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Abstract

The caret package, short for classification and regression training, contains numerous
tools for developing predictive models using the rich set of models available in R. The
package focuses on simplifying model training and tuning across a wide variety of modeling
techniques. It also includes methods for pre-processing training data, calculating variable
importance, and model visualizations. An example from computational chemistry is used
to illustrate the functionality on a real data set and to benchmark the benefits of parallel
processing with several types of models.

Keywords: model building, tuning parameters, parallel processing, R, NetWorkSpaces.

1. Introduction

The use of complex classification and regression models is becoming more and more com-
monplace in science, finance and a myriad of other domains (Ayres 2007). The R language
(R Development Core Team 2008) has a rich set of modeling functions for both classification
and regression, so many in fact, that it is becoming increasingly more difficult to keep track
of the syntactical nuances of each function. The caret package, short for classification and
regression training, was built with several goals in mind:

� to eliminate syntactical differences between many of the functions for building and
predicting models,

� to develop a set of semi-automated, reasonable approaches for optimizing the values of
the tuning parameters for many of these models and

� create a package that can easily be extended to parallel processing systems.

http://www.jstatsoft.org/
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The package contains functionality useful in the beginning stages of a project (e.g., data
splitting and pre-processing), as well as unsupervised feature selection routines and methods
to tune models using resampling that helps diagnose over-fitting.

The package is available at the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=caret. caret depends on over 25 other packages, although many of these are
listed as“suggested”packages which are not automatically loaded when caret is started. Pack-
ages are loaded individually when a model is trained or predicted. After the package is in-
stalled and loaded, help pages can be found using help(package = "caret"). There are three
package vignettes that can be found using the vignette function (e.g., vignette(package =
"caret")).

For the remainder of this paper, the capabilities of the package are discussed for: data splitting
and pre-processing; tuning and building models; characterizing performance and variable
importance; and parallel processing tools for decreasing the model build time. Rather than
discussing the capabilities of the package in a vacuum, an analysis of an illustrative example
is used to demonstrate the functionality of the package. It is assumed that the readers are
familiar with the various tools that are mentioned. Hastie et al. (2001) is a good technical
introduction to these tools.

2. An illustrative example

In computational chemistry, chemists often attempt to build predictive relationships between
the structure of a chemical and some observed endpoint, such as activity against a biological
target. Using the structural formula of a compound, chemical descriptors can be generated
that attempt to capture specific characteristics of the chemical, such as its size, complexity,
“greasiness” etc. Models can be built that use these descriptors to predict the outcome of
interest. See Leach and Gillet (2003) for examples of descriptors and how they are used.

Kazius et al. (2005) investigated using chemical structure to predict mutagenicity (the in-
crease of mutations due to the damage to genetic material). An Ames test (Ames et al. 1972)
was used to evaluate the mutagenicity potential of various chemicals. There were 4,337 com-
pounds included in the data set with a mutagenicity rate of 55.3%. Using these compounds,
the dragonX software (Talete SRL 2007) was used to generate a baseline set of 1,579 predic-
tors, including constitutional, topological and connectivity descriptors, among others. These
variables consist of basic numeric variables (such as molecular weight) and counts variables
(e.g., number of halogen atoms).

The descriptor data are contained in an R data frame names descr and the outcome data are
in a factor vector called mutagen with levels "mutagen" and "nonmutagen". These data are
available from the package website http://caret.R-Forge.R-project.org/.

3. Data preparation

Since there is a finite amount of data to use for model training, tuning and evaluation, one
of the first tasks is to determine how the samples should be utilized. There are a few schools
of thought. Statistically, the most efficient use of the data is to train the model using all of
the samples and use resampling (e.g., cross-validation, the bootstrap etc.) to evaluate the
efficacy of the model. Although it is possible to use resampling incorrectly (Ambroise and

http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://caret.R-Forge.R-project.org/
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McLachlan 2002), this is generally true. However, there are some non-technical reasons why
resampling alone may be insufficient. Depending on how the model will be used, an external
test/validation sample set may be needed so that the model performance can be characterized
on data that were not used in the model training. As an example, if the model predictions
are to be used in a highly regulated environment (e.g., clinical diagnostics), the user may be
constrained to “hold-back” samples in a validation set.

For illustrative purposes, we will do an initial split of the data into training and test sets.
The test set will be used only to evaluate performance (such as to compare models) and the
training set will be used for all other activities.

The function createDataPartition can be used to create stratified random splits of a data
set. In this case, 75% of the data will be used for model training and the remainder will be
used for evaluating model performance. The function creates the random splits within each
class so that the overall class distribution is preserved as well as possible.

R> library("caret")
R> set.seed(1)
R> inTrain <- createDataPartition(mutagen, p = 3/4, list = FALSE)
R>
R> trainDescr <- descr[inTrain,]
R> testDescr <- descr[-inTrain,]
R> trainClass <- mutagen[inTrain]
R> testClass <- mutagen[-inTrain]
R>
R> prop.table(table(mutagen))
mutagen

mutagen nonmutagen
0.5536332 0.4463668
R> prop.table(table(trainClass))
trainClass

mutagen nonmutagen
0.5535055 0.4464945

In cases where the outcome is numeric, the samples are split into quartiles and the sampling
is done within each quartile. Although not discussed in this paper, the package also contains
method for selecting samples using maximum dissimilarity sampling (Willett 1999). This
approach to sampling can be used to partition the samples into training and test sets on the
basis of their predictor values.

There are many models where predictors with a single unique value (also known as “zero-
variance predictors”) will cause the model to fail. Since we will be tuning models using
resampling methods, a random sample of the training set may result in some predictors with
more than one unique value to become a zero-variance predictor (in our data, the simple
split of the data into a test and training set caused three descriptors to have a single unique
value in the training set). These so-called “near zero-variance predictors” can cause numerical
problems during resampling for some models, such as linear regression.

