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1. Introduction

Suppose that for each of a number of subjects, we measure a response y and a vector of
covariates x, in order to estimate the parameters β of a regression model which describes the
conditional distribution of y given x. If we have sampled directly from the conditional distribu-
tion, or even the joint distribution, we can estimate β without knowledge of the distribution of
the covariates.

In the case of a discrete response, which takes one of J values y1, . . . , yJ , say, we often estimate
β using a case-control sample, where we sample from the conditional distribution of X given
Y = yj . This is particularly advantageous if some of the values yj occur with low probability.
In case-control sampling, the likelihood involves the distribution of the covariates, which may
be quite complex, and direct parametric modelling of this distribution may be too difficult. To
get around this problem, the covariate distribution can be treated non-parametrically. In a
series of papers, (Scott and Wild 1986, 1997, 2001, Wild 1991) Scott and Wild have developed
an estimation technique which yields a semi-parametric estimate of β. They dealt with the
unknown distribution of the covariates by profiling it out of the likelihood, and derived a set of
estimating equations whose solution is the semi-parametric estimator of β.

This technique also works well for more general sampling schemes, for example for two-phase
outcome-dependent stratified sampling. Here, the sample space is partitioned into S disjoint
strata which are defined completely by the values of the response and possibly some of the
covariates. In the first phase of sampling, a prospective sample of size N is taken from the joint
distribution of x and y, but only the stratum the individual belongs to is observed. In the second
phase, for s = 1, . . . , S, a sample of size n(s)

1 is selected from the n(s)
0 individuals in stratum s who

were selected in the first phase, and the rest of the covariates are measured. Such a sampling
scheme can reduce the cost of studies by confining the measurement of expensive variables to the
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most informative subjects. It is also an efficient design for elucidating the relationship between
a rare disease and a rare exposure, in the presence of confounders.

Another generalized scheme that falls within the Scott-Wild framework is that of case-
augmented sampling, where a prospective sample is augmenmted by a further sample of controls.
In the prospective sample, we may observe both disease state and covariates, or covariates alone.
Such schemes are discussed in Lee, Scott and Wild (2006).

In this paper, we introduce a general method for demonstrating that the Scott-Wild proce-
dures are fully efficient. We use a (slightly extended) version of the theory of semi-parametric
efficiency due to Bickel et al. (1993) to derive an “information bound” for the asymptotic vari-
ance of the estimates. We then compute the asymptotic variances of the Scott-Wild estimators,
and demonstrate their efficiency by showing that the asymptotic variance coincides with the
information bound in each case.

The efficiency of these estimators has been studied by several authors, who have also ad-
dressed this question using semi-parametric efficiency theory. This theory assumes an i.i.d.
sample, so various ingenious devices have been used to apply it to the case of choice-based sam-
pling. For example, Breslow, Robins and Wellner (2000) consider case-control sampling, that
the data are generated by Bernoulli sampling, where either a case or control is selected by a
randomisation device with known selection probabilities, and the covariates of the resulting case
or control are measured. The randomisation at the first stage means that the i.i.d. theory can
be applied.

The efficiency of regression models under an approximation to the two-phase sampling scheme
has been considered by Breslow, McNeney and Wellner (2003) using missing value theory. In
this approach, a single prospective sample is taken. For some individuals, the response and the
covariates are both observed. For the rest, only the response is measured, the covariates being
regarded as missing values. The efficiency bound is obtained using the missing value theory of
Robins, Hsieh and Newey (1995).

In this paper, we adopt a more direct approach. First, we sketch an extension of Bickel–
Klaassen–Ritov–Wellner theory to cover the case of sampling from several populations, which we
require in the rest of the paper. Such extensions have also been studied by McNeney and Wellner
(2000) and Bickel and Kwon (2001). Then information bounds for the regression parameters
are derived assuming that separate prospective samples are taken from the case and control
populations.

The minor modifications to the standard theory required for the multi-sample efficiency
bounds are sketched in Section 2. This theory is then applied to case-control sampling and
an information bound derived in Section 3. We also derive the asymptotic variance of the
Scott-Wild estimator and show that it coincides with the information bound.

In Section 4, we deal with the two-phase sampling scheme. We argue that a sampling scheme
equivalent to the two-phase scheme described above is to regard the data as arising from separate
independent sampling from S+1 populations. This allows the application of the theory sketched
in Section 2. We derive a bound and again show that the asymptotic variance of the Scott-Wild
estimator coincides with the bound. Finally, mathematical details are given in Section 5.
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In the context of data that are independently and identically distributed, Newey (1994)
characterizes the information bound in terms of a population version of a profile likelihood,
rather than a projection. A parallel approach to calculating the information bound for the
case-control and two-phase problems, using Newey’s “profile” characterization, is contained in
Lee and Hirose (2007).

2. Multi-samples, information bounds and semi-parametric efficiency

In this section, we give a brief account of the theory of semi-parametric efficiency when the
data are not independently and identically distributed, but rather consist of separate indepen-
dent samples from different populations.

Suppose we have J populations. From each population, we independently select separate
i.i.d. samples, so that for j = 1, . . . , J , we have a sample {xij , i = 1, . . . , nj} from a distribution
with density pj , say. We call the combined sample a multi-sample. We will consider asymptotics
where nj/n→ wj , and n = n1 + · · ·nJ .

Suppose that pj is a member of the family of densities

P = {pj(x, β, η), β ∈ B, η ∈ N},

where B is a subset of <k and N is infinite-dimensional. We denote the true values of β and η
by β0 and η0, and pj(x, β0, η0) by pj0. Consider asymptotically linear estimates of β of the form

√
n(β̂ − β0) =

1√
n

J∑
j=1

nj∑
i=1

φj(xij) + op(1),

where Ejφj(X) = 0, Ej denoting expectation with respect to pj0. The functions φj are called
the influence functions of the estimate and its asymptotic variance is

∑J
j=1wjEj [φjφ

T
j ].

