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Abstract

Breslow and Holubkov (1997) developed semiparametric maximum likelihood
estimation for two-phase studies with a case-control first phase under a logistic
regression model and noted that, apart for the overall intercept term, it was the
same as the semiparametric estimator for two-phase studies with a prospective first
phase developed in Scott and Wild (1997) . In this paper we extend the Breslow-
Holubkov result to general binary regression models and show that it has a very
simple relationship with its prospective first-phase counterpart. We also explore why
the design of the first phase only affects the intercept of a logistic model, simplify
the calculation of standard errors, establish the semiparametric efficiency of the
Breslow-Holubkov estimator and derive its asymptotic distribution in the general
case.

Keywords Binary regression; Case-control sampling; Logistic regression; Two-
phase sampling; Response-selective sampling; Estimating equations; Semi-parametric
efficiency.

1 Introduction

As Breslow and Holubkov (1997) noted, outcome dependent sampling can increase the
efficiency of studies with rare outcomes substantially. The effect is at its simplest and
starkest with the case-control study investigating risk factors for a binary response vari-
able. The ubiquity of these designs in epidemiology is such that Breslow and Day (1980)
called the case-control study “the backbone of epidemiology”. They are also used in other
many fields, often by other names such as choice-based sampling designs in econometrics.
Although case-control studies and related designs are just one small part of Norm Bres-
low’s wide statistical interests, being a central concern of less that 16% of his publications,
we believe that they are a very important part of his work. The fact that he chose case-
control studies as the topic of his seminal 1995 Fisher Lecture suggests that they are
important to him too. The Fisher lecture (Breslow, 1996) dealt with the history and de-
velopment of case-control studies, together with generalizations and associated methods
of analysis. In this paper we will concentrate on just one generalization, the two-phase (or
two-stage) case-control design. Norm Breslow’s work on two-phase designs dates back to
before 1988 when he published three papers on the topic (Breslow and Cain, 1988; Cain
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and Breslow, 1988; Breslow and Zhao, 1988) and has continued with a sequence of papers
right up to the present day.

Let Y denote a binary response variable which can take value Y = 1 (corresponding
to a case) or Y = 0 (corresponding to a control) and let x be a p-dimensional vector of
explanatory variables or covariates. Our purpose is to fit a general parametric regression
model, P (Y = 1 | x) = p1(x; β) say. The usual model of choice in applications is

the logistic regression model, p1(x; β) = exp(xT β)/
{
1 + exp(xT β)

}
. It is sometimes

convenient to write xT β = β0 + x∗T β1 to emphasize the role of an overall intercept β0.

To put the current work in context, we start with the simple (unmatched, single-
phase) case control design. In a simple case-control study we take a sample of size n1

cases (often all available cases) and a sample of size n0 from the available controls. When
fitting a logistic regression model including an intercept term it is well known, following
the landmark papers of Anderson (1972) for the discrete-x case, and Prentice and Pyke
(1979) for general x, that the semiparametric maximum likelihood estimate of β1 and its
asymptotic covariance matrix can be obtained by fitting a logistic regression model using
standard software as if it had been obtained prospectively. The intercept β0 is completely
confounded with the relative sampling rates of cases and controls but can be recovered
using additional information such as finite population totals of cases and controls (see
Scott and Wild, 1986). The semiparametric efficiency of the standard logistic analysis was
established, and the underlying asymptotic theory made rigorous, by Breslow, Robbins
and Wellner (2000) – albeit for random rather than fixed n1 and n0 thus enabling i.i.d.
theory to be used. McNeney (1998) demonstrated that the efficiency properties extended
to the fixed n1, n0 case.

The two-phase (two-stage) case-control design was introduced by White (1982) as a
design for studying an association between a binary response Y and a binary exposure
variable V (our notation) adjusted for discrete covariates. Motivated by considerations of
cost-effectiveness, she proposed taking separate samples at phase two from the individuals
in each of the 4 cells of the 2×2 cross-classification of Y and V , and determining covariate
information only for the subsampled individuals. She proposed over-sampling small cells,
e.g. by taking equal sized subsamples from each of the four cells. She noted that the
first-phase Y × V -data could itself come either from case-control sampling, or be from a
cohort or cross-sectional study. We combine the latter two situations and refer to them
as being “prospective”. The distinction between a prospective or case-control first phase
in a two-phase study is pivotal to this paper and mirrors the distinction between a simple
(single-phase) case-control or prospective study.

