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Today’s agenda

In this lecture we discuss linear methods for classification, (although many of
the concepts covered will be applicable to other methods). Some of the ideas
should be familiar from other courses, particularly STATS 330/762. Today we
will cover

I Classification: general principles;

I Bayes classifier;

I Logistic regression;

I Linear and Quadratic discrimination analysis;

I Cross-validation and bootstrap estimates of classification error;

I K -nearest neighbour classifier;

We will use the credit card default data from Introduction to Statistical

Learning as a running example.
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Classification

In today’s lecture we consider the case when our output is a
categorical variable, indicating which one of a number of classes
the observation belongs to e.g. alive/dead, win/draw/loss, 1-5 in a
Likert scale in a questionnaire.

Given we have observed inputs x1, . . . , xk , how should we classify
an observation? For example, given a person’s age, can we predict
if they suffer from arthritis?
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Bayes classifier

Suppose for each age x , we know the conditional probabilities

Prob[ has arthritis |age = x ],

Prob[ does not have arthritis |age = x ].

Then the best classifier (one that minimizes the probability of
misclassification) is the one that assigns to a individual aged x the
class with the highest conditional probability. ( In the case of just
two classes, as is the case here, this is the same as classifying an
individual as having arthritis if

Prob[ has arthritis|age = x ] > 0.5.
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Estimating conditional probabilities

The problem with this approach is that we don’t usually know these
conditional probabilities. However, if we could estimate them, we
could use the Bayes classifier with the estimated probabilities.

We will look at three ways of doing this: using logistic regression,
using discriminant analysis, and K -nearest neighbours.
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Logistic regression

We first discuss the case where there are just two categories, which
we label 0 and 1. We denote the output as Y , so either Y = 0 or
Y = 1, and the inputs as x . In logistic regression, we model the
probabilities as

Prob[Y = 1|x ] =
exp{b0 + b1x1 + · · · bkxk}

1 + exp{b0 + b1x1 + · · · b1xk}
,

Prob[Y = 0|x ] =
1

1 + exp{b0 + b1x1 + · · · b1x1}
,

where we have to choose the values of b0, b1, bk , based on a
training set.
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Odds & log-odds form

Odds form:

Prob

1− Prob
= exp(b0 + b1x1 + · · ·+ bkxk)

Log-odds form:

log
Prob

1− Prob
= b0 + b1x1 + · · ·+ bkxk .
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Choosing the b’s

The b’s are chosen by the method of maximum likelihood - this is
a statistical technique based on assumptions on how the data was
generated. See STATS 330 for more detail. In R, this is done using
the function glm. See the example below.
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Prediction error

In classification problems, the prediction error is measured by the
probability of misclassification. This can be estimated from the
training set by the proportion of misclassified observations, or from
the test set in the same way. We illustrate with an example, from
An Introduction to Statistical Learning. In the package ISLR there
is a data set Defaults containing data on 10,000 monthly credit
card bills. The variables are

income : annual income of card holder;

balance : the monthly balance;

student :student status Yes=student, No=Not a student;

default : defaulted on payment? Yes/No

Note: The variable student is categorical, so the effect of being a
student is to increase the predicted log-odds by the amount of the
student coefficient.
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Calculating the b’s

> library(ISLR)

> data(Default)

> default.logistic = glm(default~ student+balance+income,

+ data=Default, family=binomial)

> coefficients(default.logistic)

(Intercept) studentYes balance income

-1.086905e+01 -6.467758e-01 5.736505e-03 3.033450e-06

Note: The effect of being a student is to decrease the predicted
log-odds by 6.467758e-01.
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Predicting

To make the predictions, we use the generic predict function to calculate the
estimated conditional probabilities, and then make a table of predictions versus
actuals. We predict a default if the estimated probability is greater than 0.5:

> probs = predict(default.logistic, type="response")

> my.table = table(Default$default, probs>0.5)

> my.table

FALSE TRUE

No 9627 40

Yes 228 105

The estimated error is the proportion of individuals on the off-diagonals:

> 1-sum(diag(my.table))/sum(my.table)

[1] 0.0268
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Error rates: general loss functions

As in regression, we can get estimates of the out-of-sample error
rate using either a test set, cross-validation or the bootstrap. In
both regression and classification, the error when using a prediction
rule f (x) is measured by the aveage value of the loss function

