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Today’s agenda

In this lecture we continue our discussion of classification methods,
concentrating on classification versions of the methods we covered
in Lecture 4. Topics will be

I Additive models (gams)

I Neural networks

I Trees and random forests

I Support vector machines

First, we discuss two datasets.
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Example: Zip codes

I In the US, postal districts are labeled by 5-digit ZIP codes
(ZIP=Zone Improvement Plan). Letters are supposed to have
these codes as part of an address. The US Postal Service has
been interested in algorithms for enabling the machine sorting
of letters, including character recognition software.

I This example involves 9298 images of individual hand-written
digits. Each image is represented by a 16× 16 = 256 array of
pixels, each with a gray-scale value, ranging from -1 (white)
to 1 (black). Thus, there are 256 explanatory variables. The
response is the actual digit.

I The aim is to develop a classification rule to recognise digits
on the basis of the grey-scale values.

I A sample row of the data matrix and the corresponding image
is shown overleaf:
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Sample data

-1 -1 -1 -1 -1 -1 -1 -0.631 0.862 -0.167 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -0.992 0.297

1 0.307 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -0.41 1 0.986 -0.565 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -0.683 0.825 1 0.562 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -0.938 0.54 1 0.778 -0.715 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.1 1 0.922 -0.439 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -0.257

0.95 1 -0.162 -1 -1 -1 -0.987 -0.714 -0.832 -1 -1 -1 -1 -1 -0.797 0.909 1 0.3 -0.961 -1

-1 -0.55 0.485 0.996 0.867 0.092 -1 -1 -1 -1 0.278 1 0.877 -0.824 -1 -0.905 0.145

0.977 1 1 1 0.99 -0.745 -1 -1 -0.95 0.847 1 0.327 -1 -1 0.355 1 0.655 -0.109 -0.185 1

0.988 -0.723 -1 -1 -0.63 1 1 0.068 -0.925 0.113 0.96 0.308 -0.884 -1 -0.075 1 0.641

-0.995 -1 -1 -0.677 1 1 0.753 0.341 1 0.707 -0.942 -1 -1 0.545 1 0.027 -1 -1 -1 -0.903

0.792 1 1 1 1 0.536 0.184 0.812 0.837 0.978 0.864 -0.63 -1 -1 -1 -1 -0.452 0.828 1 1 1

1 1 1 1 1 0.135 -1 -1 -1 -1 -1 -1 -0.483 0.813 1 1 1 1 1 1 0.219 -0.943 -1 -1 -1 -1 -1 -1

-1 -0.974 -0.429 0.304 0.823 1 0.482 -0.474 -0.991 -1 -1 -1 -1
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The image
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Example: Spam

I As you no doubt know, spam is unwanted email, the
electronic equivalent of junk mail.

I Most mail programs have a way of recognizing such messages
as spam and diverting them to a junk mail folder.

I This is usually done by recognizing key words and characters
that are likely to occur in either genuine messages and spam,
but not both. These words will be different for every user.
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Example: Spam (cont)

I The data for this example consist of measurements on 4601
email messages. There are 58 variables representing the
relative frequency of certain words and characters (e.g. the
proportion of words in the message that are “George”.

I There are additional variables representing the length of
strings of consecutive capital letters, and the response variable
is a binary variable (0=genuine message, 1=spam).

I The aim is to develop a classification rule for classifying an
email as genuine or spam.

Alan Lee Department of Statistics STATS 784 Lecture 9

Page 8/45



Introduction Data sets Additive models Neural Nets Classification Trees Support vector machines Boosting and bagging

Reading in data

# read in zip code data

URL = "https://www.stat.auckland.ac.nz/~lee/760/digits.txt"

zip.df = read.table(URL, header=FALSE)

names(zip.df) = c("digit", paste("V",1:256, sep=""))

# read in spam data

URL = "https://www.stat.auckland.ac.nz/~lee/760/spam.txt"

spam.df = read.table(URL, header=FALSE)

names(spam.df) = c(paste("V",1:57, sep=""),"spam")
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Additive models

To adapt additive models to the case of logistic regression (or in
fact to any other form of generalised linear model), we combine
the steps in fitting an ordinary logistic (maximum likelihood
implemented through iteratively reweighted least squares) with the
backfitting algorithm. See ESL page 297 for details. The only
change in the software is that we must signal the use of the logistic
by the family=binomial argument (as in the glm function).
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Example: the default data

library(ISLR)

library(mgcv)

data(Default)

# don’t smooth student - it is a factor

default.gam = gam(default~student+s(balance)+s(income),

data=Default, family=binomial)

par(mfrow=c(1,2))

plot(default.gam)

probs = predict(default.gam, type="response")

my.table = table(Default$default, probs>0.5)

> 1-sum(diag(my.table))/sum(my.table)

[1] 0.0268
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Plots
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No need for additive model - ordinary logistic regression will be OK
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Neural nets

I There is one output node for each response category.

