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Today’s agenda

In this lecture we discuss how prediction methods may be improved by
combining the results of several predictions, and look at ways of measuring
variable importance. Today we will cover

I Boosting

I Bagging

I Random Forests

I Variable Importance

We will use the Boston housing data as a running example. Note: to HTF refer

to Hastie, Tibshirani and Friedman, The Elements of Statistical Learning, 2nd

Ed
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Boosting

The basic idea here is to keep fitting models to modified versions
of the data and adding the results together. The first use of this
idea was in a classifier called ADABOOST which we will discuss
briefly in Lecture 8. In the case of continuous targets, the method
becomes

1. Fit a model (say linear regression or a tree) to the data. This
becomes the “current model”

2. Then repeat

2.1 Extract the residuals
2.2 Fit a model to the residuals
2.3 Add (some multiple) of the resulting model to the current

model.

3. Stop when PE stops improving

Ref for Boosting: ISLR p321, HTF Chapter 10, APM Section 8.6
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Math details

See “Forward stagewise modelling”: (HTF p 341) Many regression
models fit an additive combination of “basis functions” i.e. express
f as

f (x) =
M∑

m=1

βmb(x , γm)

where the βm are regression coefficients and b(x , γ) is a “basis
function” which depends on a parameter γ. Examples:

I Linear: b(x , γ) = xj
I Trees: b(x , γ) = I (x ∈ Rm)

I Neural nets: b(x , γ) = σ(γ0 + γT x)
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FSM Algorithm

1. Set f0(x) = 0.

2. For m = 1, 2 . . . ,M

2.1 Let ri be the residuals from the current fit. Compute

(β̂γ̂) = argminβ,γ

n∑
i=1

(ri − βb(x , γ))

That is, select the basis function that best fits the residuals.
2.2 Set fm(x) = fm−1(x) + νβ̂b(x , γ̂).
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Points to note

I In the case of linear regression, the basis functions are just the
individual targets, so the algorithm is very similar to forward
selection.

I The constant ν is called the regularization constant and is usually
set at around 0.01-0.05. The idea is that many small adjustments
are better than a few big ones, so we choose M to be large and ν to
be small.

I When boosting trees, we fit a whole tree to the residuals. These are
best taken to be small trees ( say 4-8 terminal nodes)

I Implemented in R by the gbm and mboost packages - see
documentation in the R help files.

I We need to choose M (number of boosting steps) (and in the case
of trees) J (number of terminal nodes).

I The basic model being fitted is called the “base learner”.
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Example: Boston housing data

Let’s first try boosting using linear regression as the base learner.
We will use the glmboost function in the mboost package. We
will take ν = 0.05 and try M = 1000.

library(MASS)

data(Boston)

# boosting using linear regression

library(mboost)

myfit.r = glmboost(log(medv)~., data = Boston,

control = boost_control(mstop = 1000, nu = 0.05))
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Example: Boston housing data

How do we know if we have got M right. We plot the estimated
PE against different M values:

> Boston.risk.r = cvrisk(myfit.r)

> plot(Boston.risk.r)

> mean(Boston.risk.r[,mstop(Boston.risk.r)])

[1] 0.03928071

(The corrsponding figure for a linear model is approximately the
same.) The last line calculates the best PE from the plot, shown
on the next slide.
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Example: PE plot
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Example: Boston housing data

Now let’s try boosting using trees as the base learner. We will use
the blackboost function in the mboost package. We will take
ν = 0.05 and try M = 1000.

> myfit.r = blackboost(log(medv)~., data = Boston,

+ control = boost_control(mstop = 1000, nu = 0.05))

> Boston.risk.r = cvrisk(myfit.r)

> mean(Boston.risk.r[,mstop(Boston.risk.r)])

[1] 0.02591913

> mstop(Boston.risk.r)

[1] 981

> plot(Boston.risk.r)

Alan Lee Department of Statistics STATS 784 Lecture 6

Page 11/26



Introduction Boosting Bagging Random Forests Variable Importance

Example: PE plot for trees

25−fold bootstrap
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Bagging

Bagging stands for Bootstrap Agg regation. The idea is: to make a
prediction at x , we

I Draw B bootstrap samples

I Fit a model f to each sample

I Average the predictions from each model

Often done with trees, with a small tweek in the above. This
results in Random Forests. Random Forests were invented by Leo
Breiman, a Berkeley professor, and further developed by Adele
Cutler (an Auckland graduate) Ref for Bagging: HTF Chapter 8
(section 8.7). Ref for Random Forests ISLR p 316, HTF Chapter
15, APM section 8.5. See also
http://www.stat.berkeley.edu/ breiman/RandomForests/
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Random Forests

We apply the bagging algorithm above to trees, modifying it as follows.
To predict the response at x :

I Draw B bootstrap samples.