By the end of the 1980s, following the work of Fears and Brown (1986), Breslow and
Cain (1988), Cain and Breslow (1988) and Breslow and Zhao (1988), theory was available
to handle cases when x included continuous covariates and V took J values and was in-
cluded as a linear term, as opposed to a set of categories, in the regression model. Indeed,
provided all the constituent variables were discrete, we could have a vector V of variables
defining the V -strata. These generalisations allowed the following uses of the resulting
methodology, all recognised by Cain and Breslow (1988).
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“Cost” savings can be obtained by using a genuine two-phase design (e.g. Engels et al.
2005) and only measuring covariates that are particularly expensive or particularly inva-
sive on comparatively small subsamples. Such studies are becoming increasingly useful,
particularly as expensive new techniques for extracting genetic information become more
and more widely available.
Secondary analysis: Second-phase sampling provides a cost-effective way of making an
after-the-fact adjustment for a confounder that was not considered in the original single-
phase study.
Incorporating “whole population” information: There may be administrative or other pop-
ulation Y ×V -data available for all individuals in the finite population(s) from which the
cases and controls in single-phase study were drawn. Efficiency can be increased by con-
sidering the finite-population data as the first-phase and the study data as the second
phase.
Missing data: If, in a single-stage study, there are substantial numbers of missing values
in the covariates and we are willing to assume that they are missing at random given Y
and the V -variables, then we can treat the data as coming from a two-phase study with
those for which x is observed forming the Y ×V -subsamples. This is more defensible than
a complete-case analysis, especially when the missingness rates differ appreciably between
Y × V cells.

By making proper use of stratum-specific offsets, prospective logistic-regression pro-
grams can be used to obtain valid estimates of the parameters of a logistic regression
(Fears and Brown, 1986) fitted to data from a two-phase study in the full generality
described above. Substantial work is needed to correct the standard errors, however,
and the procedure is not in general either maximum likelihood (Breslow and Cain, 1988;
Breslow and Zhao, 1988) or efficient (Scott and Wild, 1991). Semiparametric maximum
likelihood estimation for two-phase studies with a prospective first phase was developed
for general models by Scott and Wild (1991, 1997, 2001), whereas Breslow and Holubkov
(1997) worked with logistic models and developed semiparametric maximum likelihood
for a case-control first phase. They made the interesting observation that the resulting
estimator was the same as the Scott and Wild (1997) estimator. Just as for simple stud-
ies, for logistic models fitted to two-phase data, whether the first phase is prospective
or case-control only affects the overall intercept β0. Semiparametric efficiency was estab-
lished by Breslow, McNeney and Wellner (2003) for a prospective first phase and random
sample-size sub-sampling mechanism.

In this paper we explore why the design of the first phase only affects the intercept
of a logistic model, develop the Breslow-Holubkov estimator for general binary regression
models, and present a very simple relationship to its prospective first-phase counterpart.
We also simplify the calculation of standard errors, establish the semiparametric efficiency
of the Breslow-Holubkov estimator, and derive its asymptotic distribution.
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2 General Framework and Results

2.1 Framework

We wish to fit an arbitrary binary regression model

P (Y = 1 | x) = p1(x; β), (1)

with p0(x; β) = 1− p1(x; β). Logistic regression is the special case in which

p1(x; β) =
exp(xT β)

1 + exp(xT β)
. (2)

Sometimes we write xT β = β0 + x∗T β1 to emphasize the role of an overall intercept β0.

The data are obtained as follows. At Phase 1, we draw independent samples of N1

cases and N0 controls and obtain values of V for all individuals in the sample. Some or
all of the components of V may be included in the covariate vector X. We shall assume
that V has finite support with possible values v1, . . . ,vJ . Let Nij denote the number of
sampled individuals with Y = i and V = vj. At Phase 2, we draw a simple random sample
of size nij from these Nij individuals, and observe the values of the remaining covariates,
say W , which can be discrete or continuous. This results in samples {xij1, . . . ,xijnij

} for
i = 0, 1 and j = 1, . . . , J .

Note that the nijs are random variables since we must have nij ≤ Nij for i = 1, . . . , I
and j = 1, . . . , J . We assume that the distribution of {nij} depends only on {Nij}. Then
the resulting likelihood has the form

L =
1∏

i=0

 J∏
j=1

{
P (V = vj | Y = i)Nij

nij∏
k=1

f(xijk | Y = i, V = vj)

} (3)

(see Wild 1991 for more details).