I At the kth output node we accumulate

fk(x) = β0k +
∑
j

βkjσ(αk0 +
∑
m

αT
kmx).

I Outputs are

pk(x) =
exp(fk(x))∑K
j=1 exp(fj(x))

I Assign a case with covariate x to class having the largest
value of pk(x) (equivalently the largest value of fk(x))

I Use linout=FALSE.
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Fitting criterion

For classification the least squares loss function is not appropriate.
Instead we use a loss function derived from the multinomial
distribution. Suppose we have a target y having K classes. Define
binary variables yk , k = 1, . . . ,K by

yk =

{
1, y = k,
0, y 6= k.

Then we choose the weights in the NN to minimise

−
n∑

i=1

K∑
k=1

yik log pk(xi ).

Note that this was the fitting criterion for the multinomial
regression considered in slide 23 of lecture 8.
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Why is this reasonable?

I If the the πk are unrestricted, and yi ≥ 0,
∑

i yi = 1 the
expression

−
K∑

k=1

yk log(πk)

takes its minimum value
∑K

k=1 yk log(yk) when πi = yi .
(Assume 0 log(0) = 0.)

I The criterion gives the maximum likelihood estimates if the
data are assumed to be multinomial.
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Skip layer

I In neural networks, we can have a ”skip layer” i.e linear
combinations that are passed directly to the output nodes and
are not transformed by the sigmoid function. In effect, we are
adding another linear combination of the features to the
function.

I Triggered by the argument skip=TRUE.

I If we set skip=TRUE and size=0 we are fitting the
multinomial logistic model as in slide 23 of lecture 8.
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The spam data: Neural nets

Suppose data is in a data frame spam, with variables V1,...,V58.
the output the variable V58, coded as 0=genuine, 1=spam. We
will divide the data set into training and test sets:

library(nnet)

X = scale(spam.df[,-58])

y = factor(spam.df[,58])

spam = data.frame(X,y)

# pick 75% data for training set

use = sample(dim(spam)[1], 0.75*dim(spam)[1])

training = spam[use,]

test= spam[-use,]

Alan Lee Department of Statistics STATS 784 Lecture 9

Page 17/45



Introduction Data sets Additive models Neural Nets Classification Trees Support vector machines Boosting and bagging

The spam data: Neural nets (cont)

Fit the neural net and calculate apparent and test error:

fit = nnet(y~., data=training, size = 5, maxit=1000, decay=0.1)

# traing error

mytable.training = table(training$y,predict(fit)>0.5)

> mytable.training

FALSE TRUE

0 2046 38

1 39 1327

1-sum(diag(mytable.training))/sum(mytable.training)

[1] 0.02231884

# test error

mytable.test = table(test$y,predict(fit, newdata=test)>0.5)

1-sum(diag(mytable.test))/sum(mytable.test)

[1] 0.05994787
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Classification Trees

I For classification, we use a different splitting strategy.
Suppose at a node (i.e in a region) , the proportions of cases
at the node falling into the different response categories are
p̂1, . . . , p̂K .

I We want to find splits that classify best - these are ones
where one category predominates, so we want one proportion
to be big and the rest small.

I Define the “node impurity” by the Gini index 1−
∑K

k=1 p̂
2
k .

This takes a minimum value of 0 when all the cases are in a
single category and a maximum of 1− 1/K when the numbers
of cases in each category are the same.
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Trees (cont)

I Thus, splits where one category dominates will have small
values of the Gini index i.e. low node impurity. These are
“good splits”.

I We then split the cases at the node into two subgroups, in
such a way to maximise the difference between the “parent”
node impurity and the weighted sum of the impurities of the
two “ child” nodes (weighted by the numbers at each child
node). Thus, we are choosing the split that gives the biggest
decrease in the node impurities. (Compare with regression
where we split to get the biggest reduction in the residual sum
of squares.)
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Trees (cont)

I At each terminal node, we record the class with the highest
proportion of cases (the majority group)

I To predict a new case, we pass it through the tree. It winds
up at node m say. We assign the new case to the “majority
group” of node m.