I For each sample, fit a tree of some specified depth. At each split,
select the splits using only a randomly chosen subset of m variables,
rather than choosing from all of them. The software default for m is
one third of the number of features.

I Unlike boosting, we make the trees quite large - the
recommendation in the software is to stop growing the trees when
the terminal nodes contain less than 5 cases.

I Average the predictions f (x) to obtain the final prediction. The the
way the splits are chosen means the individual predictions are not
highly correlated so we get a greater benefit in reduced variance.
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Random Forests (cont)

I We don’t need to cross-validate as the estimate of PE is made using
only “out-of-bag” samples (the cases not included in th bootstrap
sample.)

I As for boosting, we choose B large enough for the PE to settle
down. Overfitting is not an issue - unlike boosting increasing B will
not overfit the model. However, we don’t want B to be too big as it
lengthens the computational time.

Both m and the mininum nodesize are tuning parameters and the models

should be optimised over these.
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Example

We use the R functionrandomForest in the package of the same
name.

> library(randomForest)

> fit = randomForest(log(medv) ~ ., data=Boston, ntree=400,

+ mtry=5, nodesize=5, importance=TRUE)

> plot(fit) # this gives a plot of PE against B

> fit$mse[400]

[1] 0.02113493
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Example: PE plot for RF
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Variable Importance

Now we address the questions

1. Which features are important in making our prediction?

2. What is the relationship between a feature and the target?
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Variable Importance: basics

Linear functions: Size of standardized regression coefficients, p
-values, correlation with target

gams: Approximate significance of terms, correlation with
target

ppr: Large standardised coefficients in ridge terms

MARS: Variables in basis functions having large coefficients
(after standardization)

NN: Large weights (standardised variables)

Trees, RF: See next slide
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Variable Importance: trees

For a single tree, we can add up the decreases in the RSS
associated with all splits involving a particular variable. For
random forests, we simply aggregate these over all trees in the
forest. There are functions importance and varImpPlot in the
randomForest package to do this.

An alternative method is to fit the model, record the OOB
prediction error for each tree, then average this over all the trees.
Then, randomly permute the values of a variable, and repeat the
PE calculation. The difference is a measure of the variable’s
importance, as permuting values will destroy any predictive ability
the variable might have.
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Variable Importance: trees
> importance(fit)

%IncMSE IncNodePurity

crim 19.875541 11.0419894

zn 3.617168 0.2625693

indus 9.451135 3.2505651

chas 2.998207 0.2490390

nox 23.061170 7.8358205

rm 36.246579 14.8684280

age 15.596956 1.9836929

dis 19.266619 4.3283789

rad 6.265112 0.4547750

tax 12.616478 2.4778239

ptratio 13.073179 5.1453404

black 12.520710 1.6876769

lstat 33.057411 30.0070478

> varImpPlot(fit)

Note: IncNodePurity refers to the first method on the previos slide, %IncMSE the

second.
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Example: Importance plot
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Partial dependence plots

How can we explore the relationship between individual variables
(or subsets of variables) and the predictor? One way is to consider
the average value of f for a fixed value xj of a particular variable
(say Xj), averaged over the other variables. For example, suppose
we want to understand the relationship between X1 and f . For a
fixed value x1 of X1, we can calculate

1

n

n∑
i=1

f̂ (x1, xi2, . . . , xik).

We can repeat this for different values of x1 and plot the result.
This is called a Partial Dependence Plot.
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Code

##########################################

# partial dependence plots for variable crim

x = seq(1,40, length=20)

mypdp = numeric(20)

for(i in 1:20){

newdata = Boston

newdata[,13] = x[i]

mypdp[i]=mean(predict(fit, newdata=newdata))

print(i)

}

plot(x,mypdp, type="l", xlab = "crim",

ylab = "Partial Dependency", col="red", lwd=2,

main= "Partial dependency plot for variable crim")

Note that this code will work for any prediction method: here we
do it for random forests.
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The plot
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RF plot

For random forests there is a built-in function

> partialPlot(fit, pred.data=Boston, x.var = "crim",

col="red", lwd=2)
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