
GENERATING SYNTHETIC MICRODATA FROM
PUBLISHED MARGINAL TABLES AND

CONFIDENTIALISED FILES

Alan Lee

Department of Statistics, University of Auckland
Private Bag 92019, Auckland, New Zealand

email: lee@stat.auckland.ac.nz

SUMMARY. We describe several methods for generating synthetic data sets. The
methods we describe are based on creating data sets using a combination of
publically available marginal tables, and microdata samples. We describe a
set of R functions which implement the methods under study, and use these
functions to apply the methods to data from the 2001 Census of Population
and Dwellings.

KEY WORDS: Contingency tables, marginal tables, log-linear models, mixture models, max-
imum likelihood, iterated proportional fitting, latent class analysis.

Printed: January 30, 2009

1



Contents

1 INTRODUCTION 4
1.1 Confidentiality and microdata access . . . . . . . . . . . . . . . . . . . . . 4
1.2 Log-linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Fusing data sets using mixture models . . . . . . . . . . . . . . . . . . . . 11
1.5 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Organisation of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 THEORY 14
2.1 Contingency tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Marginal tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Log-linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 The IPF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 A modified algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Fitting log-linear models using Fisher scoring . . . . . . . . . . . . 19
2.2.6 Generating data from log-linear models . . . . . . . . . . . . . . . . 20
2.2.7 Generating data from log-linear models using the Metropolis–Hastings

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.8 Convergence and confidentiality issues . . . . . . . . . . . . . . . . 23

2.3 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Mixture models for a single table . . . . . . . . . . . . . . . . . . . 24
2.3.2 Merging data sets using mixture models . . . . . . . . . . . . . . . 26
2.3.3 Generating data from a mixture model . . . . . . . . . . . . . . . . 27

2.4 Fitting models to data and probability tables . . . . . . . . . . . . . . . . 27

3 DATA STRUCTURES, ALGORITHMS
AND SOFTWARE 29
3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Standard form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Converting between formats . . . . . . . . . . . . . . . . . . . . . . 32
3.1.5 Mixing data sets with independence models . . . . . . . . . . . . . 32

3.2 Fitting log-linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Iterated proportional fitting . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Fitting log-linear models using Fisher scoring . . . . . . . . . . . . 35

3.3 Fitting mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Fusing data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Generating synthetic data sets . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Generating data from an explicit table . . . . . . . . . . . . . . . . 41
3.4.2 Generating data from a log-linear parameter vector . . . . . . . . . 42

2



3.4.3 Generating data from a mixture model . . . . . . . . . . . . . . . . 43

4 APPLICATION TO CENSUS DATA 44
4.1 Marginal tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Creating census tables in R . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Creating census tables from Tablebuilder . . . . . . . . . . . . . . . 47
4.2.2 Making data frames containing subsets of the CURF variables . . . 49

4.3 Generating synthetic data using the census tables . . . . . . . . . . . . . . 50
4.3.1 The usually resident population . . . . . . . . . . . . . . . . . . . . 50
4.3.2 The usually resident population ages 15 and over . . . . . . . . . . 51
4.3.3 The employed usually resident population ages 15 and over . . . . . 53

5 SUMMARY AND CONCLUSIONS 61

REFERENCES 62

A Appendices 63
A.1 Description of the R functions . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Installation of the R functions . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 R function listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3



1 INTRODUCTION

1.1 Confidentiality and microdata access

The confidentiality debate between the research community and national statistics offices
is an ongoing one. On the one hand, researchers are always pushing for more access
to microdata, in order to perform more and more complex analyses involving more and
more variables, while on the other, statistical agencies are concerned to work within their
national legislation, and fear that confidentiality concerns will damage public goodwill
towards data collection, and undermine compliance.

The two sides of this debate are both motivated by legitimate concerns. The research
side can bring powerful arguments to bear. Among these is the idea of an informed
citizenry as a guarantee of civil liberties, as neatly expressed in the following quotation:

“Open access to official statistics provides the citizen with more than a
picture of society. It offers a window on the work and performance of govern-
ment itself, showing the scale of government activity in every area of public
policy and allowing the impact of public policies and actions to be assessed.”

1993 UK White Paper on Open Government

There is also the argument that access improves social policy research and thus is of
material benefit to society. Thus, restrictions on access my be socially counterproductive.
This is the “privacy paradox”, as exemplified by the following quote

“... people will recognise that while they surely have a right to privacy,
they may also come to recognise that they have a duty to share information,
if the common good is to be furthered.”

Peter Masden, National Science Foundation 2003 Workshop on Confiden-
tiality Research.

There is also an economic argument: statistical data is expensive to collect. Allowing
researchers outside the statistical agencies access to microdata greatly expands the amount
of analysis that can be performed on a given data set, thus getting more value from the
data collected.

Balanced against this are the legal and operational guarantees of confidentiality ex-
tended by the statistical agencies when data is solicited. The right to confidentiality is
enshrined in the sixth of the United Nations Principles of Official Statistics, which states

“Individual data collected by statistical agencies for statistical compila-
tion, whether or not they refer to natural or legal persons, are to be strictly
confidential and used exclusively for statistical purposes.”

In recent years, statistical agencies have moved away from a policy of risk avoidance
(i.e no disclosure of microdata) to one of risk management (disclosure under controlled
conditions). This recognises that access to microdata can be a social good, and is not in
conflict with the quote above if confidentiality can be protected, and if the data is used
for the purposes of social research, and not for administrative or commercial purposes.

4



In addition, the access must be consistent with the relevant national legislation, and
procedures for access must be transparent.

Several strategies for risk management are practiced by national statistical agencies,
most of which use a spectrum of techniques. They stand at various points on the contin-
uum between unfettered access on the one hand, and a strict policy of non-release on the
other. These strategies include

Statistical Tables (data cubes) These are low-to-medium dimensional tables of cross-
classified data, often delivered over the web on demand to the general public, or on
a fee paying basis. There is very little disclosure risk for low dimensional tables,
but as the number of dimensions rises the risk increases. This can be managed by
rounding tables, recoding variables and so on.

Anonymised microdata files These are samples of unit record data, usually released
on CD, with identifiers removed and confidentiality enhanced by recoding, and re-
moval or modification of unit records identified as disclosure risks. The risk is
controlled by limiting access to the CD to bona fide social researchers. The degree
of confidentialising can be varied according to the restrictions put on dissemination.
Files subject to more confidentialising and fewer restrictions are often referred to as
public use files.

Remote Access and Data Laboratories An alternative to release of microdata sam-
ples is to permit researchers to interrogate the unconfidentialised microdata, but
retain the data in a secure environment. Researchers submit analysis requests in
the form of computer scripts, which are run on the genuine microdata. The resulting
output is vetted by the agency before being released to the researcher. Requests
may be submitted to the agency remotely (Remote Access) or researchers may be
required to visit a site under the control of the agency (a Data Laboratory).

In this report, we concentrate on the second strategy, that of confidentialised microdata
files. The most common method of confidentialising a microdata file is by identifying
individuals that may appear as uniques in cross-classified tables of low dimension, and
modifying the data for these individuals. This does not of course protect confidentiality
completely, since individuals may be identified by their unit records. This can be com-
batted in two ways: first by recoding variables into coarser categories (so, for example,
an individual’s income may be recorded as “over $70,000” rather than the actual figure)
and secondly by removing small-area information. However, the disclosure risk remains.
The more data is modified, the less reliable inferences can be drawn from it, but the less
confidentially risk remains. Developing good quantatative measures of risk and of loss
of validity would make this tradeoff more precise. See Jackson and Gray(2008) for some
progress in this area.

In this report, we focus on another approach. If it were possible to build a probability
model for the multivariate distribution underlying the data base, one could then generate
purely artificial data (synthetic data) which conveys no risk, but mimics in all essential
respects the population under study. This data could then be used, along with multiple
imputation techniques, to perform whatever analysis is required. A common approach

5



(Graham and Penny 2007, 2008) is to smooth the empirical distribution derived from the
data base and use the smoothed distribution to generate repeated samples for multiple
imputation. They use a Bayesian approach for their smoothing method.

Another approach is to divide the variables into “sensitive” and “public” groups.
Sensitive variables might be income, date of birth and age, whereas public variables might
be sex, occupation or nationality. A model is then fitted to real data using the sensitive
variables as responses and the public variables as covariates. The models fitted may be
conventional regression models or more data driven models such as CART. The model is
then used to impute synthetic values for the sensitive variables, retaining the real values
of the public variables. This approach is described in Reiter (2005) and Woodcock and
Benedetto (2007).

Our approach in contrast is to assume that researchers will be interested in a subset
of variables for their analysis, and it may be possible to model the entire joint distribu-
tion of the variables in question by conventional statistical models. These can then be
used to generate samples of data as required. The models can be fitted using a combi-
nation of publicly available data cubes or other data, be it the genuine microdata or a
confidentialised subset thereof. We require that our models have two attributes:

1. It must be possible to fit the models to reasonably high dimensional tables, having
a few million cells.

2. It must be possible to simulate from the model efficiently.

We can distinguish several uses for such synthetically generated data sets. At the most
basic level, they can be used for educational and training purposes. In this connection,
it is desirable that they reproduce at least the low-dimensional marginal behaviour of
the real populations which they represent. In a similar manner, synthetic data sets are
useful in the development of software programs, particularly those that may be used
to interrogate real microdata in a data laboratory setting. At a higher level, if the
distrribution generalting the synthetic data is sufficiently close to the real underlying
population distribution, statistical analyses run on the synthetic microdata, when coupled
with multiple imputation, will yield results reasonably close to those that would result
from using the genuine microdata.

In this report, we consider two classes of statistical models, namely log-linear models
and mixture models. We discuss the fitting of these models to data, using both published
marginal tables of the whole population and also samples of confidentialised microdata.
We also address the question of how to sample from the fitted distributions. We first
illustrate the basic methods with three simple examples, taken from the 2001 New Zealand
Census of Population and Dwellings.

1.2 Log-linear models

In the analysis of log-linear models for contingency tables, two related sampling scenarios
are usually considered. In the first, the cell counts (table entries) are assumed to be
independent Poisson variates with specified cell means. Alternatively, we can assume
that the individuals being classified are allocated independently to the cells according

6



to a set of cell probabilities, so that the cell counts are realisations of a multinomial
distribution. The two sampling schemes are related; the distribution of the Poisson cell
counts, conditional on the table total, is in fact multinomial, with cell probabilities being
proportional to the Poisson means (i.e. the probability for a cell is the cell mean divided
by the total of the cell means.) If we write the cell means as a vector μ, a log linear model
for the cell means is one of the form

log μ = Xβ

where X is a matrix and β is a vector of parameters. Various algorithms (which we discuss
in more detail in Chapter 2) can be used to estimate the parameters and hence the cell
means, yielding a “fitted mean”. We can then generate a simulated or synthetic table by
generating a Poisson random variate (having mean equal to the fitted mean) for each cell.
If we want the synthetic table to have a fixed total, we can convert the fitted cell means
into fitted probabilities by dividing by their totals, and simulate a realisation from the
resulting multinomial distribution.

Example 1. To illustrate, consider the following simple example, which concerns three
variables from the 2001 Census of Population and Dwellings. The variables, which are
measured on the employed usually resident population aged 15 and over, are

EmploymentStatus; Employment Status, having values“Paid Employee”, “Self Em-
ployed without Employees”,“Employer”, “Unpaid Family Worker”, “Not Stated”;

Sex; having values “Male”, “Female”;

WorkLabForceStatus; Status in the labour force, having values “Employed Full-Time”,
“Employed Part-Time”.

The data are shown in Table 1. Suppose we did not have access to the complete table,
but only the two-dimensional margins shown in Table 2. As we explain in Chapter 2,
knowledge of these three tables permits us to fit a log-linear model to the cell means, in
which the cell means are not free, but rather are constrained by a set of constraints of the
form

λijk − λij1 − λi1k − λ1jk + λi11 + λ1j1λ11k + λ111 = 0

where λijk = log μijk and μijk is the cell mean corresponding to the cell containing the
count of individuals with Employment Status having its ith value, sex having its jth
value, and Labour Force Status having its kth value. See Section 2 for more details.

How closely do these fitted means match the cell counts in Table 1? It is feature of
this method that the three two-dimensional marginal tables of counts match exactly the
marginal fitted counts. What about the complete three dimensional table? The table of
fitted means is shown in Table 3, along with the cell counts from Table 1. The agreement
is not too bad. Also shown are five synthetic tables, generated from the fitted counts
using the Poisson method described above.

To illustrate the simplicity of this method, we show the few lines of Rscode required to
produce this table. The data from Table 1 are in an R data frame called emp work sex.df,
with variables y (containing the counts), EmploymentStatus, WorkLabForceStatus and
Sex. The code is

7



Table 1: Employed usually resident adult population from 2001 census, cross-classified by
employment status, sex and labour force status.

WorkLabForceStatus: Full-time
Sex

EmploymentStatus male Female
Paid Employee 572,244 425,085
Self-Employed and Without Employees 122,439 40,320
Employer 86,493 29,112
Unpaid Family Worker 9,387 9,831
Not Stated 21,177 12,027

WorkLabForceStatus: Part-time
Sex

EmploymentStatus Male Female
Paid Employee 75,681 223,905
Self-Employed and Without Employees 20,295 30,063
Employer 3,387 10,638
Unpaid Family Worker 6,765 13,311
Not Stated 5,094 10,014

# fit the model

my.glm = glm(y~(Sex+EmploymentStatus+WorkLabForceStatus)^2, family=poisson,

data=emp_work_sex.df)

# calculate the fitted means

mypred = predict(my.glm, type="response")

# make the synthetic data and Table 3

table1 = cbind(emp_work_sex.df$y, mypred,matrix(rpois(100,mypred),20,5))

#label the table

dimnames(table1) = list(1:20, c("Count", "Fitted mean", paste("Set",1:5)))

This method is perfectly adequate for small tables, but is wasteful of memory and cannot
cope with large tables having many variables. We do not use the standard R model fitting
functions in the rest of this report. Instead, we have written a set of functions that can
cope with bigger tables.

1.3 Mixture models

Mixture models (which are also known as latent class models in the social sciences liter-
ature) are an attractive alternative to log-linear models when fitting contingency tables.
We illustrate with another example from the 2001 Census of Population and Dwellings.

Example 2. Consider the following data set from the 2001 Census of Population and
Dwellings. The variables are

8



Table 2: Marginal tables for the census data.

Sex
EmploymentStatus Male Female
Paid Employee 647,925 648,990
Self-Employed and Without Employees 142,734 70,383
Employer 89,880 39,750
Unpaid Family Worker 16,152 23,142
Not Stated 26,271 22,041

WorkLabForceStatus
EmploymentStatus Full-time Part-time
Paid Employee 997,329 299,586
Self-Employed and Without Employees 162,759 50,358
Employer 115,605 14,025
Unpaid Family Worker 19,218 20,076
Not Stated 33,204 15,108

WorkLabForceStatus
Sex Full-time Part-time
Male 811,740 111,222
Female 516,375 287,931

Sex; with values “Male”, “Female”;

TotalHrsWrkd; Hours Worked, with levels “1-9 Hours”, “10-19 Hours”, “20-29 Hours”,
“30-39 Hours”, “40-49 Hours”, “50-59 Hours”, “60 Hours or More”, “Not Elsewhere
Included”;

TotalIncomeGroup; Total Personal Income, with values “Loss or Zero Income”, “$1 -
$5,000”, “$5,001 - $10,000”, “$10,001 - $15,000”, “$15,001 - $20,000”, “$20,001 -
$25,000”, “$25,001 - $30,000”, “$30,001 - $40,000”, “$40,001 - $50,000”, “$50,001 -
$70,000”, “$70,001 or More”, “Not Stated”.

In a mixture model, we model the cell probabilities as a mixture of T independent tables.
Thus, in our example, with πijk the cell probability for the ith value of Sex, the jth value
of TotalHrsWrkd and the kth value of TotalIncomeGroup, we have

πijk =
T∑

t=1

τtαitβjtγkt,

where for each t, {αit}, {βjt} and {γkt} are probability distributions, and {τt} is the
mixture distribution. The idea is that the population can be divided into T unobserved
classes, and conditional on class membership, the variables are independent.

9



Table 3: Actual cell counts and fitted cell means, along with five synthetic tables.

Cell Count Fitted mean Set 1 Set 2 Set 3 Set 4 Set 5
1 572244 573227.079 573271 571998 572048 573537 574317
2 122439 121565.422 122162 121790 121451 122082 122153
3 86493 84295.515 84287 83953 84334 84516 84144
4 9387 11101.534 11207 11186 11228 11162 10863
5 21177 21550.450 21531 21601 21468 21468 21693
6 425085 424101.921 423698 424377 424174 424639 424097
7 40320 41193.578 40977 40961 41665 41159 40902
8 29112 31309.485 31439 31589 31221 31324 31523
9 9831 8116.466 8089 8088 8115 8155 8163

10 12027 11653.550 11649 11791 11640 11669 11693
11 75681 74697.921 75134 74771 74455 74570 75322
12 20295 21168.578 21032 21158 21034 21016 21179
13 3387 5584.485 5640 5651 5639 5659 5539
14 6765 5050.466 5016 5072 5066 4962 5052
15 5094 4720.550 4706 4793 4648 4753 4763
16 223905 224888.079 225273 224706 224819 226059 224956
17 30063 29189.422 29407 29093 29180 29032 29122
18 10638 8440.515 8344 8368 8514 8608 8414
19 13311 15025.534 15037 15096 14883 15118 14985
20 10014 10387.450 10218 10489 10441 10386 10523

These models have four desirable features for our purposes. First, they offer a flexible
class of models, whose complexity is easily adjusted by the choice of T , the number of
components in the mixture. Second, they are easy to fit to quite high dimensional tables,
using the EM algorithm, or, equivalently, by solving the score equations by ???? method.
Third, they are easy to simulate from: we select a class t using the mixture distribution
{τt}, and then simulate the variables independently using the distributions {αit}, {βjt}
and {γkt}. Finally, it is easy to calculate any marginal distribution: we simply take the
same mixture of independence tables corresponding to the marginal distribution. For
example, the marginal distribution of Sex and TotalHrsWrkd is

πij+ =

T∑
t=1

τtαitβjt.