2.2 The Breslow-Holubkov estimator

In this section we develop the Breslow-Holubkov estimator for general binary regression
models. Since the full likelihood depends on the distribution of the covariates and there is
no interest in modelling this distribution for its own sake, we follow Breslow and Holubkov
(1997) in adopting a semi-parametric approach in which the covariate distribution is left
completely unspecified. Using Bayes Theorem and the model specified in (1), we can
write the log-likelihood from (3) in the form

l(β,Γ,ρ) =
∑

i

∑
j

∑
k

log pi(xijk;β) +
∑

i

∑
j

(Nij − nij) log Qij −
∑

i

Ni log qi

+
∑
j

N+j log ρj +
∑

i

∑
j

∑
k

log γj(wijk), (4)
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where

Qij = Qij(β, Γj) = P (Y = i | V = vj) =
∫

pi(vj, w; β)dΓj(w),

qi = qi(β, Γ, ρ) = P (Y = i) =
∑
j

Qij(β, Γj)ρj,

ρj = P (V = vj)

and Γj(w), γj(w) are the conditional distribution and density functions of W given
V = vj.

We want to find to estimate β without having to think about the unknown distribution
of the covariates at all. Ideally, we would like to maximize the log-likelihood (4) over
(β, Γ, ρ) without making any assumptions about Γ or ρ. Because each Γj is a distribution
that may be continuous, and thus potentially infinite dimensional, this maximization
looks difficult. However, it turns out that we can obtain an efficient semi-parametric
estimator, β̂, relatively simply by adopting an indirect approach and working with a
much simpler “loglikelihood” `∗( ), which involves only (J + 1) nuisance parameters, as
if it were an ordinary loglikelihood. The parameters of `∗ are φ = (β, π, α) where the
nuisance parameters are π which has dimension J and α which is 1-dimensional. Although
these parameters are to be treated simply as formal parameters, they do have meaningful
interpretations which arise in the derivation of `∗ and are given below. `∗ is defined as
follows.

`∗(φ) =
∑

i

∑
j

∑
k

log{p∗ij(xijk; φ)}+
∑

i

∑
j

Nij log πij−
∑

i

∑
j

nijlog
(
N+jπij − Ñij

)
, (5)

where π1j = πj , π0j = 1− πj, Ñij = Nij − nij and p∗ij(x; φ) is defined by setting

logitp∗1j(x; φ) = logitp1(x; β) + α + σj(πj), (6)

with p∗0j(x; φ) = 1− p∗1j(x; φ) and

σj(πj) = log

(
N+j −

Ñ1j

πj

)
− log

(
N+j −

Ñ0j

1− πj

)
.

As previously stated, efficient semiparametric inferences about β can be obtained by
acting as if the pseudo-likelihood `∗(φ) is the true likelihood. This means that we can
obtain β̂ by solving the pseudo-likelihood equations,

U∗(φ) =
∂`∗

∂φ
= 0,

and we can estimate Cov{β̂} with the appropriate submatrix of J∗−1, where J∗ is the
observed pseudo-information matrix,

J∗ = − ∂2`∗

∂φ∂φT
= −∂U∗

∂φT
.
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(We note that J∗ is a direct byproduct of a Newton-Raphson maximization of `∗(φ).)
Further, we can treat the appropriate differences in −2`∗ as chi-squared random variables
to test hypotheses about β.

In Section 3, we consider the case when W has finite support and show that the proce-
dure outlined above gives the semiparametric maximum likelihood estimator. We consider
the general case in Section 4, and show that the procedure produces a semiparametric
efficient estimator of β for any W .

2.3 Interpretation of terms and nuisance parameters

From the derivation in Section 3, the nuisance parameters of `∗ in (5) are

α = log

(
N1

P (Y = 1)
/

N0

P (Y = 0)

)
, πj =

N1P (Y = 1 | V = vj)

N1P (Y = 1 | V = vj) + N0P (Y = 0 | V = vj)
.

The quantities making up `∗ can be interpreted most easily in terms of a random equivalent
of the two-phase model in which Y is chosen with Y = i having probability Ni/N+, then
V -stratum is chosen with vj having probability Nij/Ni (Phase 1), after which nij values
are sampled from pr(x | Y = i, V = vj) (Phase 2). The nuisance parameter α is the log
of the relative phase-one sampling rates for cases and controls and the nuisance parameter
πj represents the conditional probability that a unit is a case, given that V = vj and the
unit is sampled. Additionally, p∗1j(x; φ) is essentially pr(Y = 1 | x, vj, sampled). This
follows from several applications of Bayes Theorem and noting that if we replace πij by
Nij/N+j, then σj(πj) reduces to log{(n1j/N1j)/(n0j/N0j)}.