As an example of such a predictor, the variable nR04 is the number of number of 4-membered
rings in a compound. For the training set, almost all of the samples (n = 3, 233) have no
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4-member rings while 18 compounds have one and a single compound has 2 such rings. If
these data are resampled, this predictor might become a problem for some models.

To identify this kind of predictors, two properties can be examined:

� First, the percentage of unique values in the training set can be calculated for each
predictor. Variables with low percentages have a higher probability of becoming a zero
variance predictor during resampling. For nR04, the percentage of unique values in the
training set is low (9.2%). However, this in itself is not a problem. Binary predictors,
such as dummy variables, are likely to have low percentages and should not be discarded
for this simple reason.

� The other important criterion to examine is the skewness of the frequency distribution
of the variable. If the ratio of most frequent value of a predictor to the second most
frequent value is large, the distribution of the predictor may be highly skewed. For
nR04, the frequency ratio is large (179 = 3233/18), indicating a significant imbalance in
the frequency of values.

If both these criteria are flagged, the predictor may be a near zero-variance predictor. It is
suggested that if:

1. the percentage of unique values is less than 20% and

2. the ratio of the most frequent to the second most frequent value is greater than 20,

the predictor may cause problem for some models. The function nearZeroVar can be used to
identify near zero-variance predictors in a dataset. It returns an index of the column numbers
that violate the two conditions above.

Also, some models are susceptible to multicollinearity (i.e., high correlations between pre-
dictors). Linear models, neural networks and other models can have poor performance in
these situations or may generate unstable solutions. Other models, such as classification or
regression trees, might be resistant to highly correlated predictors, but multicollinearity may
negatively affect interpretability of the model. For example, a classification tree may have
good performance with highly correlated predictors, but the determination of which predictors
are in the model is random.

If there is a need to minimize the effect of multicollinearity, there are a few options. First,
models that are resistant to large between-predictor correlations, such as partial least squares,
can be used. Also, principal component analysis can be used to reduce the number of dimen-
sions in a way that removes correlations (see below). Alternatively, we can identify and remove
predictors that contribute the most to the correlations.

In linear models, the traditional method for reducing multicollinearity is to identify the of-
fending predictors using the variable inflation factor (VIF). For each variable, this statistic
measures the increase in the variation of the model parameter estimate in comparison to the
optimal situation (i.e., an orthogonal design). This is an acceptable technique when linear
models are used and there are more samples than predictors. In other cases, it may not be
as appropriate.

As an alternative, we can compute the correlation matrix of the predictors and use an al-
gorithm to remove the a subset of the problematic predictors such that all of the pairwise
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correlations are below a threshold:
repeat

Find the pair of predictors with the largest absolute correlation;
For both predictors, compute the average correlation between each predictor and all of
the other variables;
Flag the variable with the largest mean correlation for removal;
Remove this row and column from the correlation matrix;

until no correlations are above a threshold ;

This algorithm can be used to find the minimal set of predictors that can be removed so
that the pairwise correlations are below a specific threshold. Note that, if two variables have
a high correlation, the algorithm determines which one is involved with the most pairwise
correlations and is removed.
For illustration, predictors that result in absolute pairwise correlations greater than 0.90 can
be removed using the findCorrelation function. This function returns an index of column
numbers for removal.

R> ncol(trainDescr)
[1] 1576
R> descrCorr <- cor(trainDescr)
R> highCorr <- findCorrelation(descrCorr, 0.90)
R> trainDescr <- trainDescr[, -highCorr]
R> testDescr <- testDescr[, -highCorr]
R> ncol(trainDescr)
[1] 650

For chemical descriptors, it is not uncommon to have many very large correlations between
the predictors. In this case, using a threshold of 0.90, we eliminated 926 descriptors from the
data.
Once the final set of predictors is determined, the values may require transformations be-
fore being used in a model. Some models, such as partial least squares, neural networks
and support vector machines, need the predictor variables to be centered and/or scaled.
The preProcess function can be used to determine values for predictor transformations us-
ing the training set and can be applied to the test set or future samples. The function
has an argument, method, that can have possible values of "center", "scale", "pca" and
"spatialSign". The first two options provide simple location and scale transformations of
each predictor (and are the default values of method). The predict method for this class is
then used to apply the processing to new samples

R> xTrans <- preProcess(trainDescr)
R> trainDescr <- predict(xTrans, trainDescr)
R> testDescr <- predict(xTrans, testDescr)

The "pca" option computes loadings for principal component analysis that can be applied
to any other data set. In order to determine how many components should be retained, the
preProcess function has an argument called thresh that is a threshold for the cumulative
percentage of variance captured by the principal components. The function will add compo-
nents until the cumulative percentage of variance is above the threshold. Note that the data
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are automatically scaled when method = "pca", even if the method value did not indicate
that scaling was needed. For PCA transformations, the predict method generates values with
column names "PC1", "PC2", etc.

Specifying method = "spatialSign" applies the spatial sign transformation (Serneels et al.
2006) where the predictor values for each sample are projected onto a unit circle using x∗ =
x/||x||. This transformation may help when there are outliers in the x space of the training
set.

4. Building and tuning models

The train function can be used to select values of model tuning parameters (if any) and/or
estimate model performance using resampling. As an example, a radial basis function support
vector machine (SVM) can be used to classify the samples in our computational chemistry
data. This model has two tuning parameters. The first is the scale function σ in the radial
basis function

K(a, b) = exp(−σ||a− b||2)

and the other is the cost value C used to control the complexity of the decision boundary.
We can create a grid of candidate tuning values to evaluate. Using resampling methods, such
as the bootstrap or cross-validation, a set of modified data sets are created from the training
samples. Each data set has a corresponding set of hold-out samples. For each candidate tuning
parameter combination, a model is fit to each resampled data set and is used to predict the
corresponding held out samples. The resampling performance is estimated by aggregating the
results of each hold-out sample set. These performance estimates are used to evaluate which
combination(s) of the tuning parameters are appropriate. Once the final tuning values are
assigned, the final model is refit using the entire training set.