1

M

M∑
i=1

L(yi , f (xi ))

where L(y , f (x)) is the error when predicting a case whose true
response is y with the prediction f (x). For least squares, the loss
function is (y − f (x))2. For a binary response, with a predictor
f (x) taking values 0 and 1, it is

L(y , f (x)) =

{
0, y = f (x)
1, y 6= f (x)
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Sensitivity and specificity

The predictor does well when predicting the non-defaults, but poorly
when predicting the defaults. We can distinguish between these:

I Sensitivity: probability of predicting a 1 when the case is truly a 1:
the “true positive rate”

I Specificity: probability of predicting a 0 when the case is truly a 0:
the “true negative rate” (1-specificity is called the “false positive
rate”)

I Ideally, want both to be close to 1

I Thus, the sensitivity is the probability of correctly identifying a
default - i.e. 105/(228+105) = 0.315, the specificity is
9627/(9627+40)=0.996.
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Sensitivity and specificity

We can trade off the specificity against the sensitivity by moving away from the
Bayes rule. For example, if we decide to classify a customer as a default if the
probability of default is more than 0.1 (instead of 0.5) we would get

> my.table = table(Default$default, probs>0.1)

my.table

FALSE TRUE

No 9107 560

Yes 85 248

> 9107/(9107+560)

[1] 0.942071

> 248/(85+248)

[1] 0.7447447

so the sensitivity has gone down a bit (from 0.996 to 0.942) but the specificity

has improved from 0.315 to 0.745. The overall prediction error has increased

(from 0.0268 to 0.0645).
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Predicting rare events

Defaults are quite rare: only about 3% of the data set is a default.
In data sets like this, very few, if any of the estimated probailities
of success (e.g. default) will be more than 0.50. In this case
almost all cases will be predicted to be non-defaults. This is not
very helpful.

Sometimes we are interested in the cases that have the highest
probability of default, even if this probability is less than 0.5. We
might set the threshold lower, say 0.2, and flag customers that
have a probability of more than 0,2 of defaulting. Thus, we are
more interested in predicting probabilities rather than outcomes.
We may be interested in a customer with default probability 0.2,
even though by the Bayes rule, we would predict that he or she
won’t default.
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Example: cold calling

Suppose an insurance company is peddling insurance on caravans.
One option is to cold-call previous customers, but this will result in
very few successful sales. A better option is to estimate the
probability of a successful sale, given the information in the
company’s database. The calls can then be concentrated on the
customers with the highest probability of actually purchasing
insurance.

This example was the basis of the 2000 COIL Challenge (a data
mining competition): see
liacs.leidenuniv.nl/∼puttenpwhvander/library/cc2000/
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Bootstrapping and cross-validation

This works exactly as before, except that instead of averaging the
squared errors, we average the quantity

L(y , ŷ) =

{
1, y 6= ŷ ,
0, y = ŷ ,

.

where y is the actual category and ŷ the predicted one. (For
numerical outputs we use L(y , ŷ) = (y − ŷ)2)
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Example: the default data

> library(R330)

> cross.val(default.logistic,nfold=10)

Mean Specificity = 0.9958682

Mean Sensitivity = 0.3174139

Mean Correctly classified = 0.973215

> 1-0.973215

[1] 0.026785

err.boot(default.logistic,B=100)

$err

[1] 0.0268

$Err

[1] 0.026654
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Example: More than two output categories

Suppose that there are J output categories, C1,C2, . . . ,CJ . We
estimate the conditional probabilities by

Prob[Y in Cj |x ] =
exp{bj0 + bj1x1 + · · · bjkxk}

1 +
∑J−1

j=1 exp{bj0 + bj1x1 + · · · bjkxk}

for j = 1, 2, . . . , (J − 1) and

Prob[Y in CJ |x ] =
1

1 +
∑J−1

j=1 exp{bj0 + bj1x1 + · · · bjkxk}

The coefficients bjk are found using the nnet function - see later.
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Using Bayes Theorem

Logistic regression works by modeling the conditional probability of
being in a category, given the features x , i.e. we model

Prob[Y in Cj |x ].

An alternative is to turn this around, and instead model the
conditional density f (x |Cj) of x , given the class Cj . Then we can
recover Prob[Y in Cj |x ] using Bayes Theorem:

Prob[Y in Cj |x ] =
f (x |Cj)πj∑J
j=1 f (x |Cj)πj

.

Here the πj are the prior probabilities that a case will be in class
Cj . As before, we assign a case with features x to the class with
the highest conditional probability. As the denominators are the
same, this amounts to assigning to the class with the highest value
of f (x |Cj)πj .