I Note that each node of the tree corresponds to a set of
probabilities (the proportions of cases falling to the various
classes.)
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The spam data

# spam data: trees

library(rpart)

fit1 = rpart(spam~., data=spam.df, method = "class",

parms = list(split="gini"), cp=0.0001)

plotcp(fit1)

fit2 = prune(fit1, cp=0.0015)

plotcp(fit2)

plot(fit2)

text(fit2, cex=0.7)
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The spam data (cont)
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The spam data (cont)

|
V53< 0.0555

V7< 0.055

V52< 0.378

V16< 0.2
V24< 0.01

V22< 0.155
V56< 229.5

V5< 0.715
V25>=0.015

V28< 0.23
V56< 19.5

V8< 0.335
V55< 3.825

V49>=0.3115
V55< 2.655

V6< 0.135

V37>=0.195
V52< 0.119

V5< 1.09
V57< 341

V8< 0.44
V19< 1.24

V57< 55.5

V16< 0.845
V52< 0.807

V19< 1.91
V45>=0.345

V46>=0.065
V25>=0.225

V27>=0.14

V25>=0.4

V18< 0.05V46>=0.49
V56< 6.5

V19< 2.845V27>=0.21

0
0 0 1

0 1 1

1
0 1 0 1 1

0

0 1 1
0 1

1
0

0 0 1

1 0 0 1

0 1

0 1
0

0 1 0 1
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Tree: training error

# note that the predict function produces a matrix

# in this case

err=table(predict(fit2)[,2]>0.5, spam.df$spam)

> err

0 1

FALSE 2670 134

TRUE 118 1679

> 1-sum(diag(err))/sum(err)

[1] 0.0547707

About the same as for NN.
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Tree: CV error

The printcp function gives a relative (relative to the null model)
cross-validated error of 0.20684. To get the actual error we have to
multiply this by the error of the null model, which would always
predict a message as genuine. (since genuine messages are more
likely than spam, at least in the data we have.) Thus, the
proportion misclassified will just be the proportion of spam
messages, or 1813/4601 = 0.3940448. The actual CV error is
0.20684* 0.3940448 = 0.08150423. Thus, we would expect about
8% of the messages to be wrongly classified.
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Support vector machines

Suppose we have a a binary response Y having values ±1 and we
want to predict a future value of Y using a classifier based on
features (explanatory variables) x1, . . . , xk .
Possible approaches:

I Use linear regression. Predict Y = 1 if
β0 + β1x1 + · · ·+ βkxk > 0 and −1 otherwise.

I Use logistic regression, treating Y as a factor with baseline -1.
Predict Y = 1 if β0 +β1x1 + · · ·+βkxk > 0 and −1 otherwise.

I Other methods ...

Often the first two are pretty similar:
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Least Squares vs Logistic
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An alternative: SVM

If the points can be separated:

x1

x2
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●
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2M

We choose the two parallel boundaries to maximize M (maximum
separation) These in turn determine a single plane half-way in
between.
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Equivalent formulation

If the two sets of points can be separated, the best separating
plane is the solution of an optimization problem. The equation of
a plane can be written

bT x + b0 = 0,

for a k-vector b and a constant b0. The equation of the best
separating plane is the solution of the following constrained
minimization problem:
Minimize

||b||2

subject to
yi (b

T xi + b0) ≥ 1, i = 1, 2, . . . n.

Here yi and xi refer to the response and the vector of covariates
for the ith individual in the training set.
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Another formulation

In optimisation, some problems have a dual formulation for which the
solutions may be easier to find. We can then get the solution to the
original problem (the primal) from the solution of the dual problem. For
the SVM minimisation, the dual problem is
Minimize

n∑
i=1

ai − 0.5
n∑

i=1

n∑
j=1

aiajyiyjx
T
i xj

subject to ai ≥ 0 and
∑

i aiyi = 0.
Then the vector b solving the original problem is

b =
n∑

i=1

aiyixi

which is a linear combination of (some of) the vectors xi . The xi ’s

corresponding to the non-zero ai ’s are called support vectors.
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Overlapping data

If the points cannot be separated:
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Overlapping data (2)

Now we choose the two parallel boundaries to maximize the
separation and minimize the sum of the ξ’s:
Minimize

||b||2 + C
∑
i

ξi

subject to
yi (b

T xi + b0) ≥ 1− ξi , i = 1, 2, . . . n.