The semi-parametric information bound is a matrix B that is a lower bound for the asymp-
totic variance of all asymptotically linear estimates of β: we have

Avarβ̂ =
∑

j

Ej [φjφ
T
j ] ≥ B

where the φj are the influence functions of β̂.
The efficiency bound is found as follows. Let T be a subset of of <p, so that PT =

{pj(x, β, η(t)),
β ∈ B, t ∈ T} is a p -dimensional submodel of P. We also suppose that if η0 is the true value of
η, then η(t0) = η0 for some t0 ∈ T . Thus, the submodel includes the true model, having β = β0

and η = η0.
Consider the vector-valued score functions

l̇j,η =
∂ log pj(x, β, η(t))

∂t
,
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whose elements are assumed to be members of L2(Pj0), where Pj0 is the measure corresponding
to pj(x, β0, η0). Consider also the space L2k(Pj0), the space of all <k-valued functions square-
integrable with respect to Pj0, and the Cartesian product H of these spaces, equipped with the
norm defined by

||(f1, . . . , fJ)||2H =
J∑

j=1

wj

∫
||fj ||2dPj0.

The subspace of H generated by the score functions (l̇1,η, . . . , l̇J,η) is the set of all vector-valued
functions of the form (Al̇1,η, . . . ,Al̇J,η) where A ranges over all k by p matrices. Thus, to
each finite-dimensional sub-family of P, there corresponds a score function and subspace of H
generated by the score function. The closure in H of the span(over all such sub-families) of all
these subspaces is called the nuisance tangent space and is denoted by Tη.

Consider also the score functions

l̇j,β =
∂ log pj(x, β, η)

∂β
.

The projection l̇∗ in H of l̇β = (l̇1,β , . . . l̇J,β) onto the orthogonal complement of Tη is called the
efficient score, and its elements (which are members of L2,k(G0)) are denoted by l̇∗j . The matrix
B (the efficiency bound) is given by

B−1 =
J∑

j=1

wjEj [l̇∗j l̇
∗
j
T ]. (1)

The functions B l̇∗j are called the efficient influence functions, and any multi-sample asymptot-
ically linear estimate of β having these influence functions is asymptotically efficient.

3. The efficiency of the Scott-Wild estimator in case-control studies

In this section, we apply the theory sketched above in Section 2 to regression models where
the data are obtained by case-control sampling. Suppose that we have a response Y (assumed
discrete with possible values y1, . . . , yJ) and a vector X of covariates, and we want to model the
conditional distribution of Y given X using a regression function

fj(x, β) = P (Y = yj |X = x),

say, where β is a k-vector of parameters. If the distribution of the covariates X is specified by
a density g, then the joint distribution of X and Y is

fj(x, β)g(x)

and the conditional distribution of x given Y = yj is

pj(x, β, η) = fj(x, β)g(x)/πj
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where
πj =

∫
fj(x, β)g(x) dx.

In case-control sampling, the data are not sampled from the joint distribution, but rather
are sampled from the conditional distributions of X given Y = yj . We are thus in the situation
of Section 2 with g playing the role of η and

pj(x, β, g) = fj(x, β)g(x)/πj .

3.1 The information bound in case-control studies. To apply the theory of Section 2, we must
identify the nuisance tangent space Tη and calculate the projection of l̇β on this space. Direct
calculation shows that

l̇β,j =
∂ log fj(x, β)

∂β
− Ej

[
∂ log fj(x, β)

∂β

]
,

where Ej denotes expectation with respect to the true density pj0, given by pj0(x) = pj(x, β0, g0),
where β0 and g0 are the true values of β and g. Here, and in what follows, all derivatives are
evalueted at the true values of parameters.

Also, for any finite-dimensional family {g(x, t)} of densities with g(x, t0) = g0(x), we have

l̇η,j =
∂ log g(x, t)

∂t
− Ej

[
∂ log g(x, t)

∂t

]
.

It follows by the arguments of Bickel et al. (1993, p52) that the nuisance tangent space is of the
form

Tη = {(h− E1[h], . . . , h− EJ [h]) : h ∈ L2,k(G0)}, (2)

where dG0 = g0dx, and L2,k(G0) is the space of all k-dimensional functions f satisfying the
condition

∫
||f ||2 dG0(x) <∞.

The efficient score, the projection of l̇β on the orthogonal complement of Tη, is described in
our first theorem. In the theorem, we use the notations πj0 =

∫
fj(x, β0) dG0(x),

f∗(x) =
J∑

j=1

wj

πj
fj(x),

l̇β,j = (l̇β,j1, . . . , l̇β,jk)T

and

φl(x) =
J∑

j=1

wj

πj0
l̇β,jlfj(x, β0).

Then we have the following result:
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Theorem 1. Let A be the operator L2(G0) → L2(G0) defined by

(Ah)(x) = f∗(x)h(x)−
J∑

j=1

wj

πj
fj(x)(fj/πj , h)2 (3)

Then the efficient score has j, l element

l̇β,jl − h∗l + Ej [h∗l ]

where h∗l is any solution in L2(G0) of the operator equation

Ah∗l = φl. (4)

A proof is given in Section 5.1.
It remains to identify a solution to (4). Define Pj(x) = wj

πj0
fj(x, β0)/f∗(x) and vjj′ =∫

PjPj′f
∗ dG0. Let V = (vjj′), W = diag(w1, . . . , wJ) and M = W − V. Note that the row

and column sums of M are zero, since

wj −
J∑

j′=1

∫
PjPj′f

∗ dG0 = wj −
wj

πj

∫
fj dG0 = 0.

Using these definitions and (3), we get

Ahl = hlf
∗ −

J∑
j=1

(hl, fj/πj)2Pjf
∗

so that Ahl = φl if and only if

hl =
φl

f∗
+

J∑
j=1

(hl, fj/πj)2Pj .

This suggests that h∗l will be of the form

h∗l =
φl

f∗
+

J∑
j=1

cjPj

for some constants c1, . . . , cJ . In order that h∗l satisfy (4), we must have

cj −
J∑

j′=1

cj′(Pj′ , fjπj)2 − w−1
j (φl, Pj)2 = 0, j = 1, . . . , J. (5)
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Now

(Pj′ , fjπj)2 =
∫
Pj′ , fj/πj dG0

= w−1
j

∫
Pj′ , Pjf

∗ dG0

= (W−1V)jj′

so that (5) will be satisfied if the vector c = (c1, . . . , cJ)T satisfies

Mc = d(l) (6)

where dl = (d1l, . . . , dJl)T with djl = (φl, Pj)2. Thus, we require that c = M−d(l) where M− is
a generalised inverse of M.