We conclude this subsection with some comments about notation. Our parameter πij

corresponds to Pij in the notation of Breslow & Holubkov and our α, the log of the relative

phase-one sampling rates for cases and controls, to Breslow & Holubkov’s log
(

N1

N0

)
− α.

2.4 Relationship to the case of a prospective first-phase

Scott and Wild (1997) worked through the maximisation above with the likelihood appro-
priate for a prospective first stage (page 65 of that paper). The only difference between
(5) and (6) and their prospective equivalents is that in the prospective case α does not
appear in (6), i.e., α = 0. Setting the log of the relative sampling rates for cases and
controls, α, to zero makes intuitive sense because cases and controls are sampled at the
same rate with a prospective first phase.

The correspondence between the inferences for the two schemes is even closer in the
special case where p1(x; β) takes the logistic form (2). In this case, the pseudo-model
p∗ij in (6) is also logistic with the same slope coefficients β1 as the original model but
intercept β0 + α + σj = β∗0 + σj say. Clearly, we can only estimate the sum β∗0 = β0 + α
and not the individual components, β0 and α, with case-control sampling unless we have
further information about sampling rates. Then, if we rewrite (5) and (6) in terms of
β∗0 rather than β0 and α, the pseudo-likelihoods for the two schemes become identical.
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The only difference is in the interpretation of β∗0 . With prospective sampling at Phase 1,
β∗0 = β0. With case-control sampling at Phase 1, β∗0 = β0 +α , with β0 and α individually
indeterminate. As Breslow & Holubkov point out, this provides a direct analogue to
the usual result for ordinary (single phase) case-control sampling: if we have a logistic
regression model with an intercept term, then we obtain valid (and efficient) inferences
for all coefficients except the intercept by proceeding as if we had a prospective sample.

Note that setting ∂`∗

∂πj
= 0 in (5) is equivalent to setting

N+jπj = N1j − n1j +
∑
k

n+jkp
∗
1j(x1jk). (7)

Scott & Wild (1997) suggested an iterative procedure in which `∗ is maximized with π
held fixed and then π is updated using (7) . With a logistic model, the maximization
step can be carried out simply by including a fixed offset in a standard logistic regression
program and updating the offset at each iteration. A similar procedure could be used
here. However, the procedure has turned out to be rather slow to converge in practice,
and applying something like the Newton-Raphson procedure directly to `∗ is usually much
more efficient. Moreover, the variance estimates obtained from the final iteration of the
logistic regression are not the required components of J∗−1, whereas this is produced
automatically by the Newton-Raphson procedure.

3 Derivation of the Breslow-Holubkov Estimator

We want to maximize l(β, Γ, ρ) given in (4) with respect to Γk(w) and ρ to obtain the
profile likelihood of β. The derivation is very similar to that given in Scott & Wild (1997)
for the situation where we have a prospective first stage. Recall that W consists of the
elements of X that are not in V . We establish the result under the assumption that W
has finite support, taking values wk, for k = 1, . . . , K with P (W = wk | V = vj) = γjk,
say. Let nijk be the number of times that wk is observed in the ijth sample, and put
pijk(β) = pi(vj, wk, β). Then the log-likelihood in (4) becomes

l(β, γ, ρ) =
∑

i

∑
j

∑
k

nijk log pijk(β) +
∑

i

∑
j

Ñij log Qij

−
∑

i

Ni log qi +
∑
j

N+j log ρj +
∑
j

∑
k

n+jk log γjk, (8)

where Qij = Qij(β, γ) =
∑

k pijk(β)γjk and qi = qi(β, γ, ρ) =
∑

j Qijρj . To find the profile
likelihood for β, we need to replace γ and ρ by γ̂(β) and ρ̂(β), the values obtained by
maximizing the log likelihood over γ and ρ for fixed β. We introduce Lagrange multipliers
η0 and {ηj; j = 1, . . . , J} to take care of the constraints

∑
ρj = 1 and {∑k γjk = 1, j =

1, . . . , J}. Differentiating (8) with respect to ρj and setting the result equal to η0 leads to

∂l

∂ρj

=
N+j

ρj

−
∑

i

Ni
Qij

qi

= η0 . (9)
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Similarly, differentiating (8) with respect to γjk and setting the result equal to ηj leads to

∂l

∂γjk

=
n+jk

γjk

+
∑

i

Ñi
pijk(β)

Qij

− ρj

∑
i

Ni
pijk(β)

qi

= ηj . (10)

Multiplying (9) through by ρj and summing over j gives η0 = 0, and multiplying (10)
through by γjk and summing over k then gives ηj = ρjη0 = 0. Thus

ρ̂j =
N+j∑
i Ni

Qij

qi

and γ̂jk =
n+jk∑

i µijpijk(β)
,

where

µij =
ρ̂jNi

qi

− Ñij

Qij

=
(
N+jπij − Ñij

)
/Qij,

with

πij =
NiQij/qi

N1Q1j/q1 + N0Q0j/q0

.