We can fit the mixture model using SAS PROC LCA, assuming that the data are
contained in a SAS data set example2 of the following form: There is a line in the data
set for each of the 12×8×2 = 216 factor level combinations, and the variables are count,
containing the cell count, and tpincome, hourswkd and sex, represented as integers. The
code to fit a model with five components is

proc lca data=example1a;

10



nclass 5;

items sex totalhrswrkd totalincomegroup;

categories 2 8 12;

freq count;

seed 45687435;

run;

In practice, we use an R function which can handle bigger problems; see Chapter Three
for details. The EM algorithm used has a tendency to become trapped in local maxima,
so the algorithm is usually repeated with different starting values to find a more reliable
solution. In Table 4, we show the deviance (G2) for fitting models with various numbers
of components to these data, together with the deviance of a log-linear model of the type
fitted in Example 1. The deviance is a measure of discrepancy between the table counts
and the fitted model: if the fitted probabilities are π̂ijk and the counts are nijkj then the
deviance is

G2 = 2
∑
ijk

nijk log

(
nijk

nπ̂ijk

)
,

where n is the table total. As the table indicates, and as theory predicts, as the model
becomes more complex and the number of parameters increases, the goodness of fit as
measured by the deviance also increases. Thus, the mixture model allows us to trade off
complexity and fit in a flexible way.

Table 4: Number of components, deviances, and numbers of parameters

Number of Number of
components parameters Deviance

5 114 30,765.02
8 183 6,522.62

10 229 1,050.17
Log-linear 147 9,208.54

1.4 Fusing data sets using mixture models

Mixture models are also useful for fusing two data sets together. Suppose we have two
categorical data sets A and B, which have a set of Q variables in common. In addition,
A has P variables that are not included in B, and B has R variables not included in A.
If the joint distribution of the P + Q + R variables can be described by a mixture model,
then we can fit the model using A and B alone, using a variant of the EM algorithm. This
gives us a way of joining or fusing the data sets together. The method was introduced
by Kamakura and Wedel (1997) in the case of two datasets, but the same method can
be used to fuse multiple data sets provided the degree of overlap is sufficient. This is
examined in more detail in Sections 2 and 3.

11



Example 3. To illustrate the procedure, consider the following two data sets from the
2001 census CURF: the first is the one used in Example 2, using the variables Sex,
TotalHrsWrkd and TotalIncomeGroup, while the second consists of the variables Sex and
TotalIncomeGroup, along with the variable OccupationCode, which has ten possible val-
ues: Elementary Occupations; Legislators, Administrators and Managers; Professionals;
Technicians and Associate Professionals; Clerks; Service and Sales Workers; Agriculture
and Fisheries Workers; Trades Workers; Plant and Machine Operators and Assemblers;
Not Elsewhere Included.

The four-variable model is fitted with the R function mixture.fitter.fusion, de-
scribed in Chapter 3. How well do the margins of the fitted distribution match the data
sets A and B? In Figure 1.4, we display two Pareto plots of the biggest 30 cell frequencies
and the corresponding fitted probabilities, one for data set A and one for B. The bars
are arranged in order of descending relative frequency. The agreement is good.

Empirical probs
Fitted probs

Data set A

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Empirical probs
Fitted probs

Data set B

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 1: Pareto plots for the data fusion example.

1.5 Data sources

In this report, we use data taken from the web pages of Statistics New Zealand. These
data are available via the Tablebuilder facility, which allows members of the public to
download low-dimensional tables of data. We use tables derived from the 2001 Census
of Population and Dwellings. In addition, we use data from the 2001 census CURF: this
is a 2% sample from the 2001 census that has been confidentialised using the methods
described above in Section 1.1.

12



1.6 Organisation of the report

The simple examples discussed above illustrate the methods we will use to construct
synthetic data sets, using both published tables and the 2001 census CURF. In the rest of
the report, we discuss the software and algorithms we require to solve problems of a more
realistic size. In Section 2, we outline the relevant theory, beginning with a discussion
of log-linear models. We develop a general notation suitable for dealing with tables of
arbitrary size, and discuss the connections between log-linear models, marginal tables
and the IPF algorithm. We discuss how a trivial modification of the algorithm can be
used to accept data from various sources, and make some remarks about simulating data
from these models. We then go on to describe the mixture model, how it can be fitted
by solving the score equations, and how it can be modified to fuse several different data
sets together. We also discuss generating data from such models. Finally, we make some
remarks on fitting both kinds of model to the CURF alone.

In Section 3, we describe the algorithms and software we use to generate our synthetic
data. We use the R statistical environment (R Development Core Team, 2008) for most
of our work, running under Windows, although SAS can also be used to fit both kinds
of models. We begin by describing the data structures we use to represent tables, and
then discuss some R functions that can be used to fit log-linear models using the IPF
algorithm. Next, we give a description of an R mixture model implementation.

In Section 4, we describe a set of marginal tables from the 2001 Census of Population
and Dwellings, and show how they, along with the census CURF, can be used to generate
a variety of synthetic data sets. Summary and conclusions are in Section 5, and more
formal documentation of the software appears in the Appendices.

13



2 THEORY

In this section we outline the theory that underpins our software, and develop a notation
suitable for discussing contingency tables of arbitrary size.

2.1 Contingency tables

Suppose we have a population of N individuals, on each of whom we make K categorical
measurements. Typical examples of such measurements or factors are age groups, em-
ployment status and so on. We denote these factors by A1, . . . , AK . The set of possible
categories for a factor is called the set of levels for that factor. Thus, the factor “Gender”
has levels (“Female”, “Male”), and the factor “Age group” has levels (0-4, 5-9, . . . , 80-84,
85+), or any other definition that might be appropriate. We assume that there are a
finite (typically small) number of levels for each factor. We denote the number of levels
of factor Ak by Ik. Thus, there are I = I1 × I2 × · · · Ik possible combinations of levels. A
typical combination of levels is denoted by i = (i1, . . . , iK).

The usual way to represent the data on these N individuals is by a contingency table,
an I1 × I2 ×· · · Ik array of counts, where the array element in position (i1, . . . , iK) or “cell
count”, is the number out of the N individuals that have A1 = i1, . . . , AK = iK . We use
the notation y[i1, . . . , ik] or more compactly y[i] to denote the cell count.

Note that the table depends on the order of the factors, and the ordering of the levels
of each factor. Given a fixed order of the factors, (which in this report will usually
be alphabetical), and a fixed ordering of the levels of each factor, we can arrange the
cell counts in a one-dimensional array or vector by stringing the counts out in reverse
lexigraphic order, where the leftmost index i1 varies most rapidly, followed by i2 and so
on. Thus if K = 2, I1 = 2, and I2 = 3, the ordering would be

y[1, 1], y[2, 1], y[1, 2], y[2, 2], y[1, 3], y[2, 3].

In some contexts the array representation is more convenient, and in others the vector
representation.

2.1.1 Marginal tables

Given a contingency table, we can form various marginal tables by summing over certain
indices. For example, suppose we have a 3-dimensional table with three factors, say age
group, employment status and gender. We can form the marginal age group × employ-
ment status table by summing over the index corresponding to gender. The marginal
table has counts

yM [i1, i2] =
∑

i3=1,...,I3

y[i1, i2, i3].

In a similar manner, we can form the gender × employment status table by summing
over age group, and the age group × employment status table by summing over gender.
We also have one-dimensional tables: the gender table is formed by summing over age
group and employment status, and so on. We can also regard the table grand total as

14



a“null margin” formed by summing over all the factors. It is clear that to every subset S
of {1, . . . , K} there corresponds a marginal table formed by summing over all the indices
not in S. Thus, there are 2K possible marginal tables, including the original table and
the table total.

2.2 Log-linear models

In contingency table work, a common assumption is to regard every count in the table as
the realization of a Poisson random variable with a given mean μ. A model for the table
is a formula which specifies the mean μ as a function of the factor levels corresponding
to each cell. We write μ as μ[i1, . . . , iK ] to emphasise the dependence on the factor
levels. Since the Poisson means are necessarily positive this constraint is neatly handled
by specifying the log of the mean. Such models, giving the form of log μ[i1, . . . , iK ], are
called log-linear models. Excellent discussions of these models are to be found in Agresti
(2002) and Christensen (1997).

We now describe a useful class of log-linear models that correspond in a natural way
to classes of marginal tables. We begin by considering the case where the table is two-
dimensional, so that we have K = 2 and two factors A1 and A2. Put λ[i1, i2] = log μ[i1, i2],
and define four sets of parameters as follows.

The “constant term” : this is β0 = λ[1, 1].

The “A1 main effects” : There are I1 of these, defined by β1[i1] = λ[i1, 1] − λ[1, 1],
i1 = 1, 2, . . . , I1. Note that necessarily β1[i1] = 0 by definition.

The “A2 main effects” : There are I2 of these, defined by β2[i2] = λ[1, i2] − λ[1, 1],
i2 = 1, 2, . . . , I2. Again, β2[1] = 0 by definition.

The “A1A2 interactions” : There are I1 × I2 of these, defined by β12[i1, i2] = λ[i1, i2]−
λ[i1, 1] − λ[1, i2] − λ[1, 1], i1, i2 = 1, 2, . . . , I2. Note that β12[i1, i2] = 0 if either of i1
or i2 is 1.

In terms of these quantities, we can write

λ[i1, i2] = β0 + β1[i1] + β2[i2] + β12[i1, i2].

Note that this parametrization puts no restrictions on the means μ[i1, i2]: we have simply
expressed the I1×I2 means in terms of I1×I2 non-zero new parameters (1 constant term,
(I1−1) non-zero A1 main effects, (I2 −1) A2 main effects, and (I1−1)× (I2−1) non-zero
A1A2 interactions. By arranging the constant terms, main effects and interactions into a
vector β, we can write

log μ = Xβ, (1)

where X is the model matrix.

By setting the elements of β corresponding to the interactions to zero, we obtain a
new, restricted model for the cell means.

15



2.2.1 The general case

Suppose now we have a K-dimensional table, obtained by classifying the individuals in
the population according to K criteria A1, . . . , AK . For l = 1, . . . , K and j = 2, .., Il,
define a “dummy variable” D

(l)
j by

D
(l)
j [i1, . . . , iK ] =

{
1, if il = j;
0, otherwise.

For a subset {l1, . . . , lr} of {1, . . . , K}, let Xl1,...,lr be the matrix whose I1 × I2 × · · · × IK

rows correspond to the different factor level combinations (i1, . . . , iK), and whose columns
are of the form

D
(l1)
j1

× D
(l2)
j2

· · · × D
(lr)
jr

, 2 ≤ j1 ≤ Il1 , . . . , 2 ≤ jr ≤ Ilr ,

where × denotes elementwise multiplication. Then put

X =
[
1|X1| · · · |XK |X12| · · · |X(K−1),K | · · · |X1,...,K

]
.

Thus, for example when K = 3,

X =
[
1|X1|X2|X3|X12|X13|X23|X123

]
,

where 1 is a column of ones. We can show that the matrix X is square, non-singular and
has I1 × I2 × · · · × IK rows and columns, so that there is a vector β such that

log μ = Xβ. (2)

We call X the saturated model matrix.

If we partition the vector β conformably with X, we obtain subvectors βl1,...,lr cor-
responding to the submatrices Xl1,...,lr . We call the elements of βl1,...,lr the Al1Al1 · · ·Alr

interactions. By setting various of the subvectors βl1,...,lr equal to zero, we get various
constrained sets of cell means. We can think of a particular model M as being specified
by a particular set of non-zero interactions. The model matrix for the model M is the
matrix XM obtained by deleting the blocks corresponding to the zero interactions from
the saturated model matrix X. Thus, the cell means specified by our model M are given
by

log(μ) = XMβM, (3)

where βM is β with the zero interactions deleted.

Example 4. Consider the case K = 2, I1 = 2, I2 = 3. Then the dummy variables are

cell D
(1)
2 D

(2)
2 D

(2)
3

11 0 0 0
21 1 0 0
12 0 1 0
22 1 1 0
13 0 0 1
23 1 0 1

16



and the matrix X is

1 D
(1)
2 D

(2)
2 D

(2)
3 D

(1)
2 D

(2)
2 D

(1)
2 D

(2)
3

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 0 1 0
1 0 0 1 0 0
1 1 0 1 0 1

,

where the blocks in the matrix correspond to the partition β0, β1, β2, β12 of β into
constant term, A1 main effects, A2 main effects, and A1A2 interactions.

We will assume that the log-linear models we consider are hierarchical, in the sense
that if βl1,...,lr is non-zero, so is the β corresponding to any subset of {l1, . . . , lr}. Thus, if
in a hierarchical model β12 is non-zero, then β1 and β2 must be non-zero as well. A model
for which all the βl1,...,lr ’s are non-zero is called the saturated model, and the model for
which all the βl1,...,lr ’s are zero (except for the constant term) is called the null model.
The saturated model puts no restrictions on the cell means, but all other models do.

Since we are assuming that our models are hierarchical, we do not need to specify all
the non-zero interactions, but only the maximal ones. Thus, if a hierarchical model has an
A1A2A3 interaction, we don’t need to explicitly list the A1A2, A1A3 and A2A3 interactions,
they are included implicitly. Thus, we can specify our models compactly by listing only
these maximal interactions. In this report, we adopt the notation used by the R statistical
system where, for example, the saturated model for 3 factors, with maximal interaction
A1A2A3, is written A1 ∗ A2 ∗ A3, and the model with the A1A2A3 interactions zero, with
maximal interactions A1A2, A1A3 and A2A3, is written A1 ∗ A2 + A1 ∗ A3 + A2 ∗ A3. An
alternative notation often used in textbooks, is the “square bracket” notation. Using this,
the saturated model is written [A1A2A3] and the model with the zero 3-factor interaction
is written [A1A2][A1A3][A2A3].

2.2.2 Estimation

To estimate the parameters of a model from a complete table, we use the method of
maximum likelihood. Let i = (i1, . . . , iK) denote a typical cell. The cell count is y[i] and
the cell mean is μ[i] = exp(λ[i]), where λ[i] = XM[i]T βM, and XM[i]T is the row of XM
corresponding to cell i. The log-likelihood is

l =
∑

i

y[i] log μ[i] − μ[i]

=
∑

i

y[i]λ[i] − exp(λ[i]).

To estimate the parameters, we must maximize l as a function of βM. Consider a typical
element a of βM, corresponding to a column Dl1

j1
· · ·Dlr

jr
of XM. Then, since λ[i] =

XM[i]T βM, we get
∂λ[i]

∂a
= Dl1

j1
[i] · · ·Dlr

jr
[i]

17



so that

∂l

∂a
=

∑
i

∂l

∂λ[i]

∂λ[i]

∂a

=
∑

i

(y[i] − exp(λ[i]))Dl1
j1

[i] · · ·Dlr
jr

[i]

so that at the maximum we get∑
i

y[i]Dl1
j1

[i] · · ·Dlr
jr

[i] =
∑

i

μ[i]Dl1
j1

[i] · · ·Dlr
jr

[i]. (4)

The expression on the left is just ∑
il1=j1,...,ilr=jr

y[i],

which is the j1, . . . , jr entry in the marginal table for Al1 , . . . , Alr . It follows that to
estimate the parameters, we don’t require the original complete table of counts, but only
the marginal tables corresponding to the non-zero interactions in the model. Thus, for
example, to fit the model A1 ∗ A2 + A1 ∗ A3 + A2 ∗ A3, we require only the A1A2, A1A3

and A2A3 marginal tables. We can then obtain the fitted mean counts for each cell of the
complete table by solving the equations (4).

The standard statistical algorithm for solving the equations (4) is known as iterated
proportional fitting or IPF, and was invented in the 1940’s by Deming and Stephan. We
describe the algorithm briefly in the next subsection.

2.2.3 The IPF algorithm

The IPF is a simple but effective algorithm, which allows us to compute the fitted cell
means corresponding to a given set of marginal tables, without having to compute the
maximum likelihood estimates of β. It was introduced by Deming and Stephan (1940) and
has been adapted to many other uses besides the fitting of log-linear models to contingency
tables. The algorithm is as follows:

Step 1: Set μ[i] = 1 for each cell i.

Step 2: For each margin in turn, update the μ[i]’s by adjusting them so that the marginal
table of fitted means matches the marginal table of cell counts. i.e. for the l1, . . . , lr
margin, update the μ[i]’s using the equation

μNEW [i] = μOLD[i] × yl1,...,lr [il1 , . . . , ilr ]

μOLD
l1,...,lr

[il1 , . . . , ilr ]
.

Here, yl1,...,lr [il1 , . . . , ilr ] is the il1 , . . . , ilr entry in the l1, . . . , lr-margin of counts, and
μOLD

l1,...,lr [il1 , . . . , ilr ] is the corresponding entry in the l1, . . . , lr-margin of fitted mean
counts.

18



Step 3: Repeat Step 2 until the process converges.

Example 5. For K = 3, to fit the model A1 ∗ A2 + A1 ∗ A3 + A2 ∗ A3, step 2 takes the
form:

Step 2a: Adjust the means to match the A1A2 margin by

μNEW [i1, i2, i3] = μOLD[i1, i2, i3] × y1,2[i1, i2]

μOLD
1,2 [i1, i2]

,

where y1,2[i1, i2] =
∑

i3
y[i1, i2, i3].

Step 2b: Adjust the means to match the A1A3 margin by

μNEW [i1, i2, i3] = μOLD[i1, i2, i3] × y1,3[i1, i3]

μOLD
1,3 [i1, i3]

.

Step 2c: Adjust the means to match the A2A3 margin by

μNEW [i1, i2, i3] = μOLD[i1, i2, i3] × y2,3[i2, i3]

μOLD
2,3 [i2, i3]

.

The algorithm converges reasonably quickly. The log-likelihood is increased at each step.
An R implementation of the algorithm is described in Section 3.2.1. To implement the
algorithm efficiently in R requires that the table be stored in the memory of the computer.
In addition, working storage equal to the table is required to achieve adequate speed.
Details of the R implementation of the algorithm are given in Section 3.2.1.

2.2.4 A modified algorithm

Practically speaking, to fit the cell means we simply take each supplied margin in turn, and
adjust the current fitted table so that the margin of the fitted table matches the supplied
margin. This will work even if the supplied margins are not all margins calculated from
the original microdata. For example, suppose we want to fit a model corresponding to
fitting all three-factor interactions, but only a subset of these are available for the full
population. We can supplement these with the remaining three-dimensional marginal
tables calculated from the CURF, or what other source of confidentialised microdata is
available. While there is no guarantee that the IPF method will converge in this case, the
method works well in practice.

2.2.5 Fitting log-linear models using Fisher scoring

The Newton-Raphson method for fitting log-linear models may be a practical alternative
to the IPF method in situations where the number of the cells is large but the number of
parameters is modest in comparison, say a few thousand. The limiting factor in fitting
models using IPF is the need to manipulate the complete table, which can have a very
large number of cells. As noted above, the algorithm we have implemented requires the

19



storage of two complete tables. If this requirement cannot be met, a method that does
not require the storage of a complete table may be preferred. Such a method is the
Newton-Raphson algorithm (equivalent in this case to Fisher scoring), which unlike the
IPF method, we can easily implement in R without requiring the whole table be stored
in the R workspace. Suppose the log-linear model is

log μ = Xβ.