Our next result gives the information bound.

Theorem 2. Let D = (d1, . . . , dk) and φ = (φ1, . . . , φk)T . The inverse of the information bound
B is given by

B−1 =
J∑

j=1

wjEj [l̇β,j l̇
T
β,j ]−

∫
φφT

f∗
dG0 −DTM−D. (7)

See Section 5.2 for a proof.

3.2. Efficiency of the Scott-Wild estimator in case-control studies. Suppose we have J dis-
ease states (typically J=2, with disease states case and control), and we choose nj individu-
als at random from disease population j, j = 1, . . . , J , observing covariates x1,j , . . . , xnj ,j for
the individuals sampled from population j. Also suppose that we have a regression function
fj(x, β), j = 1, . . . , J , giving the conditional probability that an individual with covariates x has
disease state j. The unconditional density g of the covariates is unspecified. The true values
of β and g are denoted by β0 and g0, and the true probability of being in disease state j is
πj0 =

∫
f(x, β0)g0(x) dx.

Under the case-control sampling scheme, the log-likelihood is (Scott and Wild 2001)

J∑
j=1

nj∑
i=1

log fj(xij , β) +
J∑

j=1

nj∑
i=1

log g(xij)−
J∑

j=1

nj log πj . (8)

Scott and Wild show that the non-parametric MLE of β is the “beta” part of the solution of
the estimating equation

J∑
j=1

nj∑
i=1

∂ logP ∗
j (xij , β, ρ)
∂θ

= 0, (9)

where θ = (β, ρ), ρ = (ρ1, . . . , ρJ−1),

P ∗
j (x, β, ρ) =

eρjfj(x, β)∑J−1
l=1 e

ρlfl(x, β) + fJ(x, β)
, j = 1, . . . , J − 1 (10)
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and
P ∗

J (x, β, ρ) =
fJ(x, β)∑J−1

l=1 e
ρlfl(x, β) + fJ(x, β)

. (11)

A Taylor series argument shows that the solution of (9) is an asyptotically linear estimate.
Thus, to estimate β, we are treating the function l∗(θ) =

∑J
j=1

∑nj

i=1 logP ∗
j (xij , β, ρ) as

though it were a log-likelihood. Moreover, Scott and Wild indicate that we can obtain a consis-
tent estimate of the standard error by using the second derivative −∂2l∗(θ)

∂θ∂θT , which they call the
“pseudo-information matrix”.

Now let n = n1 + · · ·+nJ and let the nj ’s converge to infinity with nj/n→ wj , j = 1, . . . , J ,
and let ρ0 = (ρ01, . . . , ρ0,J−1)T where exp(ρ0j) = (wj/π0j)/(wJ/π0J). It follows from the law of
large numbers and the results of Scott and Wild that the asymptotic variance of the estimate
of β is the ββ block of the inverse of the matrix

I∗ = −
J∑

j=1

wjEj

[
∂2 logP ∗

j (xij , β, ρ)
∂θ∂θT

]
,

where all derivatives are evaluated at (β0, ρ0). Using the partitioned matrix inverse formula, the
the β, β block of (I∗)−1 is

(I∗ββ − I∗βρ(I
∗
ρρ)

−1I∗ρβ)−1, (12)

where I∗ is partitioned as

I∗ =
[

I∗ββ I∗βρ

I∗ρβ I∗ρρ

]
.

To prove the efficiency of the estimator, we show that the information bound (7) coincides
with the asymptotic variance (12). To prove this, the following representation of the matrix I∗

will be useful. Let S be the J × k matrix with j, l element Sjl = ∂ log fj(x,β)
∂βl

|β=β0 and j th row
Sj , and let E be the J × k matrix with j, l element Ej [Sjl]. Also note that Pj(x) = P ∗

j (x, β0, ρ0)
and write P = (P1, . . . , PS)T . Then we have the following theorem:

Theorem 3.

1. I∗ββ =
∑J

j=1wjEj [SjS
T
j ]−

∫
STPP TSf∗ dG0,

2. Let U = WE−
∫
PP TSf∗ dG0. Then I∗ρβ consists of the first J − 1 rows of U,

3. I∗ρρ consists of the first J − 1 rows and columns of M = W −V.

A proof is given in Section 5.
Now, we show that the information bound coincides with the asymptotic variance. Using

the definition φl(x) =
∑J

j=1
wj

πj0
l̇β,jlfj(x, β0), we can write φ = (S − E)TPf∗, and substituting

this and the relationship l̇β = S−E into (7), we get

B−1 =
J∑

j=1

wjEj [SjS
T
j ]−ETWE−

∫
(S−E)TPP T (S−E)f∗ dG0(x)−DTM−D (13)
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Moreover,

D =
∫
PφT dG0(x)

=
∫
PP T (S−E)f∗ dG0(x)

= WE−U−VE

= ME−U.

Substituting this into (13) and using the relationships described in Theorem 3, we get

B−1 = I∗ββ −UTM−U−ET (I−MM−)U−UT (I−M−M)E. (14)

By Theorem 3, the matrix [
I∗ρρ

−1 0
0T 0

]
is a generalized inverse of M, so UTM−U = I∗βρI

∗
ρρ
−1I∗ρβ . Also,

(I−MM−)U = (I−MM−)(ME−D)
= (I−MM−)ME− (I−MM−)MC

= 0

by the properties of a generalized inverse. Thus, B−1 = I∗ββ − I∗βρI
∗
ρρ
−1I∗ρβ and the Scott-Wild

estimate is efficient.

4. Efficiency of the Scott-Wild estimator under two-stage sampling
In this section, we use the same techniques to show that the Scott-Wild non-parametric MLE

is also efficient under two-stage sampling.