Note that Qij and qi must satisfy the conditions

Qij =
∑
k

pijk(β)γ̂jk =
1

µij

∑
k

n+jkp
∗
ijk and qi =

∑
j

Qij ρ̂j,

where p∗ijk =
µijpijk∑
t
µtjptjk

. We can rewrite these conditions in the form

∑
k

n+jkp
∗
ijk + Ñij −N+jπij = 0 (11)

and ∑
j

N+jπij = Ni. (12)

Substituting the expressions for ρ̂j and γ̂jk into (8), we obtain

l∗ =
∑

i

∑
j

∑
k

nijk log p∗ijk +
∑

i

∑
j

Nij log πij −
∑

i

∑
j

nij log
(
N+jπij − Ñij

)
. (13)

We note that p∗ijk = p∗ijk(β, α,π) can be re-written in the form given in (6), i.e.

logit p∗1jk = logit p1jk + α + σj(π1j),

with

α = log{(N1q0)/(N0q1)} and σj(π1j) = log
{
(N+j − Ñ1j/π1j)/(N+j − Ñ0j/π0j)

}
.
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Thus the profile loglikelihood function, lP (β) = supγ,ρ l(β, γ, ρ), can be expressed in the
alternative form lP (β) = l∗(β, π(β), α(β)), where π(β) and α(β) satisfy (11) and (12).
Note that

∂`∗

∂πj

= Aj

(
N+jπ1j − Ñ1j −

∑
k

n+jkp
∗
1jk

)
, (14)

where Aj =
∑

i
Ñij

πij{N+jπij−Ñij})
, and

∂`∗

∂α
= n1 −

∑
j

∑
k

n+jkp
∗
1jk. (15)

Setting these two expressions equal to 0, and recalling that n1 +
∑

j Ñ1j = N1, leads to
(11) and (12). Thus these conditions are equivalent to ∂l∗

∂π
= 0 and ∂l∗

∂α
= 0. (This also

follows directly from the construction of π and α.)

This establishes the result that, when W has finite support, we can obtain the
semiparametric MLE, β̂, by treating l∗(β, π, α) as if it were a likelihood involving the
(p+J +1)-dimensional parameter φ = (β, π, α) and setting U∗(φ) = ∂l∗

∂φ
= 0. In the next

section, we show that the estimator β̂ produced by this procedure has full semiparametric
efficiency even when the distribution of W does not have finite support. (Whether or
not β̂ is actually the semiparametric MLE in this more general case is an open question
- see Gill, Vardi & Wellner 1988 and van der Vaart & Wellner 2001 for a discussion of
related problems). The consistency of the variance estimate based on J∗ = − ∂2`∗

∂φ∂φT is
also established in the next section. The validity of testing hypotheses about components
of β using appropriate differences in −2 log `∗ follows almost exactly as in Scott & Wild
(1989).

4 Efficiency of the estimator

To demonstrate the semi-parametric efficiency of the methods described above, we will
adopt the following strategy. We first derive an expression for the asymptotic covariance
matrix of β̂. Then, we compute the semi-parametric efficiency bound for our problem (i.e
a lower bound on the covariance matrix of all estimates of β). Finally, we show that the
asymptotic covariance matrix of β̂ coincides with this bound.