If we assume a Poisson model, as noted in Section 2.2.2, the log-likelihood is

l =
∑

i

{y[i]x[i]T β − exp(x[i]T β)}

where we have written the row of X corresponding to cell i as x[i]. Note that x[i] can be
calculated in terms of the quantities Dl

j [i] as discussed in Section 2.2.1. The score vector
and information matrix are

s(β) =
∑

i

x[i]T{y[i] − exp(x[i]T β)}

and
I(β) =

∑
i

x[i]x[i]T exp(x[i]T β).

The maximum likelihood estimates are the solutions of the equation s(β) = 0, and can
be calculated using the iterations

βnew = βold + I−1(βold)s(βold).

This involves forming s(β) and I(β) at each stage, solving the linear equations I(β)δ =
s(β) for δ and updating βnew by βold + δ. The solution of the linear equations is routine
for a parameter vector with a few thousand elements. The formation of the score and
information matrix can be done by reading in the counts from a external file in blocks,
and calculating the rows x[i] sequentially using the representation in terms of the Dl

j[i]’s.
This is facilitated by arranging the counts in standard form (i.e. in reverse lex order).
The calculation is particularly simple in the case of the two or three-factor interaction
model. More details of the computer algorithm are given in Chapter 3.

2.2.6 Generating data from log-linear models

Suppose we have fitted a log-linear model and have calculated the table of fitted means,
and the corresponding table of probabilities {π[i]}(i.e. by normalising the mean counts
so they add to 1.) . How can we generate a synthetic data set using these?

If we do not want to restrict the total sample size, we can simply draw a random
count for each cell from a Poisson distribution. If we want a synthetic data set of size
approximately N , we draw the cell count for cell i from a Poisson distribution with
mean Nπ[i]. If, on the other hand, we want a synthetic data set of size exactly N , we
repeatedly select a cell at random with replacement from the set of cells, so that cell i

20



is chosen with probability πi. This process is repeated until the desired data set size is
achieved. Equivalently, we can make a single selection from the multinomial distribution
with parameters N and {π}.

To select a cell at random according to the probabilities {π[i]}, we can use the inversion
method (see e.g. Ripley 1987, p???). To generate a cell i according to the {π[i]}, we first
order the cells (how is immaterial, but reverse lex order is convenient). Then generate a
random U [0, 1] deviate U , and select cell i, where∑

j<i

π[j] < U ≤
∑
j≤i

π[j].

Several R functions exist to perform these tasks, and their use is illustrated in Chapter
3. The function rpois generates Poisson variates, and the function sample implements
the rejection method. The function rmultinom generates deviates with a multinomial
distribution. Note that all these approaches in R assume that the complete table can be
stored in memory.

2.2.7 Generating data from log-linear models using the Metropolis–Hastings
algorithm

In this section, we outline a method for simulating data from a log-linear model without
calculating the fitted cell means, but rather using the estimates of β from the Newton-
Raphson algorithm. Suppose we have a stochastic mechanism (technically a Markov
Chain) that skips from one cell of the table to another, governed by a transition matrix
of the form P = (pij) where

pij = Pr(Skip to cell j|Start in cell i).

Thus, pij is the probability we will skip to cell j, given we are currently in cell i. Suppose we
start this process running. Ultimately, under certain conditions on the p’s, the distribution
of the cells will stabilize to a distribution called the stationary distribution of the chain.
This is

π[i] = lim
t→∞

Pr(In cell i after t skips).

Thus, to sample from the distribution π, we let the chain run and after a “burn in”
period, the sequence of skips should look like a sample from the stationary distribution.
The sample values are not independent, but if we “thin the chain” and retain only every
10th (or 100th, or 1000th) observation, the thinned chain will look very like a random
sample from π.

Turning this around, can we construct a Markov chain so that the stationary distri-
bution is some specified distribution π? This amounts to defining a suitable transition
matrix P . The Metropolis–Hastings algorithm (Hastings 1970) describes how to do this.
Suppose that Q is a transition matrix of some arbitary chain consisting of skips in our
table. This means that Q is an I × I matrix with positive entries whose row sums are 1.
(Recall that I is the number of cells in our table.) We will also assume that π[i] > 0 for
each cell i. For each pair if cells i, j define

aij = min

(
1,

π[j]Qji

π[i]Qij

)
.

21



Then the desired transition matrix P has elements pij = αijQij. To sample a new value
from the resulting chain, we can use the following:

Step 1: Suppose we are in cell i. Select a cell j at random using the probabilities Qij .

Step 2: Compute αij = min(1, π[j]Qji/π[i]Qij).

Step 3: Draw a uniform random number U . If U < αij, skip to cell j, otherwise remain
at cell i.

This sequence is repeated until the desired number of values have been generated.

To implement this method, we need to come up with a suitable Q, so that sampling
from the distribution {qij} is easy for each fixed i, and does not require that we store Q
in the computer’s memory. (This is impossible for all but small tables as the number of
entries in Q is I × I.) A simple choice of Q is to assume that the rows of Q are identical,
and correspond to the table where the variables are all independent, with one-dimensional
marginal distributions matching the marginal distributions of π. Thus,

qij = qj = Pr(A1 = j1) × Pr(A2 = j2) × · · · × Pr(AK = jk).

The sampling process works best when the rows of Q are as close as possible to π.

We are assuming that we have not computed the π[i]’s explictly. How then can we
calculate αij? Note that αij involves only the ratio π[j]/π[i]. This is much easier to
compute than π[j] since to compute π[j] we must sum the fitted cell means to get the
normalising constant. Suppose we have fitted a log-linear model with all two-factor inter-
actions, so that we have estimates of the constant term, the main effects and the two-way
interactions. Call these β0, β

(k)
ik

and β
(k,l)
ik,il

respectively, so that

log μ[i] = β0 +

K∑
k=1

β
(k)
ik

+
∑

1≤k<l≤K

β
(k,l)
ik,il

.

Then

log(π[j]/π[i]) = log(μ[j]/μ[i])

=

K∑
k=1

β
(k)
jk

+
∑

1≤k<l≤K

β
(k,l)
jk,jl

−
K∑

k=1

β
(k)
ik

−
∑

1≤k<l≤K

β
(k,l)
ik,il

Thus, to compute αij, we need only know the estimates β
(k)
jk

and β
(k,l)
jk,jl

and the one-
dimensional marginal probabilities.

22



2.2.8 Convergence and confidentiality issues

The convergence of the IPF method is guaranteed provided all the supplied marginal
tables have positive entries. It is obvious that any zero cell in any margin will introduce
a zero cell in the fitted table, and that once introduced, this zero cell will persist. In this
case, convergence to the MLE cannot be guaranteed. However, this seems not to be a
problem in practice, as we are merely trying to find a fitted table close to the true table.

However, there is a confidentiality issue here. Suppose we use the CURF alone to fit
a reasonably high-dimensional model using IPF. Since the 2001 Census CURF is a 2%
sample, many of the marginal distributions will contain sampling zeros. The effect is to
zero out many fitted cell probabilities. In an extreme case, this has the effect of confining
the support of the fitted distribution (i.e. the cells with non-zero-fitted probabilities) to
the factor-level combinations of individuals actually present in the CURF. Thus, sampling
from the fitted distribution will be very similar from merely resampling the lines of the
CURF, and represent no advance in confidentiality over that in the CURF itself. Even if
we use a bigger sample of microdata, the problem will persist if we try to fit bigger and
bigger models.

The case is different with structural zeroes. Any structural zeroes in the marginal
distribution will be preserved in the fitted probabilities, which is a desirable feature of
the method.

One way to deal with the problem of sampling zeroes is to smooth the CURF before
fitting a model. Suppose we take a mixture of the CURF and an independence model
as follows: Given a set of variables, form the corresponding contingency table from the
CURF. This will likely contain many sampling zeros. For cell i of the table, let y[i] be
the cell count. Then fit an independence model to the table. As long as none of the
one-dimensional tables has any sampling zeroes, the independence model will have no
zero estimated cell counts. The fitted cell mean corresponding to the independence model
is

π(IND)[i] =
y[i1 + · · ·+]

n
× y[+i2 + · · ·+]

n
× · · · × y[+ · · ·+ iK ]

n

where, for example y[i1+···+]
n

is the fitted marginal distribution for variable A1 and so on,
and n is the total count for the table. Then, replace the CURF cell count by

ys[i] = τy[i] + (1 − τ)π(IND)[i] (5)

where 1−τ is a small positive number. Note that this will obliterate the structural zeroes,
but the independence component of the mixture could be modified to reintroduce them.

The idea of a mixture has a Bayesian interpretation. Suppose we assign a Dirichlet
prior with positive parameters β[i] to the cell probabilities. The prior density is

f(π) =
Γ(
∑

i β[i]])∏
i Γ(β[i])

∏
i

π[i]β[i]−1.

Under this distribution, the mean of π[i] is β[i]/B where B =
∑

i β[i]]. The variance is
controlled by B; the bigger B, the smaller the variance. The posterior density is also

23



Dirichlet, with parameters βi + y[i], and the mean of the posterior density (i.e. the Bayes
estimate of the cell probabilitiy) is

y[i] + β[i]∑
i(y[i] + β[i])

.

If we set τ = n
n+B

and β[i] = Bπ(IND)[i] we obtain (5). Thus, a small value for τ reflects
our uncertainty that the independence model is correct. The independence model is
chosen purely for convenience; any other model with non-zero probabilities would suffice.

Smoothing the CURF in this way means that a log-linear model fitted to the modified
data will have non-zero probabilities on all cells. This means that when we generate data
from the fitted model, we will obtain records that are not included in the CURF. In fact,
when we fit mixture models to the CURF data, we also obtain cell probabilities that are
effectively zero for factor level combinations not present in the CURF. Thus, smoothing
helps when fitting mixture models as well as log-linear models.

2.3 Mixture models

In this section we describe mixture models and discuss how their parameters may be
estimated either from a single table or a set of tables each containing a subset of the
variables of interest. We begin with a single table.

2.3.1 Mixture models for a single table

A mixture model for a contingency table with variables A1, . . . , AK represents the cell
probabilities as

π[i] =
T∑

t=1

τtθ
(1)
i1tθ

(2)
i2t · · · θ(K)

iK t

or, equivalently, as a mixture of independence models. For each t, the set of parameters
{θ(k)

ikt , ik = 1, . . . , Ik} is a probability distribution on the levels 1, 2, . . . , Ik of Ak, and the
mixing distribution {τt} is a probability distribution on 1, 2, . . . , T . Mixture models are
often called latent class models; the idea is that there exist a set of T unobserved latent
classes, and conditional on the class, the variables A1, . . . , AK are independent. The
number of free parameters is

T ((I1 − 1) + · · · (IK − 1)) + T − 1 = T (I1 + · · · IK − K + 1) − 1.

For fixed T , such models can be fitted by the EM algorithm, or by solving the score
equations. Suppose the data consists of a complete table of relative frequencies f [i] =
y[i]/N , where N is the table total. Assuming a multinomial distribution for the cell
counts, the log-likelihood is

� =
∑

i

f [i] log

(
T∑

t=1

τtPit

)

24



where Pit = θ
(1)
i1tθ

(2)
i2t · · · θ(K)

iK t . We must maximise the likelihood with respect to the param-
eters. Introducing a Lagrange multiplier η to account for the constraint

∑
t τt = 0, and

differentiating with respect to τt gives∑
i

f [i]
Pit∑T

t=1 τtPit

= η (6)

or ∑
i

f [i]Q[i, t] = τtη

where

Q[i, t] =
τtPit∑T
t=1 τtPit

. (7)

Adding over t gives

η =
∑

t

∑
i

f [i]Q[i, t] = 1

since
∑

t Q[i, t] = 1, so that

τt =
∑

i

f [i]Q[i, t] (8)

is an updating equation for τt. Similarly, differentiating with respect to θ
(k)
lt and allowing

for the constraint
∑

l θ
(k)
lt = 1 yields the updating equation

θ
(k)
lt =

∑
(k,l) f [i]Q[i, t]

τt
(9)

where
∑

(k,l) denotes summation over all cells of the table for which Ak = l. This suggests

that we can solve the score equations ∂�
∂τt

= 0, ∂�

∂θ
(k)
ikt

= 0 by the following algorithm:

Step 1: Initialise {θ(k)
ikt} and {τt}, by setting them equal to random distributions (say by

normalizing random uniform numbers).

Step 2: Compute Di =
∑

t τtPit, i = 1, . . . , I.

Step 3: For t = 1, . . . , T :

[3.1:] Compute Q[i, t] = τtPit/Di, i = 1, . . . , I.

[3.2:] Update τt =
∑

i f [i]Q[i, t].

[3.3:] Update θ
(k)
lt =

∑
(k,l) f [i]Q[i, t].

Step 4: Repeat Steps 2-3 until convergence.

Note that using the EM algorithm leads to exactly the same set of equations. The method
does not always converge to a global maximum of the likelihood, although the likelihood
increases at each step. For this reason, it is desirable to repeat the fitting, using different
random starts each time, say 20 times to improve the log-likelihood, or equivalently, the
degree to which the fitted distribution approximates the contingency table. To choose the
value of T , the usual model selection criteria such as AIC and BIC can be used: either
AIC = G2 + 2p or BIC = G2 + p log n where p is the number of parameters.

25



2.3.2 Merging data sets using mixture models

Suppose that we have a population for which K variables A1, . . . , AK are measured. We
want to describe the joint distribution of A1, . . . , AK using a mixture model, but have no
sample from the population in which all the variables are measured. Instead, we have
several samples, each containing measurements on a subset of the variables. How can we
proceed? It turns out that, as long as there is a reasonable overlap between the samples,
we can still fit the mixture model.

Let Sr, r = 1, . . . , R be the set of variables measured in the rth sample. As in our
discussion of fitting mixtures to a single population, we assume that the rth sample Sr =
{Aj1, . . . , Ajνr

} is represented as an array of
∏nr

k=1 Ijk
relative frequencies f [i1, . . . , iνr ].

We denote summation over all the factor level combinations i1, . . . , iνr in Sr by
∑

(r). The
log-likelihood for sample r is

∑
(r)

f [i1, . . . , iνr ] log

(∑
t

τtP [i1, . . . , iνr , t]

)

and the log-likelihood for the complete sample is

R∑
r=1

∑
(r)

f [i1, . . . , iνr ] log

(∑
t

τtP [i1, . . . , iνr , t]

)
.

where now P [i1, . . . , iνr , t] =
∏νr

k=1 θ
(jk)
ikt . An argument similar to that used in the single

sample case shows that the parameters of the mixture model can be estimated using the
updating scheme

τt =
1

R

R∑
r=1

∑
(r)

f [i1, . . . , iνr ]Q[i1, . . . , iνr , t] (10)

and

θ
(k)
lt =

1

Rτt

R∑
r=1

∑
(l,k,r)

f [i1, . . . , iνr ]Q[i1, . . . , iνr , t], (11)

where

Q[i1, . . . , iνr , t] =
τtP [i1, . . . , iνr , t]∑
t τtP [i1, . . . , iνr , t]

and
∑

(j,r,l) denotes summation over all factor level combinations in Sr for which Aj = l.
The sum is interpreted as zero if Ak is not in Sr.

The algorithm described in Section 2.3.1 for a single table can be generalised to cover
the case of several tables. The equations (10) and (11) lead to the algorithm

Step 1: Initialise {θ(k)
ikt} and {τt}, by setting them equal to random distributions (say by

normalizing random uniform numbers).

Step 2: For t = 1, . . . , T :

[2.1] Set S = 0, STj = 0, j = 1, . . . , J .

26



[2.2] For r = 1, . . . , R

[2.2.1] Compute D[i1, . . . , iνr ] =
∑

t τtP [i1, . . . , iνr , t].

[2.2.1] Compute Q[i1, . . . , iνr , t] = τtP [i1, . . . , iνr , t]/D[i1, . . . , iνr ].

[2.2.1] Update S = S +
∑

(r) f [i1, . . . , iνr ]Q[i1, . . . , iνr , t].

[2.2.1] For j = j1, . . . , jνr , l = 1, . . . Ij,

update STj = STj +
∑

(l,k,r) f [i1, . . . , iνr ]Q[i1, . . . , iνr , t].

[2.3] Set τt = S/R and θjt = STj/S.

Step 3: Repeat step 2 until convergence.

An R implementation of this algorithm is discussed in Section 3.3.1.

2.3.3 Generating data from a mixture model

One of the advantages of a mixture model is the ease with which we can generate data.
To generate a record, we simply

1. Draw a value of t according to the probabilities {τt};
2. For k = 1, . . . , K, draw a value for Ak according to the probabilities {θ(k)

lt }.

2.4 Fitting models to data and probability tables

Conventionally, the models for contingency tables that we have discussed above are fitted
to tables of counts which represent a sample from some population. However, in the
context of this report, the counts we deal with are either come from very large samples, or
compete censuses. It seems reasonable to blur the distinction between relative frequencies
and probabilities in this case. The algorithms we have discussed above yield maximum
likelihood estimates when either supplied with tables of counts or with relative frequencies.
If we identify the relative frequencies with probabilities, we can view the fitting of models
as finding the best approximation within a class of probabilities to the table of census
relative frequencies, regarded as probabilities.

For example, consider a table of relative frequencies, derived from a census (e.g. from
Tablebuilder), which we regard as a table of probabilities. If we fit a mixture model
with a fixed number of components to this table using maximum likelihood, assuming
multinomial sampling, we are effectively finding the mixture model that best approximates
(in the Kullback-Leibler sense) the census table of probabilities. That is, given a set of
census probabilities {π[i]}, we are finding the set of probabilities {π[i](MIX)} in the class of
mixture models with a fixed number of components which minimises the Kullback-Leibler
distance

KL(π, π(MIX)) =
∑

i

π[i] log
(
π[i]/π[i](MIX)

)
.

27



It is in this sense that we regard our model fitting in the rest of this report: we are
tying to represent the very high-dimensional table of census probabilities by means of a
parametric family of distributions of much lower dimension, be they a log-linear family
or a mixture family.

28



3 DATA STRUCTURES, ALGORITHMS

AND SOFTWARE

In this section, we define the data structures used in our software, and discuss a set
of R functions which implement the methods described in Section 2. We apply these
methods to more realistic examples, and explore the limits of the log-linear and mixture
approaches.

3.1 Data Structures

There are two data structures in R suitable for representing contingency tables, arrays and
data frames. We discuss each in turn, and then describe some R functions for converting
from one representation to the other.