4.1 Two stage sampling. In this sampling scheme, the population is divided into S strata, where
stratum membership is completely determined by an individual’s response y and possibly some
of the covariates x, typically those that are cheap to measure. In the first sampling stage , a
random sample of size n0 is taken from the population, and the stratum to which the sampled
individuals belong is recorded. For the ith individual, let Zis = 1 if the individual is in stratum
s, and zero otherwise. Then n

(s)
0 =

∑n1
i=1 Zis is the number of individuals in stratum s. In the

second sampling stage, for each stratum s, a simple random sample of size n(s)
1 is taken from the

n
(s)
0 individuals in the stratum. Let xis, i = 1, . . . , n(s)

1 and yis, i = 1, . . . , n(s)
1 be the covariates

and responses for those individuals. Note that n(s)
1 depends on n

(s)
0 and must be regarded as

random, since n(s)
0 ≥ n

(s)
1 for s = 1, . . . , S. We assume that the distribution of n(s)

1 depends only
on n(s)

0 , and that, conditional on the n(s)
0 ’s, the n(s)

1 ’s are independent.
As in Section 3, let f(y|x, β) be the conditional density of y given x, which depends on a

finite number of parameters β, which are the parameters of interest. Let g denote the density of
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the covariates. We will regard g as an infinite dimensional nuisance parameter. The conditional
density of (x, y), conditional on being in stratum s is, using Bayes theorem,

Is(x, y)f(y|x)g(x)∫ ∫
Is(x, y)f(y|x, β)g(x) dx dy

where Is(x, y) is the stratum indicator, having value 1 if an individual having covariates x and
response y is in stratum s, and zero otherwise. The unconditional probability of being in stratum
s in the first phase is

Qs =
∫ ∫

Is(x, y)f(y|x, β)g(x) dx dy.

Introduce the function Qs(x, β) =
∫
Is(x, y)f(y|x, β) dy. Then

Qs =
∫
Qs(x, β)g(x) dx.

Under two-phase sampling, the log likelihood is (Wild 1991, Scott and Wild, 2001)

S∑
s=1

n
(s)
1∑

i=1

log f(yis|xis, β) +
S∑

s=1

n
(s)
1∑

i=1

log g(xis) +
S∑

s=1

ms logQs (15)

where ms = n
(s)
0 − n

(s)
1 . Scott and Wild show that the semi-parametric MLE β̂ (i.e. the “β”

part of the maximiser (β̂, ĝ) of (15)) is equal to the “β” part of the solution of the estimating
equations

∂`∗

∂β
= 0,

∂`∗

∂ρ
= 0. (16)

The function `∗ is given by

`∗(β, ρ) =
S∑

s=1

n
(s)
1∑

i=1

log f(yis|xis, β)−
S∑

s=1

n
(s)
1∑

i=1

log
[∑

r

µr(ρ)Qr(xis, β)
]

+
S∑

s=1

ms logQs(ρ),

where Q1(ρ), . . . , QS(ρ) are probabilities defined by
∑S

s=1Qs(ρ) = 1 and logQs/QS = ρs, s =
1, . . . , S, and µs(ρ) = c(n0 −ms/Qs(ρ)). The µs’s depend on the quantity c and the ms’s, and
for fixed values of these quantities are completely determined by the S − 1 quantities ρs. Note
that the estimating equations (16) are invariant under choice of c. It will be convenient to take
c as N−1, where N = n0 + n1, where n1 =

∑S
s=1 n

(s)
1 .

In order to apply the theory of Section 2 to two-phase sampling, we will prove that the
asymptotics under two-phase sampling are the same as those under the following multi-sample
sampling scheme:

1. As in the first scheme, take a random sample of n0 individuals and record the stratum in
which they fall. This amounts to taking an i.i.d. sample {(Zi1, . . . , ZiS), i = 1, . . . , n0} of
size n0 from MULT (1, Q1, . . . , QS),
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2. For s = 1, . . . , S, take independent i.i.d. samples {(xis, yis), i = 1, . . . , n(s)
1 } of size

n
(s)
1 from the conditional distribution of (x, y) given s, having density ps(x, y, β, g) =
Is(x, y)f(y|x)g(x)/Qs.

We note that the likelihood under this modified sampling scheme is the same as before, and we
show in Theorem 4 below that the asymptotic distribution of the parameter estimates is also
the same. It follows that if an estimate is efficient under the multi-sampling scheme, it must
also be efficient under two-phase sampling.

Theorem 4. Let N = n0 + n1 where n1 =
∑S

s=1 n
(s)
1 , and suppose that

√
N(n0/N − w0)

p→ 0
and

√
N(n(s)

1 /N − ws)
p→ 0, s = 1, . . . S.

Let θ̂ be the solution of the estimating equation (16), and let θ0 be the solution to the equation

w0E [ψ0(Z1, . . . , Zs, θ)] +
S∑

s=1

Es[ψs(x, y, θ)] = 0, (17)

where Es denotes expectation with respect to ps,

ψ0(Z1, . . . , Zs, θ) =
∂

∂θ

S∑
s=1

Zs logQs

and

ψs(x, y, θ) =
∂

∂θ

{
log f(y|x, β)− log

[∑
s

µsQs(x, β)
]
− logQs

}
, s = 1, . . . , S.

Then
√
N(θ̂−θ0) is asymptotically N(0, (I∗)−1V(I∗)−1) under both sampling schemes, where

V =
∑S

s=0wsEs[(ψs − Es[ψs])[(ψs − Es[ψs])T ] and I∗ = −
∑S

s=0wsEs[∂ψs/∂θ].
A proof is given in Section 5.4.

4.2 The information bound. Now we derive the information bound for two-stage sampling. By
the arguments of Section 4.1, the information bound for two-phase sampling is the same as that
for the case of independent sampling from the S + 1 densities ps(x, y, β, g) where

ps(x, y, β, g) =
Is(x, y)f(y|x, β)g(x)

Qs
, s = 1, . . . , S

and
p0(x, y, β, g) = QZ1

1 · · ·QZJ
J

where Zs = Is(x, y) is the sth stratum indicator.
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First, we identify the form of the nuisance tangent space (NTS) for this problem. As in
Section 3, we see that the score functions for this problem are

l̇0 =
∂ log p0(x, y, β, g)

∂β
=

S∑
s=1

ZsEs[S],

and
l̇s =

∂ log ps(x, y, β, g)
∂β

= S − Es[S], s = 1, . . . , S

where S = ∂ log f(y|x,β)
∂β and Es denotes expectation with respect to the true density ps(x, y, β0, g0).