For the train function, the possible resampling methods are: bootstrapping, k-fold cross-
validation, leave-one-out cross-validation, and leave-group-out cross-validation (i.e., repeated
splits without replacement). By default, 25 iterations of the bootstrap are used as the resam-
pling scheme. In this case, the number of iterations was increased to 200 due to the large
number of samples in the training set.

For this particular model, it turns out that there is an analytical method for directly estimating
a suitable value of σ from the training data (Caputo et al. 2002). By default, the train
function uses the sigest function in the kernlab package (Karatzoglou et al. 2004) to initialize
this parameter. In doing this, the value of the cost parameter C is the only tuning parameter.

The train function has the following arguments:

x: a matrix or data frame of predictors. Currently, the function only accepts numeric
values (i.e., no factors or character variables). In some cases, the model.matrix function
may be needed to generate a data frame or matrix of purely numeric data

y: a numeric or factor vector of outcomes. The function determines the type of problem
(classification or regression) from the type of the response given in this argument.

method: a character string specifying the type of model to be used. See Table 1 for the
possible values.
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metric: a character string with values of "Accuracy", "Kappa", "RMSE" or "Rsquared".
This value determines the objective function used to select the final model. For example,
selecting "Kappa" makes the function select the tuning parameters with the largest value
of the mean Kappa statistic computed from the held-out samples.

trControl: takes a list of control parameters for the function. The type of resampling
as well as the number of resampling iterations can be set using this list. The function
trainControl can be used to compute default parameters. The default number of
resampling iterations is 25, which may be too small to obtain accurate performance
estimates in some cases.

tuneLength: controls the size of the default grid of tuning parameters. For each model,
train will select a grid of complexity parameters as candidate values. For the SVM
model, the function will tune over C = 10−1, 1, 10. To expand the size of the default
list, the tuneLength argument can be used. By selecting tuneLength = 5, values of C
ranging from 0.1 to 1, 000 are evaluated.

tuneGrid: can be used to define a specific grid of tuning parameters. See the example
below.

... : the three dots can be used to pass additional arguments to the functions listed
in Table 1. For example, we have already centered and scaled the predictors, so the
argument scaled = FALSE can be passed to the ksvm function to avoid duplication of
the pre-processing.

We can tune and build the SVM model using the code below.

R> bootControl <- trainControl(number = 200)
R> set.seed(2)
R> svmFit <- train(trainDescr, trainClass,
+ method = "svmRadial", tuneLength = 5,
+ trControl = bootControl, scaled = FALSE)
Model 1: sigma=0.0004329517, C=1e-01
Model 2: sigma=0.0004329517, C=1e+00
Model 3: sigma=0.0004329517, C=1e+01
Model 4: sigma=0.0004329517, C=1e+02
Model 5: sigma=0.0004329517, C=1e+03
R> svmFit

Call:
train.default(x = trainDescr, y = trainClass, method = "svmRadial",

scaled = FALSE, trControl = bootControl, tuneLength = 5)

3252 samples
650 predictors

summary of bootstrap (200 reps) sample sizes:
3252, 3252, 3252, 3252, 3252, 3252, ...
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boot resampled training results across tuning parameters:

sigma C Accuracy Kappa Accuracy SD Kappa SD Selected
0.000433 0.1 0.705 0.395 0.0122 0.0252
0.000433 1 0.806 0.606 0.0109 0.0218
0.000433 10 0.818 0.631 0.0104 0.0211 *
0.000433 100 0.8 0.595 0.0112 0.0227
0.000433 1000 0.782 0.558 0.0111 0.0223

Accuracy was used to select the optimal model

In this output, each row in the table corresponds to a specific combination of tuning param-
eters. The “Accuracy” column is the average accuracy of the 200 held-out samples and the
column labeled as “Accuracy SD” is the standard deviation of the 200 accuracies.
The Kappa statistic is a measure of concordance for categorical data that measures agreement
relative to what would be expected by chance. Values of 1 indicate perfect agreement, while
a value of zero would indicate a lack of agreement. Negative Kappa values can also occur,
but are less common since it would indicate a negative association between the observed
and predicted data. Kappa is an excellent performance measure when the classes are highly
unbalanced. For example, if the mutagenicity rate in the data had been very small, say 5%,
most models could achieve high accuracy by predicting all compounds to be nonmutagenic. In
this case, the Kappa statistic would result in a value near zero. The Kappa statistic given here
is the unweighted version computed by the classAgreement function in the e1071 package
(Dimitriadou et al. 2008). The Kappa columns in the output above are also summarized
across the 200 resampled Kappa estimates.
As previously mentioned, the “optimal” model is selected to be the candidate model with the
largest accuracy. If more than one tuning parameter is “optimal” then the function will try to
choose the combination that corresponds to the least complex model. For these data, σ was
estimated to be 0.000433 and C = 10 appears to be optimal. Based on these values, the model
was refit to the original set of 3,252 samples and this object is stored in svmFit$finalModel.