3.1.1 Arrays

An array in R can have one or more dimensions, and is indexed by one or more subscripts,
one per dimension. Arrays can represent a table directly, as the cell count corresponding
to A1 at level i1, A2 at level i2, and AK at level iK , can be stored in the (i1, i2, . . . , ik)
position in the array. For example, the employment status-sex-labour force status data
discussed in Example 1, can be stored in a 5 × 2 × 2 array my.array, with the array
element y[i1,i2,i3] storing the count of the (i1, i2, i3) cell.

Arrays are created in R using the array function. We need to supply several pieces of
information to this function. First, we must specify the list of factors, in some fixed order.
Second, for each factor, we need to specify an ordered set of factor levels. Finally, we
need to supply the vector of cell counts. Given the order of the factors and the ordering
of the levels for each factor, we can establish a reverse lex order for the cells. In order
to construct a “standard” table of the type described in section 2.1, the cell counts are
supplied in this order.

The array function has three arguments. The first is the cell counts in the appropriate
order, as detailed above. The second is the vector of dimensions I1, . . . , IK . The third
encodes the factor name and level information, in the form of an R list. The following
example illustrates the procedure.

Example 6. Consider the employment status-sex-labour force status data discussed in
Example 1. There are three factors, EmploymentStatus, Sex and WorkLabForceStatus,
having levels “Paid Employee”,“Self Employed without Employees”,‘Employer”, “Unpaid
Family Worker”, “Not Stated”; “Male”, “Female” and “Employed Full-Time”, ‘Employed
Part-Time”. With the factors in this order, and the levels in the order shown above, the
counts in reverse lex order are 572244, 122439, 86493, 9387, 21177, 425085, 40320, 29112,
9831, 12027, 75681, 20295, 3387, 6765, 5094, 223905, 30063, 10638, 13311, 10014.

The following R code creates the array and prints it:

counts = c(572244, 122439, 86493, 9387, 21177, 425085, 40320,

29112, 9831, 12027, 75681, 20295, 3387, 6765, 5094, 223905,

30063, 10638, 13311, 10014)

29



names.and.levels = list(EmploymentStatus = c("Paid Employee",

"Self Employed without Employees","Employer", "Unpaid Family Worker",

"Not Stated"),

Sex =c("Male", "Female"),

WorkLabForceStatus = c( "Employed Full-Time", "Employed Part-Time"))

my.array = array(counts, c(5,2,2), dimnames=names.and.levels)

my.array

, , WorkLabForceStatus = Employed Full-Time

Sex

EmploymentStatus Male Female

Paid Employee 572244 425085

Self Employed without Employees 122439 40320

Employer 86493 29112

Unpaid Family Worker 9387 9831

Not Stated 21177 12027

, , WorkLabForceStatus = Employed Part-Time

Sex

EmploymentStatus Male Female

Paid Employee 75681 223905

Self Employed without Employees 20295 30063

Employer 3387 10638

Unpaid Family Worker 6765 13311

Not Stated 5094 10014

Individual counts can be referred to:

> y[1,2,2]

[1] 223905

Apart from the level information, all that needs to be stored is the vector of counts, which
has I1 × I2 × · · · × IK elements.

3.1.2 Data frames

A data frame is the standard data structure in R for storing data in traditional row
and column form, with rows storing data on individuals, and columns storing data on
variables. To represent a contingency table as a data frame, we let each row correspond
to a cell of the table. One variable, counts say, stores the cell counts, and there are a
further K variables storing the factor level combinations. Thus, each row of the data
frame has a cell count, plus the factor level combinations that identify the cell. For the
employment status-sex-labour force status example, we have

30



Count EmploymentStatus Sex WorkLabForceStatus

1 572244 Paid Employee Male Full-time

3 122439 Self-Employed and Without Employees Male Full-time

5 86493 Employer Male Full-time

7 9387 Unpaid Family Worker Male Full-time

9 21177 Not Stated Male Full-time

2 425085 Paid Employee Female Full-time

4 40320 Self-Employed and Without Employees Female Full-time

6 29112 Employer Female Full-time

8 9831 Unpaid Family Worker Female Full-time

10 12027 Not Stated Female Full-time

11 75681 Paid Employee Male Part-time

13 20295 Self-Employed and Without Employees Male Part-time

15 3387 Employer Male Part-time

17 6765 Unpaid Family Worker Male Part-time

19 5094 Not Stated Male Part-time

12 223905 Paid Employee Female Part-time

14 30063 Self-Employed and Without Employees Female Part-time

16 10638 Employer Female Part-time

18 13311 Unpaid Family Worker Female Part-time

20 10014 Not Stated Female Part-time

Data frames are usually created by reading in the data from a text file. They can also
be created directly from the appropriately ordered vector of counts, using the R function
expand.grid. The following code does this.

counts = c(572244, 122439, 86493, 9387, 21177, 425085, 40320,

29112, 9831, 12027, 75681, 20295, 3387, 6765, 5094, 223905,

30063, 10638, 13311, 10014)

EmploymentStatus.levels = c("Paid Employee","Self Employed without Employees",

"Employer", "Unpaid Family Worker", "Not Stated")

Sex.levels = c("Male", "Female")

WorkLabForceStatus.levels = c( "Employed Full-Time", "Employed Part-Time")

EmploymentStatus_Sex_WorkLabForceStatus.df = data.frame(Count = counts,

expand.grid(EmploymentStatus=EmploymentStatus.levels,

Sex = Sex.levels, WorkLabForceStatus = WorkLabForceStatus.levels))

In contrast to arrays, the identification of the factor levels with the counts is made ex-
plicitly. The advantage of this is that we do not need to include zero counts in the data
frame. This may result in substantial saving in space if the table is sparse. Unlike arrays,
there is no need to have any particular ordering of the rows.

31



3.1.3 Standard form

Not all data frames represent tables. However, if a data frame has a single count variable,
having non-negative integer values, and all the other variables are factors, then the data
frame corresponds to a unique table, up to the order of the factors. We will say a data
frame is in standard form if the count variable is the first variable, and the rows are in
reverse lex order.

3.1.4 Converting between formats

We have provided some R functions to convert between data frames and arrays. To
convert a data frame into an array, we must restore the zero counts in the proper places.
To convert from an array into a data frame in standard form, we eliminate the zero counts.
There is also a function to test if a data frame represents a table, and to convert such a
data frame into a data frame in standard form. The functions are described in Table 5,
and are fully documented in Appendix A.1. There is also an R class “table”: and some
functions (is.table, as.table, as.data.frame) for converting. However, these do not
implement the idea of a standard table. Moreover, it is possible for arrays with negative
elements to be tables in the R sense, so we make no use of the R “table” class in this
report.

Table 5: R functions for converting between formats.

Function name Argument(s) Purpose Returns
df2table A data frame Checks if a data frame represents

a table and if so converts it An array
into an array

df2table.mix A data frame Converts a data frame into an
and a mixing array and mixes it with An array
proportion a fitted independence model

as.standard A data frame Checks if argument is a data frame A data frame
which represents a table. If so, in standard form.
converts it into a data frame
in standard form

is.standard Any R object Checks if argument is a data frame TRUE or FALSE
which represents a table

table2df An array Checks an array is non-negative A data frame
and if so converts it into data frame in standard form
in standard form

3.1.5 Mixing data sets with independence models

In Section 2.2.8, we argued that fitting data to samples of real or confidentialised mi-
crodata (e.g. a CURF) and generating data from the resulting model was effectively

32



equivalent to resampling from the CURF, and thus added little in the way of confidential-
ity protection. The remedy proposed was to mix the empirical distribuion derived from
the CURF with an independence model fitted to the CURF data. Below, we describe an
R function for doing this.

To produce an array containing the mixture distribution, we can use the conversion
functions above to create a table storing the empirical distribution derived from the
CURF, and the R implementation of the IPF algorithm described below in Section 3.2.1 to
create the table containing the fitted independence model. These are then added together
in the desired proportions to produce the final result. We have written an R function
df2table.mix to do this. It takes as its arguments the data frame containing the relevant
subset of CURF variables, say subcurf.df, and the desired mixing proportion tau. It
produces an array containing the complete table corresponding to the distribution

πs[i] = τ
y[i]

n
+ (1 − τ)π(IND)[i]

defined in Section 2.2.8. Thus, to create an array mixed.table, we could type

tau=0.99

mixed.table = df2table.mix(subcurf.df, tau)

3.2 Fitting log-linear models

In this section, we discuss fitting log-linear models to tables of probabilities, using either
the IPF algorithm of Section 2.2.3 or the Fisher scoring approach described in Section
2.2.5.

3.2.1 Iterated proportional fitting

The theory of iterated proportional fitting (IPF) was described briefly in Section 2.2.3.
In this section we describe an R function to implement this method. Recall that the IPF
algorithm fits a hierarchical log-linear model by repeatedly adjusting the table so that its
margins match a specified set of marginal tables which correspond to the log-linear model
being fitted. Thus, rather than specifying the model in terms of interactions, the model
is determined by a set of margins corresponding to the maximal terms in the log-linear
model. We assume that the set of margins is specified in terms of a list of arrays, where
each element of the list stores a particular margin in the form of an array.

Our R implementation stores the whole of the fitted table in memory, so that the size
of the problem it can handle is restricted. In addition, we require an amount of storage
equal to an additional table in order to achieve a reasonable tradeoff between speed and
size. Nevertheless, tables of up to six million cells can be handled in a reasonable amount
of time, as illustrated in Example 8 below. To control the number of iterations, our
function allows the specification of a maximum number of iterations. We do not monitor
the change of probabilities from iteration to iteration, as this would impose additional
storage demands.

The marginal arrays of relative frequencies which serve as inputs may come from
different sources, but should all be derived from the same population. For example, if we

33



wanted to fit the model including all three-factor interactions but no higher interactions,
we need to supply all the three-dimensional marginal tables. If these are available from
the complete census, (for example using Tablebuilder) we would prefer these. However,
if some are unavailable, we could substitute marginal tables calculated from the census
CURF or any similar source.

If some of the marginal tables have sampling zeroes, we suggest smoothing these tables
as described in Section 3.1.5. This will avoid restricting the support of the fitted table
unnecessarily.

If the marginal tables come from different sources, or have been subject to base 3
rounding to protect confidentiality, then the submargins of one margin may be incompat-
ible with the submargins of the other. Thus, for example, suppose we have four factors A,
B, C and D, and the ABC and ABD marginal tables. If the tables come from different
sources, the AB submargin of the ABC table will not necessarily match the AB submar-
gin of the ABD table. This will affect the convergence of the IPF algorithm. However,
provided the discrepancies are not too great, the table produced after a reasonable number
of iterations will still match the margins with acceptable precision.

The R function ipf.fitter will take a list of marginal arrays containing relative
frequencies as inputs and produce a fitted table as an output. There is also an argu-
ment MAXITER to control the maximum number of iterations. We illustrate its use in the
following examples.

Example 7. Recall the Census data discussed in Example 3. The variables considered
there were OccupationCode, Sex, TotalHoursWrkd, and TotalIncomeGroup, measured
on the employed usually resident population aged 15 and over, from the 2001 Census
of Population and Dwellings. Suppose we want to fit a three-interaction model, which
requires the four three-dimensional marginal tables. Of these, two are available from
Tablebuilder, and two from the 2001 Census CURF. We assume that we have available
the four tables in the form of data frames in standard form, containing the counts. These
are hours occupation sex.df and hours income occupation.df ) which are derived
fom the CURF) and income occupation sex.df and income hours sex.df, derived fom
Tablebuilder. Details of how these data frames may be read into R are given in Chapter
4. Since our function ipf.fitter accepts a list of relative frequency arrays as input, our
first job is to create this list, by converting the data frames to arrays, calculating the
relative frequencies, and assembling the arrays into a list. We type

# convert to an array

income_occupation_sex = df2table(income_occupation_sex.df)

# calculate relative frequencies

income_occupation_sex = income_occupation_sex/sum(income_occupation_sex)

# and repeat for the others

income_hours_sex = df2table(income_hours_sex.df)

income_hours_sex = income_hours_sex/sum(income_hours_sex)

hours_occupation_sex = df2table(hours_occupation_sex.df)

34



hours_occupation_sex = hours_occupation_sex/sum(hours_occupation_sex)

hours_income_occupation = df2table(hours_income_occupation.df)

hours_income_occupation = hours_income_occupation/sum(hours_income_occupation)

# make the list

array.list = list(hours_occupation_sex, hours_income_occupation,

income_occupation_sex, income_hours_sex)

Finally, we calculate the fitted table of relative frequencies:

result.table = ipf.fitter(array.list, MAXITER=100)

To check that this table has margins matching those of the input tables, we calculated
the marginal frequencies from the fitted table, and compared them to the input tables. In
each of the four plots in Figure 2, we have plotted the marginal frequencies derived from
the fitted table against the corresponding frequencies from the input tables. The match is
very good for the tablebuilder tables, less so for the CURF tables, reflecting the fact that
the CURF margins being based on a sample, are are less reliable than the Tablebuilder
margins. Note that each cycle of the IPF aglorithm adjusts the fitted table to match each
margin in turn, the order of adjustment being the order of the margins in the list. For
this reason it is advisable to list the CURF margins at the beginning of the list.

Example 8. To explore the limits of IPF technique, we constructed the series of test
problems shown in Table 6. All problems ran successfully. The timings shown are in
seconds, using a maximum of 20 iterations. The speeds could be increased by coding the
IPF routine in FORTRAN or C but seem acceptable coded in R.

Table 6: Results of running ipf.fitter

Number of Dimensions Number Number Margins Time
factors (K) (I1, . . . , IK) of cells of parameters (Seconds)

3 3,4,2 24 18 All 2-dim 0.05
5 3,4,2,4,6 576 89 All 2-dim 0.11
5 3,4,2,4,6 576 273 All 2-dim 0.28
6 2,3,5,6,2,5 1800 1640 All 5-dim 0.56
7 10,3,5,3,9,5,8 162,000 568 All 2-dim 8.01
7 10,3,5,3,9,5,8 162,000 4708 All 3-dim 16.34
7 10,3,5,3,9,5,8 162,000 129,774 All 6-dim 52.19
8 10,3,5,3,9,5,8,6 972,000 735 All 2-dim 79.08
8 10,3,5,3,9,5,8,6 972,000 7548 All 3-dim 150.23
9 10,3,5,3,9,5,8,6,2 1,944,000 765 All 2-dim 195.79
9 10,3,5,3,9,5,8,6,6 5,832,000 963 All 2-dim 591.34

3.2.2 Fitting log-linear models using Fisher scoring

the fisher scoring method is the standard method for fitting log-linear models. In particu-
lar, it is the method used by the R function glm. However, this standard R implementation

35



0.00 0.01 0.02 0.03 0.04

0.
00

0.
01

0.
02

0.
03

0.
04

hours_occupation_sex

Fitted frequencies

m
ar

gi
na

l f
re

qu
en

ci
es

0.000 0.005 0.010 0.015

0.
00

0
0.

00
5

0.
01

0
0.

01
5

hours_income_occupation

Fitted frequencies

m
ar

gi
na

l f
re

qu
en

ci
es

0.000 0.005 0.010 0.015 0.020

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

income_occupation_sex

Fitted frequencies

m
ar

gi
na

l f
re

qu
en

ci
es

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

income_hours_sex

Fitted frequencies

m
ar

gi
na

l f
re

qu
en

ci
es

Figure 2: Fitted and actual margins for Example 7.

36



is not designed for fitting large tables, as both the vector of counts and the X matrix
is explicitly formed and stored in the R workspace. Instead, we have written a function
log.lin.fitter which follows the approach outlined in Section 2.2.2 and does not re-
quire the whole table to be stored in memory, but reads blocks of counts from a disk file
as required. To avoid the requirement of storing X, we explicitly form its rows as each
block of counts is read in. This requires that the counts are in reverse lex order. Since
Fisher scoring puts limits on the number of parameters rather than the number of cells,
out function will fit models having all interactions above second order set to zero. We
assume that the counts in reverse lex order are stored in a disk file, with each line of the
file (containing multiple counts) forming a block of counts. To calculate the Fisher scoring
updates, the counts are read in block by block to form the score vector and information
matrix. The following example illustrates the use of the function log.lin.fitter. Note
that the starting values for the Fisher scoring iterations are provided by fitting a linear
model using the log counts as a response.

Example 9. We constructed a test example, by randomly generating a table correspond-
ing to five factors A, B, C, D and E with 2,3,4,3,6 levels respectively. The resulting 432
cell counts were generated by independently sampling from a Poisson distribution with
mean 10, and stored in reverse lex order in a text file testfile.txt. The R code to do
this is

test.df = data.frame(Count=rpois(prod(Kvec),10), expand.grid(A=factor(1:2),

B=factor(1:3), C=factor(1:4),D=factor(1:3),E=factor(1:6)))

countfile = "testfile.txt"

write(test.df$Count, countfile, ncolumns=100)

The resulting file has 432 entries, with 100 on each line except the last. To fit the model,
we type

Kvec=c(2,3,4,3,6)

beta = log.lin.fitter(countfile, Kvec)

This example is small enough to use the R glm function to fit the model. The code
below re-fits the model using glm and plots the coefficients obtained using glm versus
those obtained above using log.lin.fitter. As we see from Figure 3.2.2, the agreement is
excellent.

beta.glm = coef(glm(count~(A+B+C+D+E)^2, family=poisson, data=test.df))

plot(beta,beta.glm, xlab = "Coefficients from log.lin.fitter",

ylab="coefficients from glm")

3.3 Fitting mixture models

In this section, we describe a set of R functions to fit mixture models and illustrate their
use. We discuss both the case of fitting a mixture to a single table, and also the use of
mixtures to fit a model to several marginal tables.

37



0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Coefficients from log.lin.fitter

co
ef

fic
ie

nt
s 

fr
om

 g
lm

Figure 3: Coefficients calculated by two methods for Example 10.

First, we consider the situation where we fit a mixture model to a single table. Such a
situation might arise when we have a sample such as a CURF, and want to fit a mixture
to a complete table obtained by smoothing the empirical table. Our implementation,
written in R, has the same storage requirements as the IPF function described above.

Example 10. We illustrate using the variables OccupationCode, Sex, TotalHoursWrkd,
and TotalIncomeGroup considered in Example 7. We assume that we have available a
data frame in standard form, representing the table derived from the 2001 census CURF.
We first smooth it, producing a smoothed complete table of relative frequencies, and
then fit the mixture model using the function mixture.fitter.single, which takes as
arguments a single table in the form of an array, and the number of mixture components
T . the function returns the parameters of the mixture model in the form of a list with
two components tau and theta. tau is the vector of mixture probabilities, and theta is
a list of K matrices, where the kth matrix is an Ik ×T matrix whose tth column contains
the distribution of AK for the tth mixture component.