4.1 The asymptotic variance of the estimate

Our asymptotics are carried out under the assumption that the first phase sample sizes
grow without bound at the same rate, and that the sampling fractions nij/Ni converge
to numbers between zero and one i.e. we assume that Ni/(N0 + N1) → wi and nij/(N0 +
N1) → wij.
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First, we define

I∗ = −plimN0,N1→∞(N0 + N1)
−1 ∂2

∂φ∂φT
l∗(φ),

the limit in probability of the pseudo-information matrix J∗ introduced in Section 3. It
turns out (see Scott & Wild, 2001, Lee, Scott & Wild, 2005) that the asymptotic variance
matrix of β̂ is the inverse of the matrix

I∗ββ − I∗βη(I
∗
ηη)

−1I∗ηβ, (16)

where I∗ is partitioned as

I∗ =

[
I∗ββ I∗βη

I∗ηβ I∗ηη

]
and η = (πT , α)T . This follows from the fact that, under suitable regularity conditions,
the solution φ̂ of

∂l∗

∂φ
= 0

is asymptotically normal with asymptotic variance

I∗−1VI∗−1

where the matrix V is of the form

V = I∗ − I∗
(

0 0
0T A

)
I∗ (17)

for some matrix A. Thus, the asymptotic variance of φ̂ is

I∗−1 −
(

0 0
0T A

)
,

and it follows from the partitioned matrix inverse formula that the asymptotic variance
matrix of β̂ is given by (16).

We now derive an expression for I∗ under a different but equivalent sampling scheme,
which is convenient for demonstrating the efficiency of the estimator β̂ in Section 4. The
new sampling scheme consists of

1. For i = 0, 1, we sample Ni individuals from the conditional distribution of V , given
Y = i. Let Nij be the number of these having V = vj. Then (Ni1, . . . , NiJ) have a
multinomial distribution with probabilities ∆ij. (Note that ∆ij corresponds to the
quantity denoted by Qi

j in Breslow and Holubkov.)

2. For i = 0, 1, j = 1, . . . , J , we sample nij individuals from the conditional distribu-
tion of W , given Y = i, V = vj, with density

pi(vj, w, β)γj(w)/Qij, j = 1, . . . , J,

where γj is the conditional density of W given V = vj.
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This scheme results in the same likelihood, and hence gives rise to the same asymp-
totics. The densities γ = (γ1, . . . , γJ) constitute an infinite-dimensional nuisance param-
eter. As before, we assume that Ni/(N0 + N1) → wi and nij/(N0 + N1) → wij and,
in addition, that wi∆ij > wij, corresponding to the fact that in the Breslow sampling
scheme, we must have Nij > nij.

Assuming this sampling scheme, by the weak law of large numbers, we obtain

I∗ = −
∑

i

∑
j

wijEij

[
∂2 log p∗ij(W , φ)

∂φ∂φT

]
−
∑

i

∑
j

wi∆ij0
∂2 log πij

∂φ∂φT

+
∑

i

∑
j

wij
∂2 log(w(j)πij − wi∆ij0 + wij)

∂φ∂φT
. (18)

The symbol w(j) is defined by
w(j) =

∑
i

wi∆ij0

where we write ∆ij0 for the true values of the multinomial probabilities ∆ij, and Eij

denotes expectation with respect to the true conditional distribution of W , given Y =
i, V = vj. The function p∗ij(w, φ) now has a limiting form as N0, N1 →∞, defined by

logit p∗1j(w, φ) = logit pi(vj, w, β) + α + σj(π1j),

where now σj(π1j) = log(w(j) − (w1∆1j0 − w1j)/π1j) − log(w(j) − (w0∆0j0 − w0j)/π0j).
Using the identity

∂2 log h

∂φ∂φT
=

1

h

∂2h

∂φ∂φT
− ∂ log h

∂φ

∂ log h

∂φT

we finally obtain the representation

I∗ =
∑

i

∑
j

wijEij

[
∂ log p∗ij(W , φ)

∂φ

∂ log p∗ij(W , φ)

∂φT

]
−
∑

i

∑
j

wi∆ij0
∂ log πij

∂φ

∂ log πij

∂φT

+
∑

i

∑
j

wij
∂ log(w(j)πij − wi∆ij0 + wij)

∂φ

∂ log(w(j)πij − wi∆ij0 + wij)

∂φT
. (19)

4.2 Establishing the efficiency bound

We first describe a general result that shows how the efficiency bound is calculated.
Suppose we have observations z from J different populations, with where population j
has density fj(z, β, γ). The parameter β has finite dimension, and the parameter γ is

infinite-dimensional. Let β̂ be regular asymptotically linear semi-parametric estimate of
β, based on samples of sizes n1, . . . , nJ from the J populations, where lim nj/n+ → νj.

Then, the asymptotic covariance matrix of β̂ must satisfy

Var β̂ ≥ B

11



where B is the semi-parametric efficiency bound.