R> svmFit$finalModel
Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
parameter : cost C = 10

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.000432951668058316

Number of Support Vectors : 1616

Objective Function Value : -9516.185
Training error : 0.082411
Probability model included.
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Model method value Package Tuning parameters

Recursive partitioning rpart rpart∗ maxdepth
ctree party mincriterion

Boosted trees gbm gbm∗ interaction.depth,
n.trees, shrinkage

blackboost mboost maxdepth, mstop
ada ada maxdepth, iter, nu

Other boosted models glmboost mboost mstop
gamboost mboost mstop
logitboost caTools nIter

Random forests rf randomForest∗ mtry
cforest party mtry

Bagged trees treebag ipred None
Neural networks nnet nnet decay, size
Partial least squares pls∗ pls, caret ncomp
Support vector machines svmRadial kernlab sigma, C

(RBF kernel)
Support vector machines svmPoly kernlab scale, degree, C

(polynomial kernel)
Gaussian processes gaussprRadial kernlab sigma

(RBF kernel)
Gaussian processes gaussprPoly kernlab scale, degree

(polynomial kernel)

Linear least squares lm∗ stats None
Multivariate adaptive earth∗, mars earth degree, nprune

regression splines
Bagged MARS bagEarth∗ caret, earth degree, nprune
Elastic net enet elasticnet lambda, fraction
The lasso lasso elasticnet fraction
Relevance vector machines rvmRadial kernlab sigma

(RBF kernel)
Relevance vector machines rvmPoly kernlab scale, degree

(polynomial kernel)

Linear discriminant analysis lda MASS None
Stepwise diagonal sddaLDA, SDDA None

discriminant analysis sddaQDA
Logistic/multinomial multinom nnet decay

regression
Regularized discriminant rda klaR lambda, gamma

analysis
Flexible discriminant fda∗ mda, earth degree, nprune

analysis (MARS basis)

Table 1: Models used in train (∗ indicates that a model-specific variable importance method
is available, see Section 9.). (continued on next page)
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Model method value Package Tuning parameters

Bagged FDA bagFDA∗ caret, earth degree, nprune
Least squares support vector lssvmRadial kernlab sigma

machines (RBF kernel)
k nearest neighbors knn3 caret k
Nearest shrunken centroids pam∗ pamr threshold
Naive Bayes nb klaR usekernel
Generalized partial gpls gpls K.prov

least squares
Learned vector quantization lvq class k

Table 1: Models used in train (∗ indicates that a model-specific variable importance method
is available, see Section 9.).

In many cases, more control over the grid of tuning parameters is needed. For example,
for boosted trees using the gbm function in the gbm package (Ridgeway 2007), we can tune
over the number of trees (i.e., boosting iterations), the complexity of the tree (indexed by
interaction.depth) and the learning rate (also known as shrinkage). As an example, a
user could specify a grid of values to tune over using a data frame where the rows correspond
to tuning parameter combinations and the columns are the names of the tuning variables
(preceded by a dot). For our data, we will generate a grid of 50 combinations and use the
tuneGrid argument to the train function to use these values.

R> gbmGrid <- expand.grid(.interaction.depth = (1:5) * 2,
+ .n.trees = (1:10)*25, .shrinkage = .1)
R> set.seed(2)
R> gbmFit <- train(trainDescr, trainClass,
+ method = "gbm", trControl = bootControl, verbose = FALSE,
+ bag.fraction = 0.5, tuneGrid = gbmGrid)
Model 1: interaction.depth= 2, shrinkage=0.1, n.trees=250
collapsing over other values of n.trees
Model 2: interaction.depth= 4, shrinkage=0.1, n.trees=250
collapsing over other values of n.trees
Model 3: interaction.depth= 6, shrinkage=0.1, n.trees=250
collapsing over other values of n.trees
Model 4: interaction.depth= 8, shrinkage=0.1, n.trees=250
collapsing over other values of n.trees
Model 5: interaction.depth=10, shrinkage=0.1, n.trees=250
collapsing over other values of n.trees

In this model, we generated 200 bootstrap replications for each of the 50 candidate models,
computed performance and selected the model with the largest accuracy. In this case the
model automatically selected an interaction depth of 8 and used 250 boosting iterations
(although other values may very well be appropriate; see Figure 1). There are a variety
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Figure 1: Examples of plot functions for train objects. (a) A plot of the classification
accuracy versus the tuning factors (using plot(gbmFit)). (b) Similarly, a plot of the Kappa
statistic profiles (plot(gbmFit, metric = "Kappa")). (c) A level plot of the accuracy values
(plot(gbmFit, plotType = "level")). (d) Density plots of the 200 bootstrap estimates of
accuracy and Kappa for the final model (resampleHist(gbmFit)).
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of different visualizations for train objects. Figure 1 shows several examples plots created
using plot.train and resampleHist.

Note that the output states that the procedure was “collapsing over other values of n.trees”.
For some models (method values of pls, plsda, earth, rpart, gbm, gamboost, glmboost,
blackboost, ctree, pam, enet and lasso), the train function will fit a model that can be
used to derive predictions for some sub-models. For example, since boosting models save
the model results for each iteration of boosting, train can fit the model with the largest
number of iterations and derive the other models where the other tuning parameters are the
same but fewer number of boosting iterations are requested. In the example above, for a
model with interaction.depth = 2 and shrinkage = .1, we only need to fit the model
with the largest number of iterations (250 in this example). Holding the interaction depth
and shrinkage constant, the computational time to get predictions for models with less than
250 iterations is relatively cheap. For the example above, we fit a total of 200 × 5 = 1, 000
models instead of 25 × 5 × 10 = 10, 000. The train function tries to exploit this idea for as
many models as possible.

For recursive partitioning models, an initial model is fit to all of the training data to obtain
the possible values of the maximum depth of any node (maxdepth). The tuning grid is created
based on these values. If tuneLength is larger than the number of possible maxdepth values
determined by the initial model, the grid will be truncated to the maxdepth list. The same is
also true for nearest shrunken centroid models, where an initial model is fit to find the range
of possible threshold values, and MARS models (see Section 7).

Also, for the glmboost and gamboost functions from the mboost package (Hothorn and
Bühlmann 2007), an additional tuning parameter, prune, is used by train. If prune = "yes",
the number of trees is reduced based on the AIC statistic. If "no", the number of trees is
kept at the value specified by the mstop parameter. See Bühlmann and Hothorn (2007) for
more details about AIC pruning.

In general, the functions in the caret package assume that there are no missing values in the
data or that these values have been handled via imputation or other means. For the train
function, there are some models (such as rpart) that can handle missing values. In these
cases, the data passed to the x argument can contain missing values.