Similarly, if g(x, t) is a finite-dimensional subfamily of densities, then ∂ log ps(x,y,β,g(x,t))
∂t = h −

Es[h], s = 1, . . . , S and ∂ log p0(x,y,β,g(x,t))
∂t =

∑S
s=1 ZsEs[h], where h = ∂ log g(x,t)

∂t . Arguing as in
Section 3, we see that the NTS consists of all elements of the form

T (h) =
( S∑

s=1

Zs(Es[h]− E [h]), h− E1[h], . . . , h− Es[h]
)

where E denotes expectation with respect to G0.
As before, the efficient score is l̇∗ = l̇ − T (h∗), where h∗ is the element of L2k(G0) which

minimises ||l̇ − T (h)||2H. An explicit expression for this squared distance is

k∑
j=1

{
w0

S∑
s=1

E
[
Zs{Es[Sj ]− Es[hj ] + E [hj ]}2

]
+

S∑
s=1

wsEs

[
{Sj − Es[Sj ]− hj + Es[hj ]}2

]}
(18)

where hj and Sj are the jth elements of h and S respectively. To obtain the projection, we must
choose hj to minimise the term in the braces in (18). Some algebra shows that this term may
be written as

(hj , Ahj)2 − 2(hj , φj)2 +
S∑

s=1

(w0Qs0 − ws)Es[Sj ]2 +
S∑

s=1

wsEs[S2
j ] (19)

where Qs0 =
∫
Q(x, β0)g0(x) dx is the true value of Qs, (., .)2 is the inner product on L2(G0), A

is a self-adjoint nonnegative-definite operator on L2(G0) defined by

Ah = Q∗

{
h−

S∑
r=1

S∑
s=1

(δrs − γrs)
∫
h(x)Qr(x, β0)g0(x) dx

Qr0
Ps

}
, (20)

Q∗(x) =
S∑

s=1

ws

Qs0
Qs(x, β0),

Ps(x) =
ws
Qs0

Qj(x, β0)

Q∗(x)
,

12



γrs =

{
w0Qr(1−Qr)

wr
, r = s,

−w0QrQs

wr
, r 6= s,

and

φj(x) =
S∑

s=1

ws

Qs0
Qs(x, β0)

∂ logQs(x, β)
∂βj

|β=β0 −
S∑

s=1

S∑
r=1

Q∗(x)Pr(x)(δrs − γrs)Es(Sj). (21)

As in Section 3, (19) is minimised when hj = h∗j , where hj is a solution of Ahj = φj , which must
be of the form

h∗j =
φj

f∗
+

S∑
r=1

crjPr (22)

for constants crj which satisfy the equations

crj −
S∑

s=1

S∑
t=1

(δrs − γrs)
ws

vstctj =
S∑

s=1

(δrs − γrs)
ws

dsj (23)

where vrs =
∫
PrPsQ

∗dG0 and dsj = (Ps, φj)2. Writing Γ = (γrs), C = (crj), D = (drj),
W = diag(w1, . . . , wS) and V = (vrs), (23) can be expressed in matrix terms as

MC = D (24)

where M = W(I − Γ)−1 −V. These results allow us to find the efficient score and hence the
information bound, which is described in the following theorem:

Theorem 5. The information bound B is given by

B−1 =
S∑

s=1

wsEs[SST ] +
S∑

s=1

(w0Qs0 − ws)Es[S]Es[S]T −
∫
φφT

Q∗ dG0(x)−DTM−D. (25)

The proof is similar to that of Theorem 2 and is omitted.

4.3 Efficiency of the Scott-Wild estimator
Let θ̂ = (β̂, ρ̂) be the solutions of the estimating equations (16). By Theorem 4, under

suitable regularity conditions, θ̂ is asymptotically normal with asymptotic variance

I∗−1VI∗−1

where I∗ and V are as in Theorem 4. It turns out that the matrix V is of the form

V = I∗ − I∗
(

0 0
0T A

)
I∗ (26)

13



for some matrix A. Thus, the asymptotic variance of θ̂ is

I∗−1 −
(

0 0
0T A

)
,

and it follows from the partitioned matrix inverse formula that the asymptotic variance matrix
of β̂ is the inverse of

I∗ββ − I∗βρ(I
∗
ρρ)

−1I∗ρβ (27)

where I∗ is partitioned as

I∗ =
[

I∗ββ I∗βρ

I∗ρβ I∗ρρ

]
.

To demonstrate the efficiency of β̂, we must show that (27) and (25) coincide. To do this, we
need a more explicit formula for I∗. Let S be the S×k matrix with s, j element ∂ log Qs(x,βj)

∂β |β=β0 ,

let E be the S × k matrix with lth row Es = Es[S], where S = ∂ log f(y|x,β)
∂β |β=β0 . Also define

P ∗
s (x, β, ρ) =

µs(ρ)Qs(x, β)∑S
r=1 µr(ρ)Qr(x, β)

(28)

and note that Ps(x) = P ∗
s (x, β0, ρ0), where ρ0 satisfies Qs(ρ0) = Qs0, s = 1, . . . , S. Finally,

write P = (P1, . . . , PS)T . Then we have the following theorem:

Theorem 6.

1. I∗ββ =
∑S

s=1wsEs

[
SST

]
−
∫

STPP TSQ∗ dG0(x),

2. Let U = WE−
∫
PP TSQ∗ dG0(x). Then I∗ρβ = ATU0, where U0 consists of the first S−1

rows of U and A is a non-singular (S − 1)× (S − 1) matrix.

3. I∗ρρ = ATM0A where M0 consists of the first S − 1 rows and columns of M = W(I −
Γ)−1 −V.

The proof is given in Section 5.5.
We now use theorems 4 and 5 to show that the efficiency bound (25) equals the asymptotic

variance (27). Arguing as in Section 3, we get

B−1 = I∗ββ − I∗βρI
∗
ρρ
−1I∗ρβ +

{ S∑
s=1

(w0Qs0 − ws)EsE
T
s + ETW(I− Γ)E

}
. (29)

We complete the argument by showing that the term in the braces in (29) is zero. We have

ETW(I− Γ)ET =
S∑

s=1

(ws − w0Qs0)EsE
T
s + w0

(
S∑

s=1

Qs0Es

)(
S∑

s=1

Qs0Es

)T

=
S∑

s=1

(ws − w0Qs0)EsE
T
s

14



since
∑S

s=1Qs0Es = 0. Hence the term in the braces in (29) is zero, the asymptotic variance
coincides with the information bound and so the Scott-Wild estimator has full semi-parametric
efficiency.