To mitigate the problem of landing in a local minimum, we use 20 randomly chosen
starting values, fit the model each time, and record the best fit to the smoothed table, as
measured by the Kullback-Leibler distance. We took T = 10. The R code is

# create mixed array

mixed.array= df2table.mix(hours_income_occupation_sex.df, tau=0.99)

# now fit model 20 times, choose best fit

38



T=10

params = mixture.fitter.single(mixed.array, T)

KL.best=KLDist(mixed,array,params)

for(i in 1:20){

params = mixture.fitter.single(mixed.array, T)

KL.current=KLDist(mixed.array,params)

if(KL.current<KL.best){

params.best = params

KL.best = KL.current

}}

After the execution of this code, the parameters of the best fitting model are contained
in the object params.best. As in Example 7, we can compare the three-dimensional
margins of the input table with the three-dimensional margins of the fitted model. These
are shown in Figure 4, plotted on a square-root scale. The fit appears satisfactory.

Example 11. To establish the performance of the mixture method, we used the same
series of test examples as those used in Example 6. The results are shown in Table 7.
Again, all problems ran successfully. The timings shown are in seconds, using a maximum
of 20 iterations as in Example 6, and a single fit of the model each time. As one would
expect frm the algorithm, the timings are approximately linear in T . The mixture model
is much slower to fit than the log-linear, so a case can be made for coding it in a lower-level
language. This is a future project.

Table 7: Results of running mixture.fitter.single

Number of Dimensions Number Number T Time
factors (K) (I1, . . . , IK) of cells of parameters (Seconds)

3 3,4,2 24 20 3 0.19
5 3,4,2,4,6 576 74 5 0.68
5 3,4,2,4,6 576 149 10 1.30
5 3,4,2,4,6 576 224 15 1.78
6 2,3,5,5,2,5 1,800 89 5 1.60
6 2,3,5,5,2,5 1,800 179 10 3.07
6 2,3,5,5,2,5 1,800 269 15 4.52
7 10,3,5,3,9,5,8 162,000 184 5 8.01
7 10,3,5,3,9,5,8 162,000 369 10 16.34
7 10,3,5,3,9,5,8 162,000 554 15 52.19
8 10,3,5,3,9,5,8,6 972,000 209 5 344.89
8 10,3,5,3,9,5,8,6 972,000 419 10 689.45
8 10,3,5,3,9,5,8,6 972,000 629 15 1043.92
9 10,3,5,3,9,5,8,6,2 1,944,000 214 5 816.77
9 10,3,5,3,9,5,8,6,6 5,832,000 234 5 2806.84

3.3.1 Fusing data sets

As described in Section 2.3.2, the basic algorithm used to fit a single mixture model can be
adapted to fit a model to several tables, each containing data on a subset of variables. The

39



0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

hours_occupation_sex

Sqrt of fitted frequencies

S
qr

t o
f m

ar
gi

na
l f

re
qu

en
ci

es

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

hours_income_occupation

Sqrt of fitted frequencies

S
qr

t o
f m

ar
gi

na
l f

re
qu

en
ci

es

0.02 0.06 0.10 0.14

0.
00

0.
04

0.
08

0.
12

income_occupation_sex

Sqrt of fitted frequencies

S
qr

t o
f m

ar
gi

na
l f

re
qu

en
ci

es

0.05 0.10 0.15 0.20

0.
05

0.
10

0.
15

0.
20

income_hours_sex

Sqrt of fitted frequencies

S
qr

t o
f m

ar
gi

na
l f

re
qu

en
ci

es

Figure 4: Fitted and actual margins for Example 10.

40



R function mixture.fitter.fusion implements this algorithm. Suppse we have a set of
tables, each a sample from the same population, but containing different variables. The
function assumes that each sample is in the form of an array, and the arrays representing
the samples have been combined as a list. Note that it is essential that the a variable
appearing in several tables must have the same name and factor levels in each table.
The function mixture.fitter.fusion takes this list as its argument and returns the
parameters of the fitted mixure distribution. The other input parameters are the same as
those in the function mixture.fitter.single used for a single mixture.

Example 12. To illustrate the use of mixture.fitter.fusion, we revisit the data sets
discussed in Example 2. In that example, we had two data sets from the 2001 census,
one involving the variables “Sex” “TotalHrsWrkd”, and “TotalIncomeGroup” (in the data
frame income hours sex.df) and the other the variables “OccupationCode”, “Sex” and
“TotalIncomeGroup”, in the data frame income occupation sex.df.

To fit the model, we first need to convert the data frames to arrays, and form the
arrays into a list. The code is

A = df2table(income_hours_sex.df)

A = A/sum(A) # convert to relative frequencies

B = df2table(income_occupation_sex.df)

B = B/sum(B)# convert to relative frequencies

array.list = list(A,B)

To fit a model with say 10 components, we type

params.both=mixture.fitter.fusion(array.list, T=10, MAXITER=100)

The result params.both, is a list with three components as for the case of fitting a single
table: the mixture probabilities τt, the parameters of the mixture distributions as a list
of matrices, and list containing the names and levels of the variables. This code was in
fact the code used to produce Figure 1 in Section 1.4.

3.4 Generating synthetic data sets

The functions we have described so far fit probability distributions to data sets derived
from a variety of sources. These distributions are represented in various ways, either
explicitly as a probability table in the form of an array, or implictly as a set of parameters
defining a log-linear or mixture model. In this section, we describe a set of functions that
can be used to generate synthetic data sets from the fitted probability distributions. The
data sets produced are csv files that can be manipulated using tools such as Microsoft
Excel.

3.4.1 Generating data from an explicit table

This is the simplest method, and uses the inversion method described in Section 2.2.6.
The R function generate.sample.prob takes as its input a probability table {π[i]} in
the form of an array and produces a csv file of a specified number N of records of the
form i = (1i, . . . , iK) where each record is a random draw from the distribution {π[i]}.

41



Example 13. Consider the four-variable example discussed in Example 7. In the code
given there, a distribution was fitted and the fitted probability table was stored in the
array result.table. To generate a csv file example7.csv of say 50,000 records using
this table, we can type

file = "example7.csv"

N = 50000

generate.sample.prob(N, file, result.table)

This will create a csv file example7.csv in the working directory.

3.4.2 Generating data from a log-linear parameter vector

In this case we have two options. If the probability table will fit into memory, we can cal-
culate the table from the parameter vector using the function loglin2table. This takes
three arguments; the parameter vector as calculated by the function log.lin.fitter,
the vector containing the number of levels of the various factors (this should be identical
to that used as input to log.lin.fitter), and a list containing the dimension names for
the output array. Care should be taken with the inputs, as there is no information about
the factors stored in the log-linear parameter vector. The function produces a probability
table that can be used as input to the function generate.sample.prob described above.
The following example illustrates the procedure:

Example 14. In Example 9, we considered an artificial example with five variables, A,
B, C,D and E, with numbers of levels 2,3,4,3,6 respectively. A complete probability table
was constructed and stored as a file, using the reverse lexographic order implied by this
alphabetic ordering of the factors: i.e. the entries are arranged in the input file so that
the values of A vary most rapidly, those of B next most rapidly, and so on. The vector
Kvec is thus c(2,3,4,3,6). The log-linear model was fitted, producing a vector beta.
The following code calculates the probability table as the array result.table.

Kvec = c(2,3,4,3,6)

dimnames = list(A=1:Kvec[1], B=1:Kvec[2], C=1:Kvec[3], D=1:Kvec[4],

E=1:Kvec[5])

result.table = loglin2table(beta, Kvec, dimnames)

We then proceed as in Example 13.

If the probability table is too large to fit in memory, we can use the Metropolis-
Hastings method described in Section 2.2.7 to generate random draws from the probability
table defined by the log-linear parameters. This required that we have available the one-
dimensional marginal distributions of each of the factors in the log-linear model. These
are represented as a list of vectors, each vector containing the marginal probabilities of the
corresponding factor. The function make.margin will construct this list from the same
inputs as those used in log.lin.fitter. Alternatively, if the table will fit into memory,
we can use the standard R functions to construct the list, as shown in the example below.
Again, care is necessary in the construction of this list: the order of the factors in the
list must match the order used to construct the parameter vector, and the order of the

42



probabilities within each vector must also be consistent with the ordering in the parameter
vector. The example below illustrates how to ensure this, using the same data as in the
example above.

Example 15. Consider again Example 9 with five variables A, B, C,D and E, with
numbers of levels 2,3,4,3,6 respectively. The relative frequencies used to fit the log-linear
model are stored in the file testfile.txt in reverse lex order. We can construct the
margin list by the code

Kvec = c(2,3,4,3,6)

margin.list = make.margin("testfile.txt", Kvec)

Alternatively, if the relative frequencies were stored in the array freq, we could type

Kvec = c(2,3,4,3,6)

J = length(Kvec)

margin.list = vector(length=J, mode="list")

for(j in 1:J) margin.list[[j]] = apply(freq, j, sum)

Having created the margin list, the following code will generate 50,000 records in the csv
file MH.csv from the distribution defined by the log-linear model with parameter vector
beta:

file = "MH.csv"

N=50000

generate.sample.MH(N, file, beta, margin.list, thin=10, burn = 1000)

3.4.3 Generating data from a mixture model

To draw a set of N records from a mixture model, we first draw a single random vector
N1, . . . , NT from a multinomial distribution with parameters N and {τt}. Then, for
t = 1, . . . , T , we draw Nt values of the form (A1, . . . , AK), where the values of Ak are
drawn independently from the distribution {θk

lt}. This simple algorithm is implemented
by the R function generate sample.mix.

Example 16. Consider the four-variable example discussed in Examples 5 and 10. A
mixture model was fitted and a set of parameters params.best was estimated. To generate
50,000 records from the distribution specified by this set of parameters, and store the result
in a file mix.csv, type

N=50000

file = "mix.csv"

generate.sample.mix(N, file, params.best)

43



4 APPLICATION TO CENSUS DATA

In this section of the report, we apply the methods discussed in the previous sections to
data from the 2001 Census of Population and Dwellings. We first describe a set of marginal
tables, derived from the Statistics New Zealand web site. We cover the structure of the
tables, the variables they contain, the populations they refer to, and the way tables can
be read into R. Next, we discuss how the CURF can be used to create tables similar to
those on the web site, thus filling any gaps that remain. Finally, we apply our methods
to these data and illustrate how the creation of synthetic data sets proceeds.

4.1 Marginal tables

In this section, we describe a set of marginal tables created using the TableBuilder tool on
the Statistics New Zealand web site. The tables have been converted into a set of R data
frames, using consistent variable names and levels which match the 2001 census CURF.
This has involved some recoding of the original variables, and the dropping of some when
the CURF variables could not be reconciled with those in the tables, primarily because
of the differences in the treatment of enthnicity and religion. We begin with a discussion
of the set of census variables we use.

In Table 8, we list the variables we consider, which are restricted to a subset of those
in the CURF. This table is adapted from the CURF documentation, and shows the names
of the variable, the levels of the variable, and the population it refers to. Because we want
the definitions to be compatible with the CURF, we omit variables relating to ethnicity
and religion. This is due to the fact that in the Tablebulder tables, the categories for the
different ethnicities and religions are not exclusive, in that one can be a member of more
than one ethnic group. This makes matching CURF information to the tables impossible.

The CURF has many missing values, for questions that are not relevant to the indi-
vidual concerned, for example employment for persons under 5. Rather than introduce
large numbers of structural zeroes into our tables, we subset the CURF. The Tablebuilder
tables we use refer to one of three populations, namely the usually resident population,
the usually resident population aged 15 and over, and the employed usually resident
population aged 15 and over. Subsetting the CURF along these lines largely avoids the
problem of structural zeros, except for the variable “usual residence 5 years ago” which
when cross-classified with age introduces structural zeroes (all the 0-4 age group is in
the category “not born 5 years ago”). We dealt with this by omitting this variable from
consideration.

We also omitted variables for which there were no tables on Tablebuilder which related
to the three populations described above. This left the list shown in Table 8. The list of
tables we have extracted from table builder is shown in Table 9. They are grouped by the
three subpopulations. These are defined as follows: the usually resident subpopulation
in the consists of all persons whose residence is in New Zealand. The usually resident
population 15+ consists of all persons in the usually resident subpopulation who are aged
15 or more, and the employed usually resident population 15+ consists of all persons in
the usually resident subpopulation who are aged 15 or more and are employed, either
full-time or part-time.

44



Table 8. Description of the variables in the census tables.

Variable Description Levels Population
AgeGroup Age of individual in years 0-4 Years Usually Resident

grouped 5-14 Years
15-19 Years
20-24 Years
25-34 Years
35-44 Years
45-54 Years
55-64 Years
65-74 Years
75 and Over

AgeGroup Age of individual in years 15-19 Years Usually Resident 15+
grouped 20-24 Years

25-34 Years
35-44 Years
45-54 Years
55-64 Years
65 Years and Over

BirthPlace Birthplace New Zealand Usually Resident
(Country of Birth) Other Oceania and Antarctica

Europe
Asia
Other
Not Elsewhere Included

EmploymentStatus Status in employment Paid Employee Employed Usually
Employer Resident 15+
Self-Employed and Without Employees
Unpaid Family Worker
Not Stated

HighestQual Highest qualification No Qualification Usually Resident 15+
Fifth Form Qualification
Sixth Form Qualification
Higher School Qualification
Other NZ Secondary School

Qualification and Overseas
Secondary School Qualification

Basic Vocational Qualification
Skilled Vocational Qualification
Intermediate Vocational Qualification
Advanced Vocational Qualification
Bachelor Degree
Higher Degree
Not Elsewhere Included

IndustryGroup Industry, Agriculture, Forestry Employed Usually
grouped and Fishing Resident 15+

Manufacturing
Construction
Wholesale Trade, Retail Trade,

Accommodation, Cafes and Restaurants
Transport and Storage,

Communication Services
Finance and Insurance and

Property and Business Services
Education
Health and Community Services
Other Industries
Not Elsewhere Included

LegalMaritalStatus Legal marital status Never Married Usually Resident 15+
Married (Not Separated)
Separated
Divorced
Widowed
Not Elsewhere Included

45



Table 8 (Cont). Description of the variables in the census tables.

Variable Description Levels Population
NumLanguagesSpoken Languages spoken, None usually Resident

partially grouped One Language
Two Languages
Three or more
Not Elsewhere Included

OccupationCode Occupation, Elementary Occupations Employed Usually
grouped Legislators Resident 15+

Administrators and Managers
Professionals
Technicians and

Associate Professionals
Clerks
Service and Sales Workers
griculture and Fishery Workers
Trades Workers
Plant and Machine Operators

and Assemblers
Not Elsewhere Included

SectorOfOwnership Sector of ownership, Central and Local Government Employed Usually
grouped Private Resident 15+

Not Stated
Sex Sex of individual Male Usually Resident

Female
SocialMaritalStatus Social marital status Partnered Usually resident 15+

Non-partnered
Not stated

TotalHrsWrkd Hours worked in 1-9 Hours Worked Employed usually
employment (per week) 10-19 Hours Worked resident 15+,
grouped 20-29 Hours Worked

30-39 Hours Worked
40-49 Hours Worked
50-59 Hours Worked
60-69 Hours Worked
70 Hours or More Worked
Not Elsewhere Included

TotalIncomeGroup Total personal income, Loss or Zero Income Usually Resident 15+
partially grouped $1 - $5,000

$5,001 - $10,000
$10,001 - $15,000
$15,001 - $20,000
$20,001 - $25,000
$25,001 - $30,000
$30,001 - $40,000
$40,001 - $50,000
$50,001 - $70,000
$70,001 or More
Not Stated

TravelToWorkGroup Main means of travel Worked at Home Employed usually
to work, partially grouped Did Not Go To Work Today resident 15+

Drove a Private Car, Truck or Van
Drove a Company Car, Truck or Van
Passenger in a Car, Truck, Van

or Company Bus
Public Bus or Train
Bicycle, Walked or Jogged
Motor Cycle, Power Cycle or Other
Not Stated

WorkLabForceStatus Work and labour force status Employed Full-time Usually resident 15+
Employed Part-time
Unemployed
Not in the Labour Force
Work and Labour Force Status

Unidentifiable

46



Table 8 (Cont). Description of the variables in the census tables.

Variable Description Levels Population
YearsAtRes Years at usual residence, Less than One Year Usually resident

partially grouped 1 Year
2 Years
3 Years
4 Years
5-9 Years
10-14 Years
15-19 Years
20-24 Years
25-29 Years
30 Years or More
Not Elsewhere Included

4.2 Creating census tables in R

In this section, we describe how to create the census tables as R data frames. These are
construced from two sources; the Tablebuilder tables and the census CURF.

4.2.1 Creating census tables from Tablebuilder

We have downloaded a set of tables from Tablebuilder, as a set of csv files, and written
a series of R scripts to read them into the R workspace as data frames. In the software
supplied, there is a directory SNZTables which contains three subdirectories, usually

resident, usually resident 15+ and employed usually resident 15+. Each con-
tains a separate subdirectory for each table, consisting of a csv file containing the data,
and a file containing an R script which reads the csv file, defines the levels of the
variables and creates a data frame. Thus, for example, in the usually resident di-
rectory there are five subdirectories age.sex, birthplace.sex, languages.age.sex,
usualres5yrsago.age.sex and yearsatres.age.sex. The languages.age.sex direc-
tory contains two files languages.age.sex.csv and languages.age.sex.r. The latter
contains an R script to create a data frame languages age sex.df. The data frame can
be created by first setting the R working directory to SNZTables and then type

source("usually resident//languages.age.sex//languages.age.sex.r")

To create the entire set of data frames, use the function make.all. To use this function,
set the R working directory to SNZTables and type

make.all()

This will create all the data frames in the R work space. As an alternative to setting the
directory, the path of the directory SNZTables can be specified as a path, e.g.:

make.all("F:\\Stats NZ\\2007 project\\SNZTables")

Note that the path must be specified using the R double \\ notation, not the Windows
/ notation.

Many of the functions written require tables of relative frequencies as arguments, so
the data frames storing the tables need to be converted to arrays first. This can be done
using the function df2table described in Chapter 3.

47



Table 9: List of Census Tables ( by population).