5. Prediction of new samples

As previously noted, an object of class train contains an element called finalModel, which
is the fitted model with the tuning parameter values selected by resampling. This object can
be used in the traditional way to generate predictions for new samples, using that model’s
predict function. For the most part, the prediction functions in R follow a consistent syntax,
but there are exceptions. For example, boosted tree models produced by the gbm function
also require the number of trees to be specified. Also, predict.mvr from the pls package
(Mevik and Wehrens 2007) will produce predictions for every candidate value of ncomp that
was tested. To avoid having to remember these nuances, caret offers several functions to deal
with these issues.

The function predict.train is an interface to the model’s predict method that handles any
extra parameter specifications (such as previously mentioned for gbm and PLS models). For
example:
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R> predict(svmFit$finalModel, newdata = testDescr)[1:5]
[1] mutagen nonmutagen nonmutagen nonmutagen mutagen
Levels: mutagen nonmutagen

R> predict(svmFit, newdata = testDescr)[1:5]
[1] mutagen nonmutagen nonmutagen nonmutagen mutagen
Levels: mutagen nonmutagen

In cases where predictions are needed for multiple models based on the same data set,
predict.list can be used implicitly:

R> models <- list(svm = svmFit, gbm = gbmFit)
R> testPred <- predict(models, newdata = testDescr)
R> lapply(testPred, function(x) x[1:5])
$svm
[1] mutagen nonmutagen nonmutagen nonmutagen mutagen
Levels: mutagen nonmutagen

$gbm
[1] mutagen mutagen mutagen nonmutagen mutagen
Levels: mutagen nonmutagen

predict.train produces a vector of predictions for each model. The function extractPrediction
can be used to obtain predictions for training, test and/or unknown samples at once and will
return the data in a data frame. For example:

R> predValues <- extractPrediction(models,
+ testX = testDescr, testY = testClass)
R> testValues <- subset(predValues, dataType == "Test")
R> head(testValues)

obs pred model dataType
3253 mutagen mutagen svmRadial Test
3254 nonmutagen nonmutagen svmRadial Test
3255 mutagen nonmutagen svmRadial Test
3256 nonmutagen nonmutagen svmRadial Test
3257 mutagen mutagen svmRadial Test
3258 mutagen mutagen svmRadial Test

R> table(testValues$model)
gbm svmRadial
1083 1083

R> nrow(testDescr)
[1] 1083

The output has columns for the observed outcome, the model prediction, the model type and
the data type (i.e., training, test or unknown).

Many classification models listed in Table 1 can produce class probabilities. The values can
be accessed using predict.train using the argument type = "prob". In this case, the
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Figure 2: Histograms of the “mutagen” class probability for two models (produced using
plotClassProbs(testProbs)). The panels correspond to the model used and the observed
class (labeled as Data in the panels).

function will return a data frame with probability columns for each class. Also, the function
extractProb is similar to extractPrediction, but will produce the class probabilities for
each class in the data. An additional column of probabilities is supplied for each level of the
factor variable supplied to train.

R> probValues <- extractProb(models,
+ testX = testDescr, testY = testClass)
R> testProbs <- subset(probValues, dataType == "Test")
R> str(testProbs)
'data.frame': 2166 obs. of 6 variables:
$ mutagen : num 0.6274 0.2970 0.1691 0.0177 0.9388 ...
$ nonmutagen: num 0.3726 0.7030 0.8309 0.9823 0.0612 ...
$ obs : Factor w/ 2 levels "mutagen","nonmutagen": 1 2 1 2 1 1 2 2 2 2 ...
$ pred : Factor w/ 2 levels "mutagen","nonmutagen": 1 2 2 2 1 1 2 2 2 2 ...
$ model : chr "svmRadial" "svmRadial" "svmRadial" "svmRadial" ...
$ dataType : chr "Test" "Test" "Test" "Test" ...

For classification models, the function plotClassProbs function can create a lattice plot
of histograms (Sarkar 2008) to visualize the distributions of class probabilities using the
output from plotClassProbs. Figure 2 was generated using plotClassProbs(testProbs)
and shows histograms of the probability of the mutagen prediction across different models
and the true classes.
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6. Characterizing performance

caret also contains several functions that can be used to describe the performance of classifica-
tion models. For classification models, the functions sensitivity, specificity,
posPredValue and negPredValue can be used to characterize performance where there are
two classes. By default, the first level of the outcome factor is used to define the “positive”
result, although this can be changed.

The function confusionMatrix can be used to compute various summaries for classification
models. For example, we can assess the support vector machine’s performance on the test
set.

R> svmPred <- subset(testValues, model == "svmRadial")
R> confusionMatrix(svmPred$pred, svmPred$obs)
Loading required package: class
Confusion Matrix and Statistics

Reference
Prediction mutagen nonmutagen
mutagen 528 102
nonmutagen 72 381

Accuracy : 0.8393
95% CI : (0.8161, 0.8607)

No Information Rate : 0.554
P-Value [Acc > NIR] : 6.196e-89

Kappa : 0.6729

Sensitivity : 0.88
Specificity : 0.7888

Pos Pred Value : 0.8381
Neg Pred Value : 0.8411

In addition to the cross-tabulation of the observed and predicted values, various statistics are
calculated. The confidence interval for the accuracy rate uses the default binomial confidence
interval method used in binom.test.

The“no-information rate”shown on the output is the largest proportion of the observed classes
(there were more mutagens than nonmutagens in this test set). A one-sided hypothesis test
is also computed to evaluate whether the overall accuracy rate is greater than the rate of
the largest class. Like Kappa, this is helpful for data sets where there is a large imbalance
between the classes.

When there are three or more classes, confusionMatrix will show the confusion matrix and
a set of “one-versus-all” results. For example, in a three class problem, the sensitivity of the
first class is calculated against all the samples in the second and third classes (and so on).