5. Proofs
5.1 Proof of Theorem 1

The efficient score is the projection of l̇β onto T ⊥
η , so is of the form l̇β − g, where g is the

unique minimizer of ||l̇β−g||2H in Tη. By (2), this is l̇β−T (h∗), where h∗ is the (unique) minimizer
of ||l̇β − T (h)||2H in L2,k(G0). Write h∗ = (h∗1, . . . , h

∗
k). Then

||l̇β − T (h∗)||2H =
k∑

l=1

J∑
j=1

wj

πj

∫
(l̇β,jl − h∗l − Ej [h∗l ])

2fj dG0 (30)

so that we must choose h∗l to minimize

J∑
j=1

wj

πj

∫
(l̇β,jl − h∗l − Ej [h∗l ])

2fj dG0 =
J∑

j=1

wjEj [l̇2β,jl] + (Ah∗l , h
∗
l )2 − 2(φl, h

∗
l )2. (31)

Now let h∗l be any solution in L2(G0) to (4). Then for any h in L2(G0), using the fact that A
is self-adjoint and positive definite, we get

J∑
j=1

wjEj [l̇2β,jl] + (Ah, h)2 − 2(φl, h)2 =
J∑

j=1

wjEj [l̇2β,jl]− (Ah∗l , h
∗
l )2 + (h− h∗l , A(h− h∗l ))2

≥
J∑

j=1

wjEj(l̇2β,jl)− (Ahl, h
∗
l )2

with equality if h = h∗l , so that the efficient score has j, l element Sβ,jl−h∗l +Ej [h∗l ] as asserted.
5.2 Proof of Theorem 2

The l, l′ element of B−1 is

J∑
j=1

wjEj [l̇∗β,jl l̇
∗
β,jl′ ] =

J∑
j=1

wj

πj

∫
(l̇β,jl − h∗l − Ej(h∗l ))(l̇β,jl′ − h∗l′ − Ej(h∗l′))fj dG0

=
J∑

j=1

wjEj [l̇β,jl l̇β,jl′ ] + (Ah∗l , h
∗
l′)2 − (φl, h

∗
l′)2 − (φl′ , h

∗
l )2

=
J∑

j=1

wjEj [l̇β,jl l̇β,jl′ ]− (φl, h
∗
l′)2

=
J∑

j=1

wjEj [l̇β,jl l̇β,jl′ ]−
∫
φlφl′

f∗
dG0 − dT

(l)M
−d(l′).
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5.3 Proof of Theorem 3
First, we note the formula

∂2 logP ∗
j

∂θ∂θT
=

∂2P ∗
j

∂θ∂θT

1
P ∗

j

−
∂ logP ∗

j

∂θ

∂ logP ∗
j

∂θT
(32)

and the fact that

J∑
j=1

wjEj

[
∂2P ∗

j

∂θ∂θT

1
P ∗

j

]
=

J∑
j=1

wj

πj

∫
∂2P ∗

j

∂θ∂θT

1
P ∗

j

fj dG0(x)

=
J∑

j=1

∫
∂2P ∗

j

∂θ∂θT
f∗ dG0(x)

=
∂2

∂θ∂θT

∫
f∗ dG0(x)

= 0,

since
∑J

j=1 P
∗
j = 1. Hence

I∗ = −
J∑

j=1

wjEj

[
∂2P ∗

j

∂θ∂θT

]

=
J∑

j=1

wjEj

[
∂ logP ∗

j

∂θ

∂ logP ∗
j

∂θT

]
.

Next, we note the derivatives

∂ logP ∗
j (x, β, ρ)
∂β

= Sj −
J∑

s=1

SsPs,

∂ logP ∗
j (x, β, ρ)
∂ρr

= δj,r − Pr,

when the derivatives are evaluated at (β0, ρ0). Thus

I∗ββ =
J∑

j=1

wjEj

[
∂ logP ∗

j

∂β

∂ logP ∗
j

∂βT

]

=
J∑

j=1

wj

πj

∫ (
Sj −

∑J
s=1 SsPs

)(
Sj −

∑J
s=1 SsPs

)T
fj(x) dG0(x)

=
J∑

j=1

wjEj [SjS
T
j ]−

∫ (∑J
s=1 SsPs

)(∑J
s=1 SsPs

)T
f∗(x) dG0(x)
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=
J∑

j=1

wjEj [SjS
T
j ]−

∫
STPP TSf∗ dG0(x)

which proves 1. Also

I∗ρβ,r =
J∑

j=1

wjEj

[
∂ logP ∗

j

∂ρr

∂ logP ∗
j

∂β

]

=
J∑

j=1

wj

πj

∫
(δr,s − Pr)

(
Sj −

∑J
s=1 SsPs

)
fj(x) dG0(x)

= wrEr[Srl]−
∫ (∑J

j=1 SjPj

)
Prf

∗(x) dG0(x)

which proves 2. Finally,

I∗ρρ,rs =
J∑

j=1

wjEj

[
∂ logP ∗

j

∂ρr

∂ logP ∗
j

∂ρs

]

=
J∑

j=1

wj

πj

∫
(δjr − Pr)(δjs − Ps)fj(x) dG0(x)

=
∫

(δrs − Ps)Prf
∗(x) dG0(x)

= δrswr − vrs

= Mrs.

5.4 Proof of Theorem 4

Under the two-stage sampling scheme, the joint distribution of
{
n

(s)
0

}
,
{
n

(s)
1

}
and {(xis, yis), i =

1, . . . , n(s)
1 , s = 1, . . . , S} is (Wild 1991),

S∏
s=1

P [n(s)
1 |n(s)

0 ]× n0!

n
(1)
0 ! · · ·n(S)

0 !
Q

n
(1)
0

1 · · ·Qn
(S)
0

S ×
S∏

s=1


n

(s)
1∏

i=1

Is(xis, yis)f(yis|xis, β)g(xis)

 /Q
n

(s)
1

s .