Data frame Table

Census Usually Resident Population
birthplace sex.df Birthplace and Sex
languages age sex.df Number of Languages Spoken, Age Group and Sex
yearsatres age sex.df Years at Usual Residence, Age Group and Sex

Census Usually Resident Population Aged 15 Years and Over
income age sex.df Total Personal Income, Age Group and Sex
income qual age.df Total Personal Income, Highest Qualification and Age Group
income qual sex.df Total Personal Income, Highest Qualification and Sex
income work age.df Total Personal Income, Work Status and Age Group
income work sex.df Total Personal Income, Work Status and Sex
legalms age sex.df Legal Marital Status, Age Group and Sex
qual age sex.df Highest Qualification, Age Group and Sex
qual birthplace sex.df Highest Qualification, Birthplace and Sex
qual income sex.df Highest Qualification, Total Personal Income and Sex
qual work sex.df Highest Qualification, Work Status and Sex
socialms age sex.df Social Marital Status, Age Group and Sex
work age sex.df Work Status, Age Group and Sex
work income sex.df Work Status, Income and Sex
work qual sex.df Work Status, Highest Qualification and Sex

Employed Census Usually Resident Population Aged 15 Years and Over
emp work income sex.df Status in Employment, Work and Labour Force Status, Total Personal Income and Sex
emp work qual sex.df Status in Employment, Work and Labour Force Status, Highest Qualification and Sex
income emp age.df Total Personal Income, Status in Employment and Age Group
income emp sex.df Total Personal Income, Status in Employment and Sex
income hours sex.df Total Personal Income, Hours Worked in Employment Per Week and Sex
income industry sex.df Total Personal Income, Industry and Sex
income occupation sex.df Total Personal Income, Occupation Code and Sex
industry emp sex.df Industry, Status in Employment and Sex
industry work age.df Industry, Work and Labour Force Status and Age Group
industry work sex.df Industry, Work and Labour Force Status and Sex
occupation age sex.df Occupation Code, Age Group and Sex
occupation emp sex.df Occupation Code, Employment Status and Sex
occupation industry sex.df Occupation Code, Industry and Sex
occupation work age.df Occupation Code, Work Status and Labour Force Status and Age Group
occupation work sex.df Occupation Code, Work Status and Labour Force Status and Sex
qual emp age.df Highest Qualification, Status in Employment and Age Group
qual emp sex.df Highest Qualification, Status in Employment and Sex
qual industry sex.df Highest Qualification, Industry and Sex
qual occupation sex.df Highest Qualification, Occupation and Sex
sector age sex.df Sector of Ownership (Employer), Age Group and Sex
sector income sex.df Sector of Ownership (Employer), Total Personal Income and Sex
sector qual sex.df Sector of Ownership (Employer), Highest Qualification and Sex
sector work sex.df Sector of Ownership (Employer), Work Status and Sex
travel income.df Main Means of Travel to Work and Total Personal Income
travel sex.df Main Means of Travel to Work and Sex
travel work emp.df Main Means of Travel to Work, Work and labour Force Status and Status in Employment
travel work industry.df Main Means of Travel to Work, Work and Labour Force Status and Industry
travel work occupation.df Main Means of Travel to Work, Work and Labour Force Status and Occupation

48



4.2.2 Making data frames containing subsets of the CURF variables

In this section, we discuss the code used to construct R data frames from the csv version
of the 2001 census CURF. A feature of the CURF is that not all variables are measured
on each individual. For example, unemployed persons do not have a value for the variable
WorkLabForceStatus, and infants do not have a value for OccupationCode.

We deal with this problem by constructing three separate data frames correspond-
ing to the usually resident population, the usually resident population aged 15 and
over, and the employed usually resident population aged 15 and over. The data frame
usually.resident.df is constructed by selecting from the CURF all records whose value
for the variable IndividualRecTypeCode is 3 or 4 (i.e. “New Zealand Child” or “New
Zealand Adult”.) For these individuals, the five variables AgeGroup, BirthPlace, Num-
LanguagesSpoken, Sex and YearsAtRes are the only ones to have no missing values, so
we retain only these variables. The CURF file is read into R, the cases and variables
selected as described above, and the data massaged into a data frame in standard form,
as described in Section 3.1.3. The file usually.resident.r contains the script for doing
this. Setting the current R directory to point to the supplied folder CURF (this folder also
contains the csv version of the CURF) and typing

source("usually.resident.r")

will cause the data frame usually.resident.df to appear in the R workspace. The data
frame has 3,068 lines and six variables (the five above plus the table counts in the first
column). This represents data on 74,767 individuals. The complete probability table for
these five variables has 7,200 cells.

The second data frame usually.resident.15plus.df contains ten variables mea-
sured on the usually resident population aged 15 and over (the individuals in the first
data frame who do not have AgeGroup equal to “0-4 Years” OR “5-14 Years”. The
additional five variables are HighestQual, SocialMaritalStatus, TenureHolderCode , To-
talIncomeGroup and WorkLabForceStatus. The data frame is created by running the R
script in the file usually.resident.15+.r. It has 35,882 rows and 11 variables (ten plus
the counts) and contains data on 57,821 individuals. The complete probability table for
the 10 variables measured on this population has 48,988,800 cells, too many to fit into
the R workspace.

The final data frame employed.usually.resident.15plus.df contains 16 variables
measured on the employed usually resident population aged 15 and over (the individu-
als in the second data frame who have WorkLabForceStatus equal to “Employed Full-
Time” or “Employed Part-Time”. The additional variables for this data frame are
EmploymentStatus, IndustryGroup, OccupationCode , SectorOfOwnership , TotalHr-
sWrkd and TravelToWorkGroup. The R script to create this data frame is in the file
employed.usually.resident.15+.r. The resulting data frame has 34,056 rows and 17
variables (16 plus the counts) and contains data on 34,492 individuals. The complete
probability table for the 16 variables measured on the employed usually resident popula-
tion 15 and over has a whopping 2,821,754,880,000 cells!

Sometimes we want to create a marginal table from one of these three data frames.
We can do this by selecting the appropriate columns. For example, suppose we want to

49



create a table of relative frequencies for the variables AgeGroup, Sex and YearsAtRes
from the data frame usually.resident.df. These variables are in the second, fifth and
sixth columns, with the cell counts in the first:

> names(usually.resident.df)

[1] "Count" "AgeGroup" "BirthPlace"

[4] "NumLanguagesSpoken" "Sex" "YearsAtRes"

We can select these columns, along with the counts, but there will be many repeat rows for
each combination of the three factors in the resulting data frames. We need to compact the
data frame so that each combination appears only once, and the counts are accumulated
in the appropriate way. This is done with the function compact.data.frame. The code

age_sex_years.df = compact.data.frame(usually.resident.df[,c(1,2,5,6)])

performs this task and creates the desired data frame. We can create a table of relative
frequencies for the age-sex-years margin by typing

temp = df2table(age_sex_years.df)

age_sex_years = temp/sum(temp)

4.3 Generating synthetic data using the census tables

In this section, we use of the functions described in Section 3 to generate a variety of
synthetic data sets from the Tablebuilder tables and the census CURF. We deal with our
three subpopulations separately, beginning with the usually resident population.

4.3.1 The usually resident population

There are five variables measured on the usually resident population, and the probability
table for the joint distribution of these variables has 7,200 cells. For such a small table,
any of the methods we have described are appropriate. For example, we could mix the
empirical table of relative frequencies with an independence table and sample from the
mixed table. Alternatively, we could fit a mixed or log-linear model to achieve more
drastic smoothing of the empirical frequencies. Below we give some code samples that
accomplish these tasks.

First, suppose we want to create a synthetic data set of 100,000 records using the
independence method, and store the result in a csv file usually.resident.ind.csv.
Assuming the data frame usually resident.df has been created as described in Section
4.2.2, the following code will create the csv file:

prob.table = df2table.mix(usually.resident.df)

N = 100000

file ="usually.resident.ind.csv"

generate.sample.prob(N, file, prob.table)

To produce a similar file by fitting a mixture model, we use the code

50



freq.table = df2table.mix(usually.resident.df)

params = mixture.fitter.single(freq.table, T=10)

N = 100000

file ="usually.resident.mixture.csv"

generate.sample.mix(N, file, prob.table)

Finally, for the log-linear method using IPF, we need to construct an list of marginal
arrays, using an array from the Tablebuilder collection if available, otherwise one derived
from the CURF. Suppose we want to fit a model with all three-dimensional margins.
There are 10 of these, so need to construct the list in a systematic way. The easiest way
to do this is to use two loops to make all the tables from the CURF, and then substitute
the Tablebuilder tables. The following code produces the list of arrays:

# create list, set elements to NULL

array.list = vector(length=10, mode="list")

# now loop

index = 1

for(i in 2:5){

for(j in (i+1):6){

temp = df2table(usually.resident.df[,-c(i,j)])

array.list[[index]] = temp/sum(temp)

index = index + 1

}

}

Note that each time we go through the loop, we delete columns i and j from the data
frame usually.resident.df and convert the result into a table of relative frequencies.
The tables languages age sex.df and yearsatres age sex.df are elements 7 and 5 on
this list. These tables are available in our Tablebuilder collection so we substitute them:

temp = df2table(languages_age_sex.df)

array.list[[7]] = temp/sum(temp)

temp = df2table(yearsatres_age_sex.df)

array.list[[5]] = temp/sum(temp)

Now we can fit the model and generate the synthetic data:

prob.table = ipf.fitter(array.list)

N = 100000

file ="usually.resident.loglin.csv"

generate.sample.prob(N, file, prob.table)

4.3.2 The usually resident population ages 15 and over

The data frame usually.resident.15plus.df has eleven variables (with the variable
Count in the first column) and 35,882 rows. The complete probability has 48,988,800
cells, which is too many to fit into the R workspace. To fit a model to these vari-
ables, we can adopt a fusion approach. The probability table for the first eight variables

51



(“AgeGroup”, “BirthPlace”,“HighestQual”, “LegalMaritalStatus”, “NumLanguagesSpo-
ken”, ‘Sex”, “SocialMaritalStatus”,“TotalIncomeGroup”) has 816,480 cells, while the
table for the last eight (“HighestQual”, “LegalMaritalStatus”,“NumLanguagesSpoken”,
“Sex”, “SocialMaritalStatus”, “TotalIncomeGroup”, “WorkLabForceStatus”, “YearsAtRes”)
has 1,166,400 cells. To fit a model to the complete table we can adopt a hybrid approach:
we can use IPF to fit the two separate tables (corresponding to the first and last eight
variables respectively) and then use the mixture approach to fuse the two tables together,
as shown in the following code fragment:

# make a list to store the two eight-variable tables

mix.array.list = vector(length=2, mode="list")

# first eight variables

# make marginal data frame

first.eight.df =

compact.data.frame(usually.resident.15plus.df[,1:9])

# create list of 3-dimensional arrays, set elements to NULL

array.list = vector(length=56, mode="list")

# now loop, calculating 3-d marginal tables

index = 1

for(i in 2:7){

for(j in (i+1):8){

for(k in (j+1):9){

array.list[[index]] =

df2table.mix(first.eight.df[,c(1,i,j,k)])

index = index + 1

}

}

}

# fit 3-factor interaction model by ipf (816,480 cells)

mix.array.list[[1]] = ipf.fitter(array.list)

# Now do the same thing for the last eight variables

last.eight.df = compact.data.frame(usually.resident.15plus.df[,c(1,4:11)])

# create list, set elements to NULL

array.list = vector(length=56, mode="list")

# now loop

index = 1

for(i in 2:7){

for(j in (i+1):8){

for(k in (j+1):9){

52



array.list[[index]] = df2table.mix(last.eight.df[,c(1,i,j,k)])

index = index + 1

}

}

}

# fit 3-factor interaction model by ipf (1,166,400 cells)

mix.array.list[[2]] = ipf.fitter(array.list)

# Fit mixture model

params = mixture.fitter.fusion(mix.array.list, T=10, MAXITER = 10)

The current version of this function is written entirely in R and requires a fair bit of time
to converge for a problem of this size (it took about 24 hours on my machine). Recoding
in a lower-level language would of course improve the performance.

As a check, we calculated the marginal distributions of each variable from the CURF
and also from the fitted mixture model. The results are shown in Figure 5. The agreement
is excellent.

How should we split the variables into two groups? In the present case, we made
a choice based on the alphabetical ordering of the variable names, resulting in the non-
overlapping pairs (“AgeGroup”, “BirthPlace”) and (“WorkLabForceStatus”, “YearsAtRes”).
However, if we have prior knowledge of the association between the variables, we can use
this to make a more informed choice. The conditional association between the non-
overlapping pairs, given the other variables is determined completely by the mixture
assumption, as there are no direct observations on the same individuals of these four
variables simultaneously. If we suspect that another choice of pairs are conditionally
independent, using these would make us less reliant on the mixture assumption.

Finally, to generate 100,000 records from the joint distribution of these 10 variables,
and store them in a csv file usually.resident.15+.csv, we can use the code

N=100000

file = "usually.resident.15+.csv"

generate.sample.mix(N, file, params)

4.3.3 The employed usually resident population ages 15 and over

The data frame for this subpopulation has 16 variables (including the counts) and a
probability table with 2,821,754,880,000 cells. Fitting a model to this table is a rather
daunting task, but a possible approach is the following: We split the 16 variables up into
five groups, fit a three-factor interaction model to each group, and then fuse the results
together. Consider the following five groups:

Group 1 Variables “AgeGroup”, “BirthPlace”, “EmploymentStatus”, ‘HighestQual”,
“IndustryGroup”, “LegalMaritalStatus”, “NumLanguagesSpoken”, with a proba-
bility table of 756,000 cells;

53



1 2 3 4 5 6 7

AgeGroup
P

ro
ba

bi
lit

ie
s

0.
00

0.
10

0.
20

1 2 3 4 5 6

BirthPlace

P
ro

ba
bi

lit
ie

s

0.
0

0.
3

0.
6

1 2 3 4 5 6 7 8 9

HighestQual

P
ro

ba
bi

lit
ie

s

0.
00

0.
10

0.
20

1 2 3 4 5 6

LegalMaritalStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

1 2 3 4 5

NumLanguagesSpoken

P
ro

ba
bi

lit
ie

s

0.
0

0.
4

1 2

Sex

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

1 2 3

SocialMaritalStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

1 2 3 4 5 6 7 8 9 10 11 12

TotalIncomeGroup

P
ro

ba
bi

lit
ie

s

0.
00

0.
06

0.
12

1 2 3 4 5

WorkLabForceStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

1 2 3 4 5 6 7 8 9 10 11 12

YearsAtRes

P
ro

ba
bi

lit
ie

s

0.
00

0.
10

0.
20

Figure 5: Empirical and fitted marginal probabilities. Grey bars are empirical, black are
fitted.

54



Group 2 Variables “EmploymentStatus”, “HighestQual”, “IndustryGroup”, “LegalMar-
italStatus”,“NumLanguagesSpoken”, “OccupationCode”, “SectorOfOwnership”, with
a probability table of 540,000 cells;

Group 3 Variables “IndustryGroup”, “LegalMaritalStatus”,“NumLanguagesSpoken”, “Oc-
cupationCode”, “SectorOfOwnership”, “Sex”, “SocialMaritalStatus”, “TotalHrsWrkd”,
with a probability table of 432,000 cells;

Group 4 Variables “NumLanguagesSpoken”, “OccupationCode”, “SectorOfOwnership”,
“Sex”, “SocialMaritalStatus”, “TotalHrsWrkd”, “TotalIncomeGroup”, “TravelToWork-
Group”, with a probability table of 777,600 cells.

Group 5 Variables “SectorOfOwnership”, “Sex”, “SocialMaritalStatus”, “TotalHrsWrkd”,
“TotalIncomeGroup”, “TravelToWorkGroup”, “WorkLabForceStatus”, “YearsAtRes”,
with a probability table of 373,248 cells.

We can repeat the analysis of the last section and fit three-factor interaction models
to the CURF data as was done in the case of the usually resident population 15 and over.
The code is

# set up list of arrays (one element per group)for input into

# function mixture.fitter.fusion

mix.array.list = vector(length=4, mode="list")

# group1

# group 1 variables are in columns 2-8

temp.df = compact.data.frame(

employed.usually.resident.15plus.df[,1:8])

# create list, set elements to NULL

array.list = vector(length=35, mode="list")

# now loop

index = 1

for(i in 2:6){

for(j in (i+1):7){

for(k in (j+1):8){

array.list[[index]] = df2table.mix(temp.df[,c(1,i,j,k)])

index = index + 1

}

}

}

mix.array.list[[1]] = ipf.fitter(array.list)

# group2

# group 2 variables are in columns 4-10

temp.df = compact.data.frame(

55



employed.usually.resident.15plus.df[,c(1, 4:10)])

# create list, set elements to NULL

array.list = vector(length=56, mode="list")

# now loop

index = 1

for(i in 2:6){

for(j in (i+1):7){

for(k in (j+1):8){

array.list[[index]] = df2table.mix(temp.df[,c(1,i,j,k)])

index = index + 1

}

}

}

mix.array.list[[2]] = ipf.fitter(array.list)

# group3

# group 3 variables are in columns 6-13

temp.df = compact.data.frame(

employed.usually.resident.15plus.df[,c(1, 6:13)])

# create list, set elements to NULL

array.list = vector(length=56, mode="list")

# now loop

index = 1

for(i in 2:7){

for(j in (i+1):8){

for(k in (j+1):9){

array.list[[index]] = df2table.mix(temp.df[,c(1,i,j,k)])

index = index + 1

}

}

}

mix.array.list[[3]] = ipf.fitter(array.list)

# group4

# group 4 variables are in columns 8-15

temp.df = compact.data.frame(

employed.usually.resident.15plus.df[,c(1, 8:15)])

# create list, set elements to NULL

array.list = vector(length=56, mode="list")

# now loop

index = 1

for(i in 2:7){

56



for(j in (i+1):8){

for(k in (j+1):9){

array.list[[index]] = df2table.mix(temp.df[,c(1,i,j,k)])

index = index + 1

}

}

}

mix.array.list[[4]] = ipf.fitter(array.list)

# group5

# group 5 variables are in columns 10-17

temp.df = compact.data.frame(

employed.usually.resident.15plus.df[,c(1, 10:17)])

# create list, set elements to NULL

array.list = vector(length=56, mode="list")

# now loop

index = 1

for(i in 2:7){

for(j in (i+1):8){

for(k in (j+1):9){

array.list[[index]] = df2table.mix(temp.df[,c(1,i,j,k)])

index = index + 1

}

}

}

mix.array.list[[5]] = ipf.fitter(array.list)

# now fit the mixture model

params = mixture.fitter.fusion(mix.array.list, T=10, MAXITER = 100)

When fitting the five group tables using IPF, we have just used the CURF margins for
simplicity. The Tablebuilder margins could be substituted where available, as in the case
of the usually resident population example. However, even just using the CURF data,
the agreement with the empirical data is very good, as can be seen from the marginal
distributions of the empirical and fitted probabilities shown in Figure 6.