The matrix B may be found as follows (see Lee 2007). Consider the “expected popu-
lation log likelihood” ∑

j

νjEj[log fj(z, β, γ)]. (20)

For fixed β, let γ̂(β) be the maximiser of (20), assuming it exists. The efficient scores
S∗j are given by

S∗j =
∂ log fj(z, β, γ̂(β))

∂β

∣∣∣∣∣
β=β0

, j = 1, . . . , J,

where β0 is the true value of β. The distributions fj(z, β, γ̂(β)) are called the least
favourable distributions. The efficiency bound B is given by

B−1 =
∑
j

νjEj[S
∗
j S

∗
j

T ]. (21)

Thus, to establish the efficiency of the procedures we discuss, we need only show that the
asymptotic variance of our estimate coincides with B.

Now we apply this theory to regression models for data obtained by the modified
sampling scheme described in the previous section. The results obtained will also apply
to the case of two-phase response-selective sampling, where the data are obtained by
case-control sampling at the first stage.

To calculate the information bound under the modified sampling scheme, we first
calculate the expected log-likelihood. Write pij(w, β) = pi(vj, w; β), and denote the
true values of parameters by a zero subscript, as in β0, γj0 and ∆ij0. The expected
log-likelihood is∑

i

∑
j

wi∆ij0 log ∆ij +
∑

i

∑
j

wijEij [log pij(W , β)γj(W )/Qij] (22)

where γj(w) is the conditional density of W given V = vj, and

Qij =
∫

pij(w, β)γj(w) dw,

qi =
∑
j

Qijρj,

∆ij =
Qijρj

qi

,

as before. To calculate the least favourable distributions and the efficient scores, we must
minimise (22) over the γj’s and ρj’s, for β held fixed. If W has finite support, an argument
analogous to that in Section 3 shows that for fixed β, the maximising values γ̂j(w, β) and
ρ̂j(β) of these parameters satisfy the equations

γ̂j(w, β) =
p∗j(w)γj0(w)∑
i µijpij(w, β)

(23)

12



and

ρ̂j(β) =

∑
wi∆ij0∑

i wiQij/qi

, (24)

where
p∗j(w) =

∑
i

wi

Qij0

pij(w, β0).

In (23) and (24), µij and qi are given by

µij = (wi∆ij − wi∆ij0 + wij)/Qij (25)

and
qi =

∑
j

Qij ρ̂j,

where Qij satisfies

Qij =
∫

pij(w, β)γ̂j(w, β) dw. (26)

Thus, the solution Qij, and hence qi and µij are all functions of β.

To any set of Qij’s and qi’s, there corresponds a unique set of πij’s and a unique value
of α, through the equations

πij =
wiQij/qi

w0Q0j/q0 + w1Q1j/q1

(27)

and

α = log
w0

q0

/
w1

q1

. (28)

Thus, to the solutions Qij of (26), and the corresponding qi’s, there is a corresponding set
of π’s and a corresponding α, which we denote by η(β) = (π(β), α(β)). We also write
φ(β) = (β, η(β)). Also, because of the relationships between the Qij’s and qi’s and the
πij’s and α, the definition of µij in (25) implies that

µij = (w(j)πij − wi∆ij0 + wij)/Qij. (29)

The functions p∗ij can also be written in terms of µij as

p∗ij(w, φ) =
µijpij(w, β)

µ0jp0j(w, β) + µ1jp1j(w, β)
. (30)

In fact, as we prove in Appendix 1, these formulae remain true (at least in a neighbourhood
of β0) when the support of W is not necesarily finite. It follows that the efficient scores
are

∂

∂β
log ∆iv(β) =

∂

∂β
log πiv(β)

and

∂

∂β
log {pij(w, β)γ̂j(w, β)/Qij(β)} =

∂

∂β
log p∗ij(w, φ(β))− ∂

∂β
log µij(β)Qij(β),

13



where the first formula follows from the relationship

∆ij(β) =
Qij(β)ρ̂j(β)

qi(β)
.

The inverse of the information bound is (dropping the argument β)

B−1 =
∑

i

∑
j

wi∆ij0
∂

∂β
log πij

∂

∂βT
log πij

+
∑

i

∑
j

wijEij

{[
∂

∂β
log p∗ij(W , φ)− ∂

∂β
log µijQij

]

×
[

∂

∂βT
log p∗ij(W , φ)− ∂

∂βT
log µijQij

]}
.

Since

Eij

[
∂

∂β
log p∗ij(W , φ)

]
=

∂

∂β
log µijQij,

B−1 can be written

B−1 =
∑

i

∑
j

wijEij

[
∂

∂β
log p∗ij(W , φ)

] [
∂

∂βT
log p∗ij(W , φ)

]

+
∑

i

∑
j

wi∆ij0
∂

∂β
log πij

∂

∂βT
log πij

−
∑

i

∑
j

wij
∂

∂β
log µijQij

∂

∂βT
log µijQij.