Receiver operating characteristic (ROC) curves can also be computed using the caret package.
The roc function takes as input a numeric score and a factor variable with the true class labels.
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Larger values of the numeric data should indicate that the sample is more likely to have come
from the first level of the factor. For example, the class probability associated with the
“mutagen” class and the observed classes can be used to compute an ROC curve for these
data (“mutagen” is the first factor level in svmProb$obs). For example, in the code below,
svmProb$mutagen contains the mutagen class probabilities.

R> svmProb <- subset(testProbs, model == "svmRadial")
R> svmROC <- roc(svmProb$mutagen, svmProb$obs)
R> str(svmROC)
num [1:1083, 1:3] NA 0.00352 0.00401 0.00460 0.00589 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:3] "cutoff" "sensitivity" "specificity"

The result is a matrix with columns for the cutoff, the sensitivity and specificity. These can
be used to create an ROC curve for the test set. The function aucRoc can be used to compute
the simple area under the curve statistic (via the trapezoidal rule).

7. Regression models

Using train to build regression models is almost exactly the same process as the one shown
in the previous sections. For regression models, performance is calculated using the root
mean squared error and R2 instead of accuracy and the Kappa statistic. However, there are
many models where there is no notion of model degrees of freedom (such as random forests)
or where there are more parameters than training set samples. Given this, train ignores
degrees of freedom when computing performance values. For example, to compute R2, the
correlation coefficient is computed between the observed and predicted values and squared.
When comparing models, the performance metrics will be on the same scale, but these metrics
do not penalize model complexity (as adjusted R2 does) and will tend to favor more complex
fits over simpler models.

For multivariate adaptive regression spline (MARS) models, the earth package (Milborrow
2007) is used when a model type of mars or earth is requested. The tuning parameters used
by train are degree and nprune. The parameter nk is not automatically specified and the
default in the earth function is used. For example, suppose a training set with 40 predictors
is used with a MARS model using degree = 1 and nprune = 20. An initial model with nk
= 41 is fit and is pruned down to 20 terms. This number includes the intercept and may
include “singleton” terms instead of pairs. Alternate model training schemes can be used by
passing nk and/or pmethod to the earth function.

caret also includes a function, plotObsVsPred, that can produce a lattice plot of the observed
responses versus the predicted values for various models and data sets.

8. Other modeling functions

The package also includes other model functions. The knn3 function is a clone of knn from
the MASS package (Venables and Ripley 2002) whose predict function can return the vote
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proportions for each of the classes (instead of just the winning class). Also, there are functions
that produce bagged versions of MARS and flexible discriminant analysis (FDA) models.
These two functions, bagEarth and bagFDA, can be used to produce smoother prediction
functions/decision boundaries while including integrated feature selection. Another function,
plsda, builds partial least squares discriminant analysis models (Barker and Rayens 2003). In
this case, a matrix of dummy variables is created with a column for each class. This response
matrix is used as an input to the plsr function of the pls package. The predict function can
be used to produce either the raw model predictions, the class probabilities (computed using
the softmax equation) or the class prediction.

9. Predictor importance

The generic function varImp can be used to characterize the general effect of predictors on
the model. The varImp function works with the following object classes: lm, mars, earth,
randomForest, gbm, mvr (in the pls package), rpart, RandomForest (from the party package),
pamrtrained, bagEarth, bagFDA, classbagg and regbagg. varImp also works with objects
produced by train, but this is a simple wrapper for the specific models previously listed.

Each model characterizes predictor importance differently:

� Linear models: The absolute value of the t statistic for each model parameter is used.

� Random forest from Liaw and Wiener (2002): “For each tree, the prediction accu-
racy on the out-of-bag portion of the data is recorded. Then the same is done after
permuting each predictor variable. The difference between the two accuracies are then
averaged over all trees, and normalized by the standard error. For regression, the MSE
is computed on the out-of-bag data for each tree, and then the same computed after
permuting a variable. The differences are averaged and normalized by the standard
error. If the standard error is equal to 0 for a variable, the division is not done.”
varImp.randomForest is a simple wrapper around the importance function from that
package. Similarly, for RandomForest objects, varImp is a wrapper around varimp in
the party package.

� Partial least squares: The variable importance measure here is based on weighted
sums of the absolute regression coefficients. The weights are a function of the reduction
of the sums of squares across the number of PLS components and are computed sep-
arately for each outcome. Therefore, the contribution of the coefficients are weighted
proportionally to the reduction in the sums of squares.

� Recursive partitioning: The reduction in the loss function (e.g., mean squared error)
attributed to each variable at each split is tabulated and the sum is returned. Also,
since there may be candidate variables that are important but are not used in a split,
the top competing variables are also tabulated at each split. This can be turned off
using the maxcompete argument in rpart.control. This method does not currently
provide class-specific measures of importance when the response is a factor.

� Bagged trees: The same methodology as a single tree is applied to all bootstrapped
trees and the total importance is returned
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� Boosted trees: This method uses the same approach as a single tree, but sums the
importances over each boosting iteration (see Ridgeway 2007).

� Multivariate adaptive regression splines: MARS models include a backwards
elimination feature selection routine that looks at reductions in the generalized cross-
validation (GCV) estimate of error. The varImp function tracks the changes in model
statistics, such as the GCV, for each predictor and accumulates the reduction in the
statistic when each predictor’s feature is added to the model. This total reduction is
used as the variable importance measure. If a predictor was never used in any MARS
basis function, it has an importance value of zero. There are three statistics that can be
used to estimate variable importance in MARS models. Using varImp(object, value
= "gcv") tracks the reduction in the generalized cross-validation statistic as terms are
added. Also, the option varImp(object, value = "grsq") compares the GCV statis-
tic for each model to the intercept only model. However, there are some cases when
terms are retained in the model that result in an increase in GCV. Negative variable
importance values for MARS are set to a small, non-zero number. Alternatively, using
varImp(object, value = "rss") monitors the change in the residual sums of squares
(RSS) as terms are added, which will never be negative.