Finally, to generate say 100,000 records from this distribution, and store them in a file
employed.usually.resident.15+.csv we type

N=100000

file = "employed.usually.resident.15+.csv"

generate.sample.mix(N, file, params)

57



1 2 3 4 5 6 7

AgeGroup
P

ro
ba

bi
lit

ie
s

0.
00

0.
10

0.
20

1 2 3 4 5 6

BirthPlace

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

0.
6

1 2 3 4 5

EmploymentStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

0.
6

1 3 5 7 9 12

HighestQual

P
ro

ba
bi

lit
ie

s

0.
00

0.
05

0.
10

0.
15

1 3 5 7 9

IndustryGroup

P
ro

ba
bi

lit
ie

s

0.
00

0.
10

0.
20

1 2 3 4 5 6

LegalMaritalStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

1 2 3 4 5

NumLanguagesSpoken

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

0.
6

0.
8

1 3 5 7 9

OccupationCode

P
ro

ba
bi

lit
ie

s

0.
00

0.
04

0.
08

0.
12

1 2 3

SectorOfOwnership

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

0.
6

0.
8

1 2

Sex

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

1 2 3

SocialMaritalStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

0.
6

1 3 5 7

TotalHrsWrkd

P
ro

ba
bi

lit
ie

s

0.
00

0.
10

0.
20

0.
30

1 3 5 7 9 12

TotalIncomeGroup

P
ro

ba
bi

lit
ie

s

0.
00

0.
05

0.
10

0.
15

1 3 5 7 9

TravelToWorkGroup

P
ro

ba
bi

lit
ie

s

0.
0

0.
1

0.
2

0.
3

0.
4

1 2

WorkLabForceStatus

P
ro

ba
bi

lit
ie

s

0.
0

0.
2

0.
4

0.
6

1 3 5 7 9 12

YearsAtRes

P
ro

ba
bi

lit
ie

s

0.
00

0.
10

0.
20

Figure 6: Empirical and fitted marginal probabilities for the employed usually resident
population aged 15 and over. Grey bars are empirical, black are fitted.

58



Our final illustration also involves the employed usually resident population aged 15
and over. Statistics New Zealand produces a series of synthetic data sets known as SURF’s
for use in schools. There is one based on the 2006 census, having 11 variables, plus area
information. There are 300 records for each of 16 districts, making 4800 records in all.

Of these variables, seven occur on our list. To fit a model to all 11 variables, a
combination of the the IPF or mixture approach could be used, using actual census data
to create the input tables. The code required is similar to that in the examples above. For
a more concrete illustration, consider the problem of fitting a model to the seven SURF
variables that are on our list. The variables are “AgeGroup”, “HighestQual”, “Sex”,
“TotalHrsWrkd”, “TotalIncomeGroup”, “TravelToWorkGroup”, “WorkLabForceStatus”,
and the complete table has 373,248 cells, well within the range of the IPF method. One
approach is to fit a log-linear model having all interactions up to a certain order, using
the CURF data (or any available microdata) to calculate the marginal tables. Which
model should we fit? Here, there is a trade-off between high order (which will give a
richer approximating set) and low order (the lower-order margins can be estimated with
less error from the CURF.) We can calculate the AIC for models each having different
orders and choose the model with smallest AIC. From Table 10, we see that a two-factor
model is indicated by the AIC criterion, although this may be different with a bigger set
of microdata. The model is fitted and the data generated as before:

Table 10: AIC for different models.

Order AIC No.of parameters
1 372874.4 48
2 331254.6 942
3 342666.3 9696
4 421063.6 55857
5 662561.0 179472
6 941436.5 319040

# fit models of order 2

# loop over pairs

index = 1

array.list = vector(length=21, mode="list")

for(i in 2:7){

for(j in (i+1):8){

array.list[[index]] = df2table.mix(surf.df[,c(1,i,j)])

index = index + 1

}

}

prob.table2 = ipf.fitter(array.list)

N = 4800

file ="surf.csv"

generate.sample.prob(N, file, prob.table)

59



The AIC is calculated using the function param.count, which calculates the number of
parameters in a log-linear model having interactions up to a certain order (i.e order=2
corresponds to having all two-way interactions, but none higher.)

no.of.params = param.count(Kvec, order=2)

AIC2 = 2*(no.of.params - dim(surf.df)[1]*sum(prob.table*log(prob.table2)))

> AIC2

[1] 331254.6

.

60



5 SUMMARY AND CONCLUSIONS

In this report, we have discussed a variety of methods that can be used to generate syn-
thetic data of quite high dimension. The methods rely on fitting standard statistical
models to tables of relative frequencies, and generating data from these models. In par-
ticular, we use log-linear models (fitted by either IPF or Fisher scoring, and able to handle
tables of up to six million cells) and mixture models (fitted by the EM algorithm, also
handling tables of up to six million cells).In addition, we discussed how to fit mixture
models to sets of marginal relative frequencies, which enables much larger tables to be
fitted. We illustrated the application of this method to a table having 48 million cells and
an even bigger table having approximately 2.8 × 1012 cells and 16 variables.

The methods have been implemented in R, and a set of functions have been written
that are a reasonable compromise between memory use and speed. We provided two
functions for fitting log-linear models, one using IPF that requires that the complete
probability table be stored in the R workspace, and another based on Fisher scoring
that is limited by the number of model parameters but not the number of cells. Two
functions for fitting mixtures were also provided; one that fits a mixture to single complete
probability table (which is stored in the workspace) and another for fitting a mixture to a
set of marginal tables. In the latter case the input tables must fit in the R workspace, but
not the fitted table. This function is presently coded completely in R, and runs rather
slowly for really big problems. Recoding in C or FORTRAN will be a future project. We
have also provided a set of functions for generating data from these fitted models, using
a variety of methods.

Finally, we have supplied a set of files derived form the 2001 Census of Population
and Dwellings, that can be used as suitable input files for the illustration of our meth-
ods. Overall, the methods do seem practical for the generation of synthetic data sets of
moderate size whose characteristics match those of the real population with reasonable
accuracy.

61



REFERENCES

Agresti, A. (2002). Categorical Data Analysis, 2nd Ed. Johns Hopkins University
Press, Baltimore.

Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975). Discrete Multivariate
Analysis. MIT Press, Cambridge.

Christensen, R. (1997). Log-Linear Models and Logistic Regression. Springer-Verlag,
New York.

Deming, W.E and Stephan, F.F. (1940). On a least squares adjustment of a sampled
frequency table when the expected marginal totals are known. Annals of Mathematical
Statistics, 11, 427 – 444.

Graham, P and Penny, R. (2007). Multiply imputed synthetic data files. Official
Statistics Research Series, Vol 1.

Graham, P and Penny, R. (2008). Methods for creating synthetic data. Official
Statistics Research Series, Vol 2.

Jackson, L.F. (2007). Uniques and disclosure control design. Official Statistics Research
Series, Vol 1.

Jackson, L.F. and Gray, A. (2008). Impact of global recoding to preserve confiden-
tiality on information loss and statistical validity of subsequent data analysis. Official
Statistics Research Series, Vol 2.

Kamakura, W. A. and Wedel, M. (1997). Statistical data fusion for cross-tabulation.
Journal of Marketing Research, 34, 485–498.

R Development Core Team (2008). R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, URL http://www.R-project.org.

Reiter, J. P. (2005). Using CART to generate partially synthetic, public use microdata.
Journal of Official Statistics 21, 365–377.

Woodcock, S. D. and Benedetto, G. (2007). Distribution-preserving statistical
disclosure limitation. Unpublished MS.

62



A Appendices

A.1 Description of the R functions

In this appendix we document the following R functions:

as.standard

calculate.probs

check.data.frame

compact.data.frame

df2table

df2table.mix

generate.sample.mix

generate.sample.MH

generate.sample.prob

is.standard

ipf.fitter

KLDist

log.lin2table

log.lin.fitter

make.all

make.margin

mixture.fitter.single

mixture.fitter.fusion

params2table

param.count

table2df

63



as.standard package:SNZ R documentation

Coerces a data frame into standard form

Description:

Coerces a data frame representing a contingency table into a standard form.

Usage:

as.standard(data.df)

Arguments:

data.df: a data frame.

Details:

If the data frame represents a contingency table (i.e. if one variable con-
tains counts and the rest are factors) it is transformed into standard form.
Otherwise an error message is returned.

Value:

A data frame in standard form.

Example:

## convert data frame data.df to standard form

data.df = as.standard(data.df)

64



calculate.probs package:SNZ R documentation

Calculates a table of fitted probabilities from a log-linear parameter vector

Description:

Takes the log-linear parameter vector and calculates the table of fitted prob-
abilities.

Usage:

calculate.probs(beta, Kvec)

Arguments:

beta: The parameter vector produced by the function log.lin.fitter.

Kvec: A vector giving the factor lengths.

Details:

The parameter vector beta is the result of fitting a two-factor interaction
model, assuming the factors are in the order implied by the vector Kvec.

Value:

An array of dimension Kvec containing a table of probabilities.

Example:

65



check.data.frame package:SNZ R documentation

Checks a data frame

Description:

Checks if a data frame is in standard form.

Usage:

check.data.frame(data.df)

Arguments:

data.df: a data frame.

Value:

A list with elements

status: has value 1 if the argument can be coerced into a data frame repre-
senting a contingency table in standard form, and zero otherwise;

data: if status = 1, the data frame representing the contingency table, oth-
erwise NULL;

message: if status = 0, an error message.

Example:

## check data frame data.df to see if it represents

## a contingency table in standard form

data.df=check.data.frame(data.df)$data

66



compact.data.frame package:SNZ R documentation

Combine rows of a data frame

Description:

Combines rows of a data frame with counts in the first column. Rows that are
identical except for the counts are combined by adding the counts together.

Usage:

combine.data.frame(data.df)

Arguments:

data.df: a data frame in standard form, except may contain rows that are
identical except for the counts.

Value:

A data frame in standard form.

Details:

The input data frame will usually be a data frame from which some of the
columns (not the counts) have been deleted. The function is useful for creating
data frames in standard form representing marginal tables.

Example:

# standard.df is a data frame representing # a 4-dimensional table

# Now make a df in standard form containing the

# marginal table of the first two variables

margin.df = compact.data.frame(standard.df[,c(1,2,3)])

67



df2table package:SNZ R documentation

Converts a data frame in standard form into an array

Description:

Converts a data frame in standard form into an array, and issues an error
message if the input cannot be converted to standard form.

Usage:

df2table(data.df)

Arguments:

data.df: a data frame.

Details:

If the data frame represents a contingency table (i.e. if one variable contains
counts and the rest are factors) it is transformed into an array. Otherwise an
error message is returned.

Value:

An array representing the contingency table.

Example:

## convert data frame data.df to an array my.table

my.table = df2table(data.df)

68



df2table.mix package:SNZ R documentation

Converts a data frame in standard form into an array, mixing it with an independence
table constructed from the margins of the array

Description:

First converts a data frame in standard form into an array, and issues an error
message if the input cannot be converted to standard form. Then it calculates
the one-dimensional margins of the array, forms an independence table, and
then forms the mixture (with proportions τ and (1 − τ)) of the initial table
and the independence table.

Usage:

df2table.mix(data.df, tau=0.99)

Arguments:

data.df: a data frame.

tau: the mixing probability, a number between 0 and 1. Default is 0.99.

Details:

The initial and independence tables are stored in the R workspace so that this
function cannot be used with very large tables.

Value:

An array representing the table of probabilities of the resulting mixture dis-
tribution.

Example:

## convert data frame data.df to an array my.table, mixing it with

an independence table

my.table = df2table.mix(data.df, tau=0.99)

69



generate.sample.MH package:SNZ R documentation

Generates a data frame by sampling from a log-linear model

Description:

Creates a file of synthetic data of specified size by sampling with replacement
from a the probability distribution implied by a two-factor interaction log-
linear model.

Usage:

generate.sample.MH(N, file, beta, margin.list, thin=10, burn = 1000)

Arguments:

N: The number of records to be generated.

file: The name of the file where the data are to be stored.

beta: The parameter vector, usually calculated by the function log-lin.fitter.

margin.list: A list containing the one-dimensional marginal distributions
of the log-linear model, calculated by the function make.margin.

thin: The thinning period for the Metropolis-Hastings algorithm. e.g. if
thin =10, retain every 10th value form the Markov chain.

burn: The burn-in period for the Metropolis-Hastings algorithm.

Details:

The function produces a csv file of N records. Each record consists of the
values (i1, . . . , iK) of the variables corresponding to the elements of the list
margin.list , and is the result of running the Markov chain, retaining the
values as specified by thin. Each state of the chain corresponds to a cell of
the probability table implied by the parameter vector beta.

Value:

The function returns no value but a csv file containing N records is created.

70



Example:

Kvec<-c(3,4,2)

N=50000

file = "mydata.csv"

y = runif(prod(array.dim)))

y=y/sum(y)

write.file(y,"probfile")

beta = log.lin.fitter("probfile", Kvec)

margin.list=make.margin("probfile", Kvec)

generate.sample.MH(N, file, beta, margin.list)

71



generate.sample.mix package:SNZ R documentation

Generates a data frame by sampling from a mixture model

Description:

Creates a file of synthetic data of specified size by sampling with replacement
from a the probability distribution implied by a mixture model.

Usage:

generate.sample.mix(N, file, params)

Arguments:

N: The number of records to be generated.

file: The name of the file where the data is to be stored.

params: The parameters of the mixture model, as calculated by the func-
tions mixture.fitter.single or mixture.fitter.fusion.

Details:

The function produces a csv file of N records. Each record consists of the
values (i1, . . . , iK) of the variables corresponding to the elements of the list
margin.list , and is the result of sampling with replacement from the mixture
distribution implied by the parameters in params.

Value:

The function returns no value but a csv file containing N records is created.

72



Example:

Kvec<-c(3,4,2)

N=50000

T=2

file = "mydata.csv"

y = runif(prod(array.dim)))

y=y/sum(y)

prob.table<-array( y, dim=Kvec, dimnames =

list(A = paste("a",1:Kvec[1], sep=""),

B=paste("b",1:Kvec[2], sep=""), C=paste("c",1:Kvec[3], sep="")))

params= mixture.fitter.single(prob.table, T)

generate.sample.mix(N, file, params)

73



generate.sample.prob package:SNZ R documentation

Generates a data frame by sampling from a probability table

Description:

Creates a file of synthetic data of specified size by sampling with replacement
from a specified probability table.

Usage:

generate.sample.prob(N, file, prob.table)

Arguments:

N : The number of records to be generated.

file: The name of the file where the data is to be stored.

prob.table: The probability table.

Details:

The function produces a csv file of N records. Each record consists of the
values (i1, . . . , iK) of the variables corresponding to the dimensions of the array
containing the probability table, and is the result of selecting a single cell i
with the probabilities in prob.table.

Value:

The function returns no value but a csv file containing N records is created.

Example:

Kvec<-c(3,4,2)

N=50000 file = "mydata.csv" y = runif(prod(array.dim)))

prob.table<-array( y, dim=Kvec, dimnames =

list(A = paste("a",1:Kvec[1], sep=""),

B=paste("b",1:Kvec[2], sep=""), C=paste("c",1:Kvec[3], sep="")))

generate.sample.prob(N, file, prob.table)

74



is.standard package:SNZ R documentation

Tests if argument is a data frame in standard form

Description:

Checks to see if the argument is a data frame in standard form, and returns
TRUE or FALSE accordingly.

Usage:

is.standard(data.df)

Arguments:

data.df: The object to be tested

Details:

The function tests if the argument is a data frame, checks that the first column
contains counts, and that the remaining columns are all factors.

Value:

A logical value

Example:

is.standard(data.df)

75



ipf.fitter package:SNZ R documentation

Fits a log-linear model defined by a set of margins using IPF

Description:

Fits the a log-linear model defined by a set of margins, which are in the form
of a list of relative frequency tables, using IPF

Usage:

ipf.fitter(array.list, MAXITER = 20)

Arguments:

array.list: A list of arrays, where each array contains a table of relative
frequencies summing to one.

MAXITER: The number of IPF iterations to be performed.

Details:

The function performs MAXITER iterations of the IPF algorithm, ajusting each
margin in the list in turn. The arrays in array.list must have compatible
variable names and factor levels.

Value:

An array containing the fitted probability table.

76



Example:

# margins are in data frames income occupation sex.df,

# income hours sex.df, hours occupation sex.df,

# hours income occupation.df

# convert dfs to arrays of relative frequencies

temp = df2table(income occupation sex.df)

income occupation sex = temp/sum(temp)

temp = df2table(income hours sex.df)

income hours sex = temp/sum(temp)

temp = df2table(hours occupation sex.df)

hours occupation sex = temp/sum(temp)

temp = df2table(hours income occupation.df)

hours income occupation = temp/sum(temp)

# make the list

array.list = list(hours occupation sex, hours income occupation,

income occupation sex, income hours sex)

# calculate the fitted table of relative frequencies:

result.table = ipf.fitter(array.list, MAXITER=100)

77



KLDist package:SNZ R documentation

Computes Kullback-Leibler divergence

Description:

Calculates the Kullback-Leibler divergence between the empirical frequencies
in freq.array and the mixture model specified by params.

Usage:

KLDist(freq.array, params)

Arguments:

freq.array: an array of relative frequencies.

params: data structure returned by mixture.fitter single or

mixture.fitter.fusion containing the parameters of a mixture model

Details:

The function expects that the orders of the factors and levels in each argument
are identical.

Value:

The KL divergence between the two distributions.

Example:

params = mixture.fitter.single(freq.array, T=10)

KLDist(freq.array,params)

78



loglin2table package:SNZ R documentation

Calculates fitted probability table from the parameters of a log-linear model

Description:

Calculates the fitted probability table when supplied the parameter vector,
the numbers of levels for each factor and optionally a list of factor levels.

Usage:

loglin2table(beta, Kvec, dimnames=NULL)

Arguments:

beta: The parameter vector, usually created by the function log.lin.fitter.

Kvec: A vector giving the dimensions of the array representing the proba-
bility table, or, equivalently, the number of levels for each of the factors
in the corresponding standard data frame.

dimnames: The dimnames attribute of the array, a list of factor levels.

Details:

The function produces an array representing the fitted probability table cor-
responding to the parameter vector beta. Care must be taken to ensure that
the array dimensions in Kvec and the factor levels in dimnames are compatible
with the ordering of the parameters in beta.

Value:

An array representing the probability table.

79



Example:

# suppose beta is the parameter vector in example 9

#the following calculates the corresponding fitted probability table

Kvec = c(2,3,4,3,6)

dimnames = list(A=1:Kvec[1], B=1:Kvec[2], C=1:Kvec[3], D=1:Kvec[4],

E=1:Kvec[5])

result.table = loglin2table(beta, Kvec, dimnames)

80



log.lin.fitter package:SNZ R documentation

Fits a log-linear model by the Fisher scoring method

Description:

Fits a log-linear model by the Fisher scoring method, to a set of counts con-
tained in a file

Usage:

log.lin.fitter(countfile, Kvec, MAXITER=20, TOL=1.0e-6)

Arguments:

countfile: A text file containing the complete set (including zeroes) of
counts or relative frequencies in reverse lexographic order as determined
by Kvec.