Thus, conditional on the
{
n

(s)
0

}
and

{
n

(s)
1

}
, the random variables {(xis, yis), i = 1, . . . , n(s)

1 , s =

1, . . . , S} are independent, with {(xis, yis), i = 1, . . . , n(s)
1 being an i.i.d. sample from the condi-

tional distribution of (x, y), conditional on being in stratum s, having density

ps(x, y, β, g) = Is(x, y)f(y|x, β)g(x)/Qs.
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Define

ψ(N)
s (x, y, θ) =

∂

∂θ

{
log f(y|x, β)− log

[∑
s

µsQs(x, β)
]
− logQs

}
, s = 1, . . . , S,

and

ψ
(N)
0 (Z1, . . . , Zs, θ) =

∂

∂θ

S∑
s=1

Zs logQs.

Then the estimating equations (16) can be written in the form

n0∑
i=1

ψ
(n0)
0 (Zi1, . . . , Zis, θ) +

S∑
s=1

n
(s)
0∑

i=1

ψ(n0)
s (xis, yis, θ) = 0, (33)

Note that the functions ψ(N)
s depend on N , the n(s)

1 ’s and the n(s)
0 ’s through the µs’s and the

Qs’s. As N →∞, the functions converge to

ψs(x, y, θ) =
∂

∂θ

{
log f(y|x, β)− log

[∑
s

µsQs(x, β)
]
− logQs

}
, s = 1, . . . , S,

and

ψ0(x, y, θ) =
∂

∂θ

S∑
s=1

Zs logQs,

where µs = w0 − (w0Qs0 − ws)/Qs.
Put

SN (θ) =
n0∑
i=1

ψ
(N)
0 (Zi1, . . . , ZiS , θ) +

S∑
s=1

n
(s)
1∑

i=1

ψ(N)
s (xis, yis, θ).

A standard Taylor expansion argument gives

√
N(θ̂ − θ0) =

(
− 1
N

∂SN

∂θ

∣∣∣∣
θ=θ0

)−1
1√
N
S(θ0) +

1√
N

(
− 1
N

∂SN

∂θ

∣∣∣∣
θ=θ0

)−1

R

where the jth element of R is

Rj =
1
2
(θ̂ − θ0)T

∂2
Nj

∂θ∂θT

∣∣∣∣∣
θ=θ̃

(θ̂ − θ0),

SNj is the jth element of SN and ||θ̃ − θ0|| ≤ ||θ̂ − θ0||.
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Consider first SN (θ0)/
√
N . We have

SN (θ0)√
N

=
√
n0

N

1
√
n0

n0∑
i=1

{ψ(N)
0 (Zi1, . . . , ZiS , θ0)− E [ψ0]}

+
S∑

s=1

√
n

(s)
1

N

1√
n

(s)
1

n
(s)
1∑

i=1

{ψ(N)
s (xis, yis, θ)− Es[ψs]}

+
√
N

S∑
s=1

(n0

N
− w0

)
E [ψ0] +

√
N

S∑
s=1

(
n

(s)
1

N
− ws

)
Es[ψs].

Since
√
N(n0/(N)− w0) and

√
N(n(s)

1 /(N)− ws) converge to zero in probability, we see that

S(θ0)√
N

=
√
w0

1
√
n0

n0∑
i=1

S∑
s=1

{ψ(N)
0 (Zis, θ0)− E [ψ0]}

+
S∑

s=1

√
ws

1√
n

(s)
0

n
(s)
0∑

i=1

{ψ(N)
s (xis, yis, θ)− Es[ψs]}+ op(1)

so it suffices to consider SN = S
(1)
N + S

(2)
N where S(1)

N and S
(2)
N are the first and second terms

above.
Under the alternative multisampling scheme, S(1)

N and S
(1)
N are independent, as are the S

summands of S(2)
N . Thus, by the CLT, provided ψ(N)

s converges to ψs sufficiently quickly, we see
that SN is asymtotically normal with zero mean and asymptotic variance V =

∑S
s=0wsVarψs.

Conversely, under two-phase sampling, the characteristic function of SN is

E[eitSN ] =
∑

(0)E[eitSN |{n(s)
0 }, {n(s)

1 }]P [{n(s)
0 }, {n(s)

1 }] (34)

where
∑

(0) denotes summation over all possible values of the {n(s)
0 } and {n(s)

1 }. Since S(2)
N

depends on {n(s)
0 } only through {n(s)

1 }, (34) equals

E[eitSN ] =
∑

(0)E[eitS
(1)
N E[eitS

(2)
N |{n(s)

1 }]]P [{n(s)
0 }, {n(s)

1 }]. (35)

Let V2 =
∑S

s=1wsV ar[ψs]. Assuming that the ψ(N)
s converge sufficiently quickly to the ψs ,

it follows that E[eitS
(2)
N |{n(s)

1 }] → exp{−1
2 t

TV2t}, since the distribution of S(2)
N conditional on

{n(s)
0 } and {n(s)

1 } is the same as that (unconditionally) under multi-sampling.
Now let ε be arbitrary, and let N0 be such that∣∣∣E[eitS

(2)
N |{n(s)

1 }]− exp{−1
2 t

TV2t}
∣∣∣ < ε

2
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whenever n(s)
1 ≥ N0 for s = 1, . . . , S. Also, assume that the (random) sample sizes ultimately

get large, in the sense that there exists N∗ such that

P [n(1)
1 ≥ N0, . . . , n

(1)
S ≥ N0] ≥ 1− ε

4

whenever N > N∗. Denote by
∑

(1) summation over all values of {n(s)
0 } and {n(s)

1 } for which

n
(s)
1 ≥ N0 for s = 1, . . . , S, and let

∑
(2) denote summation over all remaining values. Then

E[eitSN ] = E[eitS
(1)
N ] exp{−1

2 t
TV2t}+

∑
(1)E[eitS

(1)
N (E[eitS

(2)
N |{n(s)

1 }]− exp{−1
2 t

TV2t})]

+
∑

(2)E[eitS
(1)
N (E[eitS

(2)
N |{n(s)

1 }]− exp{−1
2 t

TV2t})]

If n0 > N∗, the sum of the second two terms is less than ε in absolute value, so

E[eitSN ] = E[eitS
(1)
N ] exp{−1

2 t
TV2t}+ o(1).