Alan Lee Department of Statistics STATS 784 Lecture 8

Page 21/30



Introduction Classification Logistic regression Linear discriminant analysis K-nearest neighbours

Conditional densities

How should we model the conditional densities? There are several
possibilities (we will assume for simplicity that all the features are
numeric)

1. Use a non-parametric density estimate, estimated from the
training data.

2. Use a multivariate normal distribution.

3. Use a mixture of multivariate normals (see later in the
Unsupervised learning lectures)
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Multivariate normal

An equivalent to finding the maximum f (x |Cj)πj is to find the
maximum log(f (x |Cj)πj). In the case of the multivariate normal
this is the maximum value of

−1

2
log det(Σj)−

1

2
(x − µj)TΣ−1

j (x − µj) + log πj

Here µj is the mean vector and Σj the covariance matrix of the jth
conditional distribution. These are usually unknown, so to get a
practical rule we replace these with estimates calculated from the
training set.

In the case of two classes, the rule divides the feature space into
two regions separated by a quadratic boundary, so this technique is
called Quadratic Discriminant Analysis.
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Linear discriminant analysis

If we assume that the covariance matrices Σj are all equal (to Σ
say) the rule is to assign the case to the class having the largest
value of

xTΣ−1µj −
1

2
µTj Σ−1µj + log πj

which results in linear discriminant functions. For two classes, the
boundary is a linear boundary. The common covariance is
estimated by a weighted average of the separate sample covariance
matrices:

Σ̂ =
(n1 − 1)Σ̂1 + · · ·+ (nJ − 1)Σ̂J

n1 + · · · nJ − J

( the within-groups covariance matrix). Here Σ̂j and nj are the
sample covariance matrices and the sample size for the jth
category in the training data. This is Linear Discriminant Analysis.

Alan Lee Department of Statistics STATS 784 Lecture 8

Page 24/30



Introduction Classification Logistic regression Linear discriminant analysis K-nearest neighbours

Example

We will us the default data, ignoring the student feature.

Histogram of Default$balance
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Seems like some discrimination should be possible.
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Example: QDA

> fit.qda = qda(default~balance + income, data = scaledDefault)

> predClasses = predict(fit.qda)$class

> head(predClasses)

[1] No No No No No No

Levels: No Yes

> predProbs = predict(fit.qda)$posterior

> head(predProbs)

No Yes

1 0.9993344 6.655567e-04

2 0.9993649 6.350755e-04

3 0.9929750 7.024999e-03

4 0.9999138 8.617529e-05

5 0.9991055 8.945327e-04

6 0.9986286 1.371356e-03

> qdaTable = table(predClasses, scaledDefault$default)

> 1 - sum(diag(qdaTable))/sum(qdaTable)
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Example: LDA

> fit.lda = lda(default~balance + income, data = scaledDefault)

> predClasses = predict(fit.lda)$class

> head(predClasses)

[1] No No No No No No

Levels: No Yes

> predProbs = predict(fit.lda)$posterior

> head(predProbs)

No Yes

1 0.9967714 0.003228590

2 0.9971267 0.002873331

3 0.9870147 0.012985269

4 0.9988978 0.001102160

5 0.9961908 0.003809204

6 0.9957063 0.004293704

> qdaTable = table(predClasses, scaledDefault$default)

> 1 - sum(diag(qdaTable))/sum(qdaTable)

[1] 0.0276
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Example: Boundaries
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Introduction Classification Logistic regression Linear discriminant analysis K-nearest neighbours

K-nearest neighbours

Here we estimate
Prob[Y in Cj |x ]

by the proportion of the K data points closest to x that are in
category Cj .

To define “closest” we need a definition of distance - in the case of
numeric variables we use Euclidean distance, in the case of
categorical inputs we can use dummy variables - see STATS 330
for details.

We should standardise the variables to prevent one variable
dominating the distance.
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Introduction Classification Logistic regression Linear discriminant analysis K-nearest neighbours

Example

# knn

library(class)

# scale the inputs, turn student into numeric

defaultScaled = data.frame(student=as.numeric(Default[,2]),

as.data.frame(scale(Default[,3:4])))

predictions = knn(defaultScaled, defaultScaled,

Default$default, k=5)

knn.table = table(Default$default,predictions)

> knn.table

predictions

No Yes

No 9614 53

Yes 199 134

> 1-sum(diag(knn.table))/sum(knn.table)

[1] 0.0252
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