� Bagged MARS and FDA: For these objects, importance is calculated using the
method for MARS/earth models (as previously described) for each bagged model. The
overall importance is aggregated across the bagged results.

� Nearest shrunken centroid models: The difference between the class centroids and
the overall centroid is used to measure the variable influence (see pamr.predict). The
larger the difference between the class centroid and the overall center of the data, the
larger the separation between the classes. The training set predictions must be supplied
when an object of class pamrtrained is given to varImp.

For the mutagenicity example, we can assess which predictors had the largest impact on the
model.

R> gbmImp <- varImp(gbmFit, scale = FALSE)
R> gbmImp
gbm variable importance

only 20 most important variables shown (out of 650 )

Overall
piPC09 115.80
PCR 102.16
MATS1p 58.24
N.078 49.45
AMW 48.51
nR03 45.54
nN. 40.85
Mor12m 38.89
O.057 37.93



Journal of Statistical Software 19

MAXDN 35.07
R2u. 29.03
R3e 28.06
ClogP 27.53
N.069 26.30
Ms 26.14
D.Dr03 25.96
BELm1 25.32
Mor24m 24.38
RDF040m 22.36
T.N..N. 22.34

The top two descriptors, the molecular multiple path count of order 09 and the ratio of
multiple path count over path count, have large contributions relative to the other descriptors.
These two descriptors have a correlation of 0.76, indicating that they might be measuring
similar underlying mechanisms (both descriptors are measures of molecular complexity). For
this example, there were 218 predictors with importance values equal to zero, meaning that
these were not used in any splits in any of the trees.

A plot method for varImp is included that produces a “needle plot” of the importance values
where the predictors are sorted from most-important to least. Figure 3 provides an example
for the boosted tree model.

The advantages of using a model-based approach are that it is more closely tied to the model
performance and that the importance may be able to incorporate the correlation structure
between the predictors into the importance calculation. Regardless of how the importance is
calculated:

� For most classification models, each predictor will have a separate variable importance
for each class (the exceptions are FDA, classification trees, trees and boosted trees).

� All measures of importance are scaled to have a maximum value of 100, unless the scale
argument of varImp.train is set to FALSE (as in the example above).

If there is no model-specific way to estimate importance, the importance of each predictor can
be evaluated individually using a “filter” approach. This approach is most accessible using
varImp.train either for models that are not included in the list above or by using useModel
= FALSE in varImp.train.

For classification models, ROC curve analysis is conducted on each predictor. For two class
problems, a series of cutoffs is applied to the predictor data to predict the class. The sensitivity
and specificity are computed for each cutoff and the ROC curve is computed. The trapezoidal
rule is used to compute the area under the ROC curve. This area is used as the measure of
variable importance. For multi-class outcomes, the problem is decomposed into all pairwise
problems and the area under the curve is calculated for each class pair (i.e., class 1 vs. class
2, class 2 vs. class 3 etc.). For a specific class, the maximum area under the curve across the
relevant pairwise AUC’s is used as the variable importance measure.

Figure 4 shows a hypothetical example of this approach for three classes. For this predictor,
three ROC curves are computed, along with the area under the ROC curve. To determine the
importance of this predictor to class 1, the maximum of the two AUCs related to this class
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Figure 3: A needle plot of the boosted tree variable importance values (produced using
plot(varImp(gbmFit), top = 20)).
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is computed (0.98 = max(0.98, 0.69)). In other words, this predictor is important to at least
one class. The importances of this predictor to classes 2 and 3 are 0.92 and 0.98, respectively.

For regression, the relationship between each predictor and the outcome is evaluated. An
argument, nonpara, is used to pick the model fitting technique. When nonpara = FALSE, a
linear model is fit and the absolute value of the t value for the slope of the predictor is used.
Otherwise, a loess smoother is fit between the outcome and the predictor. The R2 statistic is
calculated for this model against the intercept only null model. This number is returned as a
relative measure of variable importance.

10. Parallel processing

If a model is tuned using resampling, the number of model fits can become large as the
number of tuning combinations increases. To reduce the training time, parallel processing
can be used. For example, to train the support vector machine model in Section 4, each
of the 5 candidate models was fit to 200 separate bootstrap samples. Since each bootstrap
sample is independent of the other, these 1,000 models could be computed in parallel (this is
also true for the different flavors of cross-validation).

NetWorkSpaces (Scientific Computing Associates, Inc. 2007) is a software system that facili-
tates parallel processing when multiple processors are available. A sister R package to caret,
called caretNWS, uses NetWorkSpaces to build multiple models simultaneously. When a
candidate model is resampled during parameter tuning, the resampled datasets are sent in
roughly equal sized batches to different “workers,” which could be processors within a single
machine or across computers. Once their models are built, the results are returned to the
original R session. NetWorkSpaces is available in R using the nws package and can be used
across many platforms.

There is a large degree of syntactical similarity between the caret and caretNWS packages.
The former uses the train function to build the model and the latter uses trainNWS. Almost
all of the other syntax is the same. For example, to fit the SVM model from Section 4, we
could use:

R> set.seed(2)
R> svmFit <- trainNWS(trainDescr, trainClass,
+ method = "svmRadial", tuneLength = 5, scaled = FALSE)

Recall that the tuneLength parameter sets the size of the search grid. Due to time constraints,
the default number of bootstrap samples (25) was used for model training. Each of the 25
sets of bootstrap samples was split across 5 processors.

To characterize the benefit of using parallel processing in this manner, the previous support
vector machine and boosted tree models were refit using multiple processors. Additionally, a
partial least squares classification model was also fit using caret’s plsda function, where up
to 40 components were evaluated. For each of these three models, the execution times were
recorded when utilizing P = 1, 2, 3, 4, 5, 10, 15 and 20 processors on a single AMD Opteron
system containing eight quad-core chips using Red Hat Linux (version 2.6.9).