Again by the same arguments as above, [eitS
(1)
N ] converges to exp{−1

2 t
TV1t} where V1 is

w0Var[ψ0(Z1, . . . , ZS , θ0)] so that E[eitSN ] converges to exp{−1
2 t

TVt})] , and hence SN con-
verges in distribution to a multivariate normal with variance V = V1 + V2.

Assuming that θ̂ is
√
N -consistent, similar arguments show that − 1

N
∂S
∂θ

∣∣
θ=θ0

converges in
probability to I∗ under both sampling schemes, and that R/

√
N is op(1). Thus, as asserted, in

both cases
√
N(θ̂ − θ0) converges to a multivariate normal with variance (I∗)−1V(I∗)−1.

5.5 Proof of Theorem 6
Let

P †
s (x, y, β, ρ) =

µs(ρ)Is(x, y)f(y|x, β)∑
r µr(ρ)Qr(x, β)

.

From the definition of I∗ in Theorem 4 and the law of large numbers, we get

I∗ = −w0E

[
S∑

s=1

Zs
∂2 logQs

∂θ∂θT

]
−

S∑
s=1

wsEs

[
∂2 logP †

s

∂θ∂θT
− ∂2 logQsµs

∂θ∂θT

]

=
S∑

s=1

wsEs

[
∂ logP †

s

∂θ

∂ logP †
s

∂θT

]
−

S∑
s=1

wsEs

[
1

P †
s

∂2P †
s

∂θ∂θT

]

+
S∑

s=1

ws
∂2 logQsµs

∂θ∂θT
−

S∑
s=1

w0Qs0
∂2 logQs

∂θ∂θT
. (36)

The second term of this expression is zero, since

S∑
s=1

wsEs

[
1

P †
s

∂2P †
s

∂θ∂θT

]
=

S∑
s=1

∫
∂2

∂θ∂θT

∫
P †

s dyQ
∗ dG0(x)
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=
S∑

s=1

∂2

∂θ∂θT

∫
PsQ

∗ dG0(x)

=
∂2

∂θ∂θT

∫
Q∗ dG0(x)

= 0.

Now we evaluate I∗ββ. For the ββ submatrix, the third and fourth terms of (36) are zero. Thus,
using the derivative

∂P †
s

∂β
= S − STP,

we get

I∗ββ =
S∑

s=1

wsEs

[
∂ logP †

s

∂β

∂ logP †
s

∂βT

]

=
S∑

s=1

ws

Qs0

∫ ∫
(S − STP )(S − STP )T Is(x, y)f(y|x, β0)dy dG0(x)

=
S∑

s=1

ws

Qs0

∫ ∫
SST Is(x, y)f(y|x, β0)dy dG0(x)−

∫
STP (STP )TQ∗(x) dG0(x)

=
S∑

s=1

wsEs[SST ]−
∫

STPP TSQ∗ dG0(x).

which proves part 1.
Now, consider I∗ρβ,rj . Again, the third and fourth terms of (36) are zero. Introduce the

parameters λ1, . . . , λS−1 defined by

λr = log(µr(ρ)/µS(ρ)), r = 1, . . . , S − 1.

Then

∂P †
s

∂ρr
=

S−1∑
p=1

∂λp

∂ρr

∂P †
s

∂λp

=
S−1∑
p=1

∂λp

∂ρr
(δsp − Pp). (37)

Thus

I∗ρβ,rj =
S∑

s=1

wsEs

[
∂ logP †

s

∂ρr

∂ logP †
s

∂βj

]
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=
S∑

s=1

ws

Qs0

∫ ∫
[
S−1∑
p=1

∂λp

∂ρr
(δsp − Pp)](S − SP )jIs(x, y)f(y|x, β0) dy dG0(x)

=
S−1∑
p=1

∂λp

∂ρr
upj

where

upj =
S∑

s=1

ws

Qs0

∫ ∫
(δps − Pp)(S − SP )jIs(x, y)f(y|x, β0) dy dG0(x).

Then, as in Theorem 3, we see that upj is the p, j element of U, and so part 2 of the theorem is
true with Apr = ∂λp

∂ρr
.

The ρρ submatrix is

I∗ρρ =
S∑

s=1

wsEs

[
∂ logP †

s

∂ρ

∂ logP †
s

∂ρT

]
−

S∑
s=1

w0Qs0
∂2 logQs

∂ρ∂ρT
+

S∑
s=1

ws
∂2 logQsµs

∂ρ∂ρT

=
S∑

s=1

wsEs

[
∂ logP †

s

∂ρ

∂ logP †
s

∂ρT

]
− w0

S∑
s=1

1
κs

∂Qs

∂ρ

∂Qs

∂ρT

where κs = Qs0ws/cs. It follows from (37) that I∗ρρ = ATM0A where M0 has p, q element

S∑
s=1

wsEs

[
∂ logP †

s

∂λp

∂ logP †
s

∂λq

]
− w0

S∑
s=1

1
κs

∂Qs

∂λp

∂Qs

∂λq

As in Section 5.3, the first term of this expression is δpqwp− vpq. Routine calculations using the
relationships λp = log(µp/µS) and µp = w0 − cp/Qp give

∂Qp

∂λq
= δpqκp −

κpκq

κ∗

where κ∗ =
∑S

p=1 κp. This representation implies that

s∑
s=1

1
κs

∂Qs

∂λp

∂Qs

∂λq
=
∂Qp

∂λq
,

so that the p, q element of M0 is δpqwp − vpq − w0
∂Qp

∂λq
.

By the Sherman-Morrison formula, the p, q element of the matrix W(I−Γ)−1−W is −w0
∂Qp

∂λq
,

so the matrix M0 consists of the first S − 1 rows and columns of W−V + W(I− Γ)−1 −W =
W(I− Γ)−1 −V = M.
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