Our final task is to prove that this expression coincides with (16). Comparing it to (19),
and applying the chain rule we obtain the representation

B−1 = I∗ββ +

(
∂η

∂β

)T

I∗ηβ + I∗βη

(
∂η

∂β

)
+

(
∂η

∂β

)T

I∗ηη

(
∂η

∂β

)
. (31)

In Appendix 2, we show that (
∂η

∂β

)
= −(I∗ηη)−1I∗ηβ,

so from (31) we get
B−1 = I∗ββ − I∗βη(I∗ηη)−1I∗ηβ.

Thus, the asymptotic variance of the estimate of β coincides with the information bound,
proving the efficiency of the estimate.

14



Appendix

A1. The least favourable distribution
We must show that for γ̂j and ρ̂j as defined in (23) and (24), and for arbitrary densities

γj and probabilities ρj, we have

∑
i

∑
j

wi∆ij0 log ∆ij(β) +
∑

i

∑
j

wi

Qij0

∫
log γ̂j(w)pij(w, β0)γj0(w) dw

−
∑

i

∑
j

wij log Qij(β)

≥
∑

i

∑
j

wi∆ij0 log ∆ij +
∑

i

∑
j

wi

Qij0

∫
log γj(w)pij(w, β0)γj0(w) dw

−
∑

i

∑
j

wij log Qij (32)

where πij(β) and Qij(β) are as defined in (26) and the quantity πij is given by πij =
Qijρj/(

∑
j Qjkρj), where Qij =

∫
γj(w)p∗ij(w, β) dw. The inequality (32) is equivalent to

∑
i

∑
j

wi∆ij0 log
∆ij(β)

∆ij

−
∑

i

∑
j

wij log
Qij(β)

Qij

+
∑
j

∫
log

γ̂j(w)

γj(w)
p∗j(w)γj0(w) dw ≥ 0.

(33)
When β = β0, (23) and (24) show that γ̂j(w, β) = γj0(w) and that ρj(β) = ρj0 . When
β = β0, (33) becomes

∑
i

∑
j

wj∆ij0 log
∆ij0

∆ij

−
∑

i

∑
j

wij log
Qij0

Qij

+
∑
j

∫
log

γj0(w)

γj(w)
p∗j(w)γj0(w) dw ≥ 0. (34)

An argument based on the Kullback-Leibler information inequality shows that the integral
in (34) is strictly greater than w+j log Qij0

Qij
, provided γj 6= γj0. Thus, multiplying the

integral by wij and summing first over i and then over j gives

∑
j

∫
log

γj0(w)

γj(w)
p∗j(w)γj0(w) dw >

∑
i

∑
j

wij log
Qij0

Qij

.

Moreover, the Kullback-Leibler inequality implies that∑
i

∑
j

wjπij0 log
πij0

πij

≥ 0.

Hence, the right-hand side of (33) is strictly positive at β = β0, and by a continuity
argument is non-negative for all β in some neighbourhood of β0.
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A2: Evaluation of ∂η
∂β .

Let E be the expected log-liklihood (22) , and recall that γ̂(β) is the maximiser of E
over all densities γ for each fixed β. Then, arguing as in the data case in Section 3, for
each fixed β, we have

E(β, γ̂(β)) = E∗(β, η(β))

where η = (π, α) and, up to a constant,

E∗(β, η) = −
∑

i

∑
j

wijEij

[
log p∗ij(W , β, η)

]
−
∑

i

∑
j

wi∆ij0 log πij +
∑

i

∑
j

wij log(w(j)πij − wi∆ij0 + wij).

It follows that η(β) maximises E∗(β, η) over η for each fixed β, so that

∂E∗(β, η)

∂η

∣∣∣∣∣
η=η(β)

= 0

for each β. Differentiating again by the chain rule, we get

∂2E∗(β, η)

∂β∂ηT

∣∣∣∣∣
β=β0,η=η(β0)

+

(
∂η

∂β

)T
∂2E∗(β, η)

∂η∂ηT

∣∣∣∣∣
β=β0,η=η(β0)

= 0.

Thus, by (18), we get

I∗βη +

(
∂η

∂β

)T

I∗ηη = 0

so that
∂η

∂β
= −

(
I∗ηη

)−1
I∗ηβ.
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