One common metric used to assess the efficacy of parallelization is speedup = Tseq/Tpar,
where Tseq and Tpar denote the execution times to train the model serially and in parallel,
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Figure 5: Training time profiles using parallel processing via trainNWS. The left panel shows
the elapsed time to train various types of models using single or multiple processors. The
panel on the right shows the “speedup,” defined to be the time for serial execution divided by
the parallel execution time. The reference line shows the maximum theortical speedup.

respectively. Excluding systems with sophisticated shared memory capabilities, the maximum
possible speedup attained by parallelization with P processors is equal to P (Amdahl 1967).
Factors affecting the speedup include the overhead of starting the parallel workers, data
transfer, the percentage of the algorithm’s computations that can be done in parallel, etc.

Figure 5 shows the results of the benchmarking study. In the left panel, the actual training
time for each of the models is shown. Irrespective of the number of processors used, the
PLS model is much more efficient than the other models. This is most likely due to PLS
solving straight-forward, well optimized linear equations. Unfortunately, partial least squares
produces linear boundaries which may not be flexible enough for some problems. For the
support vector machine and boosted tree models, the rate of decrease in training time appears
to slow after 15 processors.

On the right-hand panel, the speedup is plotted. For each model, there is a decrease in
the training time as more nodes are added, although there was little benefit of adding more
than 15 workers. The support vector machine comes the closest to the theoretical speedup
boundary when five or less workers are used. Between 5 and 15 workers, there is an additional
speedup, but at a loss of efficiency. After 15 workers, there is a negligible speedup effect. For
boosted trees, the efficiency of adding parallel workers was low, but there was more than
a four-fold speedup obtained by using more than 10 workers. Although PLS benefits from
parallel processing, it does not show significant gains in training time and efficiency. Recall
from Section 4 that boosted trees and partial least squares exploit the use of sub-models to
efficiently derive predictions for some of the combinations of tuning parameters. Support
vector machines are not able to take advantage of sub-models, which is probably one factor
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related to why it benefits more from parallel processing than the other models.
One downside to parallel processing in this manner is that the dataset is held in memory for
every node used to train the model. For example, if trainNWS is used to compute the results
from 50 bootstrap samples using P processors, P data sets are held in memory. For large
datasets, this can become a problem if the additional processors are on the same machines
where they are competing for the same physical memory. In the future, this might be resolved
using specialized software that exploits systems with a shared memory architecture.
More research is needed to determine when it is advantageous to parallel process, given the
type of model and the dimensions of the training set.

11. Summary

An R package has been described that can be used to facilitate the predictive modeling
process. A wide variety of functions have been described, ranging from data splitting and
pre-processing methods to tools for estimating performance and tuning models. Providing
a unified interface to different models is a a major theme of the package. Currently, caret
works with a large number of existing modeling functions and will continue to add new models
as they are developed.

Computational details

All computations and graphics in this paper have been obtained using R version 2.6.1 (R De-
velopment Core Team 2008) using the packages: ada 2.0-1 (Culp et al. 2007), caret 3.45, caret-
NWS 0.23, class 7.2-42 (Venables and Ripley 1999), e1071 1.5-18 (Dimitriadou et al. 2008),
earth 2.0-2 (Milborrow 2007), elasticnet 1.02 (Zou and Hastie 2005), gbm 1.6-3 (Ridgeway
2003), gpls 1.3.1 (Ding 2004), ipred 0.8-5 (Peters et al. 2002), kernlab 0.9-5 (Karatzoglou et al.
2004), klaR 0.5-6 (Weihs et al. 2005), MASS 7.2-42 (Venables and Ripley 1999), mboost 1.0-2
(Hothorn and Bühlmann 2007), mda 0.3-2 (Hastie and Tibshirani 1998), nnet 7.2-42 (Ven-
ables and Ripley 1999), nws 1.7.1.0 (Scientific Computing Associates, Inc. 2007), pamr 1.31
(Hastie et al. 2003), party 0.9-96 (Hothorn et al. 2006), pls 2.1-0 (Mevik and Wehrens 2007),
randomForest 4.5-25 (Liaw and Wiener 2002), rpart 3.1-39 (Therneau and Atkinson 1997)
and SDDA 1.0-3 (Stone 2008).
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Bühlmann P, Hothorn T (2007). “Boosting Algorithms: Regularization, Prediction and Model
Fitting.” Statistical Science, 22(4), 477–505. doi:10.1214/07-STS242.

Caputo B, Sim K, Furesjo F, Smola A (2002). “Appearance-Based Object Recognition Using
SVMs: Which Kernel Should I Use?” Proceedings of Neural Information Processing Systems
Workshop on Statistical methods for Computational Experiments In Visual Processing and
Computer Vision.

Culp M, Johnson K, Michailides G (2007). “ada: An R Package for Stochastic Boosting.”
Journal of Statistical Software, 17(2), 1–27. URL http://www.jstatsoft.org/v17/i02/.

Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2008). e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien. R package version 1.5-18, URL http:
//CRAN.R-project.org/package=e1071.

Ding B (2004). gpls: Classification Using Generalized Partial Least Squares. R package
version 1.3.1, URL http://CRAN.R-project.org/package=gpls.

Hastie T, Tibshirani R (1998). mda: Mixture and Flexible Discriminant Analysis. R package
version 0.3-2, URL http://CRAN.R-project.org/package=mda.

Hastie T, Tibshirani R, Friedman JH (2001). The Elements of Statistical Learning. Springer-
Verlag, New York. URL http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

Hastie T, Tibshirani R, Narasimhan B, Chu G (2003). pamr: Pam – Prediction Analysis for
Microarrays. R package version 1.31, URL http://CRAN.R-project.org/package=pamr.
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