSE SD Rsquared SD
0.001 4 0.2301332 0.7376485 0.11610168 0.15925283
0.001 6 0.1751344 0.8220023 0.02078402 0.04066819
0.001 8 0.1962414 0.7799063 0.02794876 0.05555551
0.010 4 0.2341524 0.6475049 0.09870711 0.32277666
0.010 6 0.1701837 0.8343562 0.01381691 0.02319806
0.010 8 0.1825407 0.8148357 0.02755196 0.03505227

RMSE was used to select the optimal model using the smallest value.
The final values used for the model were size = 6 and decay = 0.01.
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Points to note

» The best model has a cross-validated R? of 83%, considerably
less than the 91% obtained from the training set.

» We now would feel reasonably confident about using this NN
model as a predictor.

» We would make our predictions using the predict function as
usual.

> In Assignment 2 you will be asked to compare all the methods
we have discussed (which will involve tuning all of them). You
will need to consult the caret website to get the names of the
tuning parameters - usually the same as in the R functions.

» Don't forget the period in expand.grid(.decay =
c(0.001), .size = c(4,6,8))
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