The parameter C controls the trade-off.
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Dual formulation

In the overlapping case, the dual problem is
Minimize

n∑
i=1

ai − 0.5
n∑

i=1

n∑
j=1

aiajyiyjx
T
i xj

subject to 0 ≤ ai ≤ C and
∑

i aiyi = 0.
Then as before, the vector b solving the original problem is

b =
n∑

i=1

aiyixi

which is a linear combination of (some of) the vectors xi . The xi ’s
corresponding to the non-zero ai ’s are also called support vectors.
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Enlarging feature space

Suppose we map our data points to a higher dimension, using a
mapping Φ. Even if the points overlap the linear boundary in the
original space, they may not in the enlarged space.
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Enlarging feature space (2)

All we need is to replace the inner products between xi and xj with
inner products between Φ(xi ) and Φ(xj). In fact, we assume that
these are given by a “kernel” K (xi , xj).

Examples:

Gaussian kernel: K (xi , xj) = exp(− ||xi−xj ||
2

2σ2 )

Laplace kernel: K (xi , xj) = exp(− ||xi−xj ||2σ )
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Example: the spam data

# SVM example- spam data

library(kernlab)

spam.df$spam = factor(spam.df$spam)

svm.stuff1 = ksvm(spam~., data = spam.df, C = 1, cross=5)

svm.stuff2 = ksvm(spam~., data = spam.df, C = 2, cross=5)

svm.stuff5 = ksvm(spam~., data = spam.df, C = 5, cross=5)
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Example: the spam data (cont)

> svm.stuff2

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 2

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0292851548010902

Number of Support Vectors : 1332

Objective Function Value : -1304.522

Training error : 0.040643

Cross validation error : 0.067812
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Gradient boosting

For a general loss function L, we want to choose a function f from
some class of functions (for example trees) to minimize

L(f ) =
n∑

i=1

L(yi , f (xi )).

Now for the moment, just think of the numbers fi = f (xi ) as free,
unrestricted variables, so we are minimizing

∑n
i=1 L(yi , fi ). A

standard way of doing this is by the method of steepest descent:
we start with an initial guess for the minimizing f’s, and then move
a short step in the direction where L(f ) decreases most rapidly.
We keep moving in this way until the minimum is reached. The
steps take the form

fnew = fold − η
∂L

∂f
.
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Gradient boosting (cont)

Of course, the fi s are not arbitrary, but are the predictions from a
model. But let’s choose the tree that best approximates −∂L

∂f and
add that on instead. This is gradient boosting.

The algorithm is described more precisely in ESL page 361. As
with boosting in prediction, we add on a small multiple of the tree
at each iteration. In fact, for squared error loss, the boosting
procedure described earlier is equivalent to the one discussed here.

Boosting is often applied to trees as the base learner, using small
trees (say between 4 and 8 terminal nodes). The R function
mboost is used to boost classification trees.
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Boosting code

# boosted tree

fm =y~btree(training[,-58],

tree_controls = party::ctree_control(maxdepth = 4))

fit.boost = mboost(fm, data = training, family=Binomial(),

control = boost_control(mstop =200, nu = 0.1))

myrisk = cvrisk(fit.boost)

# training error

training.tab = table(training$y, predict(fit.boost)>0.5)

1-sum(diag(training.tab))/sum(training.tab)

[1] 0.06434783

# test error

test.tab = table(test$y, predict(fit.boost, newdata=test)>0.5)

1-sum(diag(test.tab))/sum(test.tab)

[1] 0.0625543
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Random forests for classification.

I These work equally well for classification. The individual trees
are grown as described on slides 19-21.

I When combining the results, instead of averaging, we use
a“majority vote” rule: we classify the case into the group
chosen by the majority of the trees.

I In contrast to boosting, the trees are grown quite large. (the
default setting ion the software is nodesize=1)
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Random Forests

fit.rf=randomForest(y~.,data=training, mtry =10, ntree=500)

plot(fit.rf)

> tail(fit.rf$err.rate, n=2)

OOB 0 1

[499,] 0.04898551 0.03214971 0.07467057

[500,] 0.04840580 0.03166987 0.07393851
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Comparisons: spam data.

Classification errors

Training Test

Linear 0.110 0.115
Logistic 0.080 0.115
Tree 0.097 0.106
Boosted tree 0.058 0.072
Neural8 0.011 0.068
SVM 0.040 0.067
Neural4 0.031 0.065
Random Forest 0.049 0.048
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