Kvec: A vector giving the dimensions of the array representing the proba-
bility table, or, equivalently, the number of levels for each of the factors
in the corresponding standard data frame.

MAXITER: The maximum number of Fisher scoring iterations.

TOL: The convergence criterion: if successive iterations of beta differ by less
than TOL, the iterations terminate.

Details:

The function fits a log-linear model with all 3- and higher-order interactions
zero, using Fisher scoring. The counts, assumed to be in reverse lexographic
order, are read from the file countfile, and the model matrix is generated
line by line and never stored. The score vector and information matrix are re-
calculated at each iteration, reading in the data from the file each time. Thus,
the complete set of counts never needs to be stored in the R workspace, so the
limiting factor as far as memory is concerned is the number of parameters, not
the number of cells. The function returns the parameter vector of the fitted
model, with the oder of the parameters consistent with the entries in Kvec.
The product of the elements of Kvec should equal the number of entries in
the file countfile. The counts are read in a line at a time and the score
vector and information matric accumulated, with each line being processed as
a block.

Value:

The parameter vector beta of the fitted model.

81



Example:

test.df = data.frame(Count=rpois(prod(Kvec),10),

expand.grid(A=factor(1:2),B=factor(1:3),

C=factor(1:4),D=factor(1:3),E=factor(1:6)))

countfile = "testfile.txt"

write(test.df$Count, countfile, ncolumns=100)

Kvec=c(2,3,4,3,6)

beta = log.lin.fitter(countfile, Kvec)

82



make.all package:SNZ R documentation

Creates a set of data frames containing the tablebuilder tables

Description:

Creates a set of data frames containing the tablebuilder tables in the R
workspace

Usage:

make.all(path)

Arguments:

path: The path of the supplied directory SNZtables. If absent, SNZtables
must be the current directory.

Details:

Executing this function causes the set of Tablebuilder tables to be created in
the workspace. Note that the path, if given, should use the R double backslash
notation.

Value:

None

Example:

make.all("F:\\Stats NZ\\2007 project\\SNZTables")

83



make.margin package:SNZ R documentation

Calculates the one-dimensional margins of a table of counts stored as a text file

Description:

Creates a list of one-dimensional margins of a table of counts or relative fre-
quencies stored as a text file in reverse lexigraphic order, as for the function
log.lin.fitter

Usage:

make.margin(countfile, Kvec)

Arguments:

countfile: A text file containing the complete set (including zeroes) of
counts or relative frequencies in reverse lexographic order as determined
by Kvec.

Kvec: A vector giving the dimensions of the array representing the proba-
bility table, or, equivalently, the number of levels for each of the factors
in the corresponding standard data frame.

Details:

The function produces a list of vectors, one per margin, each vector containing
the marginal counts for that factor. Used in conjunction with the function
generate.sample.MH.

Value:

A list of vectors, one for each element of Kvec.

Example:

Kvec<-c(3,4,2)

margin.list=make.margin("countfile", Kvec)

84



mixture.fitter.single package:SNZ R documentation

Fits a mixture model to single sample

Description:

Fits a mixture model, given a sample from a population in the form of an
array of relative frequencies

Usage:

mixture.fitter.single(freq.array, T, params0=NULL,

MAXITER=100, TOL=1.0e-8)

Arguments:

freq.array An array containing the sample in the form of relative frequencies.

T: The number of mixture components

params0: Initial values for the parameters. If NULL, starting values are
generated randomly.

MAXITER: Maximum number of iterations.

TOL: Tolerance, iterations stop of successive values of τ differ by less than
TOL.

Details:

The function fits a mixture model with T components by maximum likelihood,
using an iteration scheme equivalent to the EM algorithm.

Value:

A list containing elements

tau: The mixing probabilities.

theta: A list of Ik ×T matrices. The tth column of the kth matrix contains
the distribution of Ak for the tth component.

dimnames: A named list containing the factor levels.

85



Example:

A = df2table(income hours sex.df)

A = A/sum(A) # convert to relative frequencies

params=mixture.fitter.fusion(A, T=10, params0 = NULL, MAXITER=100)

86



mixture.fitter.fusion package:SNZ R documentation

Fits a mixture model to a set of overlapping samples

Description:

Fits a mixture model, given a set of samples from a population with different
but overlapping sets of variables.

Usage:

mixture.fitter.fusion(array.list, T, params0=NULL, MAXITER=100, TOL=1.0e-8)

Arguments:

array.list A list, each member of which is an array containing the sample
relative frequencies.

T: The number of mixture components

params0: Initial values for the parameters. If NULL, starting values are
generated randomly.

MAXITER: Maximum number of iterations.

TOL: Tolerance, iterations stop of successive values of τ differ by less than
TOL.

Details:

The function fits a mixture model with T components by maximum likelihood,
using an iteration scheme equivalent to the EM algorithm.

Value:

A list containing elements

tau : The mixing probabilities.

theta: A list of Ik ×T matrices. The tth column of the kth matrix contains
the distribution of Ak for the tth component.

dimnames: A named list containing the factor levels.

87



Example:

A = df2table(income hours sex.df)

A = A/sum(A) # convert to relative frequencies

B = df2table(income occupation sex.df)

B = B/sum(B)# convert to relative frequencies

array.list = list(A,B)

params=mixture.fitter.fusion(array.list, T=10,

params0=NULL, MAXITER=100)

88



params2table package:SNZ R documentation

calculates a probability table from a set of mixture parameters

Description:

Calculates the probability table corresponding to a set of mixture parameters.

Usage:

params2table(params)

Arguments:

params : A list containing elements tau, theta and dimnames as specified
in the output of mixture.fitter.single above.

Details:

The function produces an array containing the probability table correspond-
ing to the mixture parameters in params, and labels the array with the list
dimnames if present in the list params.

Value:

An array containing the fitted probability table.

Example:

A = df2table(income hours sex.df)

A = A/sum(A) # convert to relative frequencies

params=mixture.fitter.fusion(A, T=10,

params0 = NULL, MAXITER=100) params2table(params)

89



param.count package:SNZ R documentation

Counts the number of parameters in a log-linear model

Description:

Counts the number of parameters in a log-linear model, given the order of
the model and the number of levels for each factor. (A model has order 2 if
there are no 3- and higher-order interactions present, order 3 if there are no
4- and higher-order interactions present, and so on.)

Usage:

param.count(Kvec, order=2)

Arguments:

Kvec: A vector giving the dimensions of the array representing the proba-
bility table, or, equivalently, the number of levels for each of the factors
in the corresponding standard data frame..

order: the oder of the log-linear model.

Details:

The number of parameters (including the constant term) of the log-linear
model of given order is calculated, using a simple combinatorial formula.

Example:

## calculate the number of parameters in a 2-factor interaction model

param.count(Kvec)

90



table2df package:SNZ R documentation

Converts an array to a data frame in standard form

Description:

Converts an array into a data frame in standard form, and issues an error
mesage if the input is not capable of conversion to standard form (e.g. if there
are negative or non-integer entries in the array.)

Usage:

table2df(my.table)

Arguments:

my.table: a multidimensional array.

Details:

If the array represents a contingency table (i.e. if the entries are non-negative
integers) it is transformed into a data frame in standard form. Otherwise an
error message is issued. The count variable in the data frame is named y.

Example:

## convert array my.table to a data frame data.df in standard form

data.df = table2df(my.table)

91



A.2 Installation of the R functions

We have provided a file of the R functions used in the report, in the file SNZ2008.r. These
include the functions documented above, and also some other utility functions called by
these. The functions should be be run under Windows.

To use these functions, simply unzip the file SNZ2008.zip, place the contents (includ-
ing the R source code in file SNZ2008.r) in some suitable folder. The zip file contains
the file SNZ2008.r along with two folders, SNZTables and CURF. The first of these folders
contains R scrips and files for producing R versions of the Tablebuilder files as described
in Section 4.2.1, while the second contains R scripts and files for producing data frames
containing subsets of the CURF variables. Their use is described in Section 4.2.2.

To use the functions, invoke R, choose “Source R code...” from the R file menu, and
select the file SNZ2008.r. You are then ready to go. You can follow the discussion in
Sections 4.2.1 and 4.2.2 to read in the example data from the Tablebuilder files and the
CURF, in the form of R data frames.

92



A.3 R function listings

In this appendix, we provide a listing of the R functions in the file SNZ2008.r.

# Functions for Windows version, 2008 project

##########################################################################
#
check.data.frame=function(data.df){

# checks that the data frame is in standard form
# returns a list with elements status
# (=0 if arg cannot be coereced into the standard form, otherwise 1)
# and data ( the possibly modified data frame in standard form,
# if status =1, otherwise NULL)
# standard form is a data frame with the first column a numeric variable,
# and the other variables factors.

# The numeric variable must be a non-negative vector of counts.

# first check argument is a data frame, quit if not

if(!is.data.frame(data.df))return (list(status=0, data=NULL,
message = "Not a data frame"))

n.var<-dim(data.df)[2]
is.number=logical(n.var)
for(j in 1:n.var) is.number[j]<-is.numeric(data.df[,j])

# check if exactly one is numeric
if(!(sum(is.number)==1)) return (list(status=0, data=NULL, message =
"More than one numeric variable"))

# check to see if y is non-neg
if(!all(data.df[,is.number]>=0)) return (list(status=0, data=NULL,
message ="Cannot have non-negative counts"))

# check that all factors have more than one level
use.cols = (1:n.var)[!is.number]
max.levels = numeric(length(use.cols))
for(i in 1:length(use.cols)) max.levels[i]=length(levels(data.df[,i]))
if(any(max.levels==1))stop(paste("All factors must have at least 2 levels.\n
The following variables have only one:",

paste(var.names[max.levels==1], collapse=", ")) )

# now re-arrange factors into alphabetic order
# first get name of count variable

93



count.name = names(data.df)[is.number]
data.df = data.frame(data.df[,is.number],
data.df[, use.cols[order(names(data.df)[!is.number])]])
names(data.df)[1] = count.name
# and counts in reverse lexographic order

dims = get.dim(data.df)
sortvec = rep(1,dim(data.df)[1]); myprod = 1
for(l in 1:length(dims)){
sortvec=(unclass(data.df[,l+1]) - 1)*myprod + sortvec
myprod = myprod * dims[l]
}

# combine duplicated rows
data.df = data.df[order(sortvec),]
sortvec = sort(sortvec)
no.dups = !duplicated(sortvec)
counts = tapply(data.df[,1], sortvec, sum)
data.df = data.df[no.dups, ]
data.df[,1] = counts

list(status=1, data=data.df, message ="Data frame OK")
}

# gets the number of levels of the factors in the
# standard data frame data.df

get.dim = function(data.df){

J = dim(data.df)[2] -1 # assumes counts are in column 1
dims=numeric(J)
for(j in 1:J)dims[j] = length(levels(data.df[,j+1]))
dims
}

##############################################################
#
is.table.df = function(data.df){

# wrapper for check.data.frame, tests if object is
# a data frame representing a table
check.data.frame(data.df)$status ==1
}

##############################################################
#
as.standard = function(data.df){

94



# wrapper for check.data.frame, tests if object is a
# data frame representing a table, returns table in
# standard form if so

result = check.data.frame(data.df)
if(result$status!=1)stop(result$message)
result$data
}
################################################################
#
table2df<- function(table, include.zero=FALSE){

# function to convert an array "table" to a data frame
# in standard form

# converts a numerical array to a data frame

# First check input is an array

if(!is.array(table))stop("Input must be an array")

# then check presence of dimnames

dimlist=dimnames(table)
if(is.null(dimlist)){
n.var<-length(dim(table))
var.names= paste("V", 1:n.var, sep="")
dimlist<-vector(n.var, mode="list")
for(i in 1:n.var) dimlist[[i]] = as.character(1:(dim(table)[i]))
names(dimlist)=var.names
}
y=as.vector(table)
if(any(y<0))stop("Table must have non-negative counts")
data.df=data.frame(y, expand.grid(dimlist))
if(include.zero) data.df else data.df[y!=0,]
}

###################################################################
#
df2table = function(data.df){

# converts data frame to array
# first checks that the data frame is in standard form,
# if not, coerces into standard form, bails out if not possible.
# then forms array after resoring missing zero counts

# first convert input to standardised data frame, quit if not

95



data.df = as.standard(data.df)

# now restore zero counts
dims = get.dim(data.df)
sortvec = rep(1,dim(data.df)[1]); myprod = 1
for(l in 1:length(dims)){
sortvec=(unclass(data.df[,l+1]) - 1)*myprod + sortvec
myprod = myprod * dims[l]
}
counts = numeric(prod(dims))
counts[sortvec] = data.df[,1]

# get levels for each factor

levels.list = vector(mode="list", length = length(dims))
for ( i in 1:length(dims))levels.list[[i]] = levels(data.df[,i+1])
names(levels.list) = names(data.df)[-1]
array(counts, dims, dimnames=levels.list)
}

#################################################################
#
n.to.nvec = function(n, base.vec){

# converts the integer n into a mixed-base representation
# bases are in base.vec
# not called by users

# eg if (n-1) = i-1 + (j-1)*I + (k-1)*I*J + (l-1)*I*J*K
# returns (i-1,j-1,k-1,l-1)

Nvar=length(base.vec)
l.index = numeric(Nvar)
cumlevels = (c(1,cumprod(base.vec)[-Nvar]))
nn=n-1
for(index in length(base.vec):1){
l.index[index] = nn%/%cumlevels[index]
nn = nn %% cumlevels[index]
}
l.index
}

#####################################################################
#

96



ipf.fitter = function(..., MAXITER=20){

# program to calculate cell probabilities using IPF, all R version
# inputs: ... : either a single list of arrays or each argument is an array
# MAXITER: maximum number of IPF iterations

array.list<-list(...)

if((length(array.list)==1)&is.list(array.list[[1]])) array.list=array.list[[1]]

# get names and dimensions
names.list = vector(mode="list", length=length(array.list))
dim.list = vector(mode="list", length=length(array.list))

vars=NULL; dims = NULL

for(i in 1:length(array.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

# remove duplicates and sort variable names into order

dup<-duplicated(vars)

var.names<-vars[!dup]
max.levels<-dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

# check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if( !is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else

97



{
if(length(first.levels) !=

length(current.levels)) stop(paste("Factor levels
for factor", name, "not compatible"))

if(any(first.levels!= current.levels))
stop(paste("Factor levels for factor", name, "not compatible"))

}
}

}
levels.list[[j]] = first.levels
}

names(levels.list) = var.names
# make a binary matrix representing effect names
# ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

N.effect = length(array.list)
Nvar = length(var.names)

effect.mat = matrix(FALSE,N.effect, Nvar)
margin = vector(mode="list", length= N.effect)

for (i in 1: N.effect){
effect.mat[i,match(names.list[[i]],var.names)] = TRUE
}

# Now do IPF iterations
x = array(1/prod(max.levels), dim=max.levels)
index = 1:length(max.levels)

for(iter in 1:MAXITER){
for(i in 1:N.effect){
temp=apply(x, index[effect.mat[i,]],sum)
xfactor = ifelse(temp==0, 0, array.list[[i]]/temp)
x= x*expand(xfactor, max.levels, effect.mat[i,])
}}
dimnames(x) = levels.list
x
}

##############################################################
#
expand = function(x, max.levels, margin){
# expands a marginal table to a complete table
# x: the marginal table

98



# maxlevels: the vector of factor lengths for the complete table
# margin: a logical vector indicating the factors defining the margin
# ie T,F,F,T indicates the AD margin of the complete ABCD table
# used for IPF, not called directly by users

index = 1:length(max.levels)
temp.levels = c(index[margin],index[!margin])
xx = array(x, dim=max.levels[temp.levels])
perm = match(index, temp.levels)
aperm(xx, perm)
}

all.poss.combs = function(n,d, chars=c(letters,LETTERS,0-9)){
# calculates all possible combinations of n characters from chars, taken d at a time
# n must be <= 62
if(n>62)stop("Value of n must be less than 62")
sort(if(d==1) paste(chars[1:n], sep="") else
if (n==d) paste(chars[1:d], collapse="") else
c(all.poss.combs(n-1,d,chars), paste(all.poss.combs(n-1,d-1,chars),chars[n], sep="")))
}

###################################################################
param.count = function(dimvec, order=2, chars = c(letters,LETTERS,0-9)){
# calculates number of parameters in model with all interactions of order "order"
if(length(dimvec)<order)stop("length of dimvec<order")
dimvec = dimvec-1
my.sum = 1
for ( i in 1:order){
all.combs = all.poss.combs(length(dimvec), i,chars)
index = strsplit(all.combs, split="")
index = lapply(index, function(x) match(x, chars))
my.sum = my.sum + sum(unlist(lapply(index, function(aaa) prod(dimvec[as.numeric(unlist(aaa))])
}
my.sum
}

##################################################
nvec.to.n = function(nvec, base.vec){
# converts mixed base representation in nvec into an integer i.e.
# given nvec = i-1, j-1, k-1, l-1 returns

#(n-1) = i-1 + (j-1)*I + (k-1)*I*J + (l-1)*I*J*K

nn = nvec[1]
myprod=1

99



for(a in 1:(length(base.vec)-1)){
myprod = myprod*base.vec[a]
nn = nn + nvec[a+1]*myprod
}

nn + 1
}

######################################################################
get.margin.index = function(x, margin, dimvec){
# represents factor level combination as a mixed-radix number
# margin: a vector of logicals indicating which varables are to be included
# dimvec: vector givoing numbers of factor levels of each variable

nvec.to.n(x[margin]-1,dimvec[margin])
}

######################################################################
get.marginal.table = function(y, level.mat, margin, dimvec){

# computes marginal table as a vector the same dimension as full table

# y: first column of table.df
# level.mat: table.df as a numerical matrix, first column removed
# margin: a vector of logicals indicating which varables are to be included
# dimvec: vector givoing numbers of factor levels of each variable

index = apply(level.mat, 1, get.margin.index, margin, dimvec)
tapply(y, index, sum)[index]
}

########################################################################

make.margin = function(A.df, margin){

# makes marginal table as a data frame in standard form
# margin: vector of indices defining the margin

# check for correct form of A.df

# unclass factors

100



for(j in 2:dim(A.df)[2]){
A.df[,j] = if(is.factor(A.df[,j]))unclass(A.df[,j]) else A.df[,j]
}

level.mat = as.matrix(A.df[,-1])
y = A.df[,1]
dimvec = get.dim.num (A.df)

if(length(margin)>length(dimvec))stop("margin vector wrong length")
if(!is.numeric(margin)) stop("margin must be vector of indices")

# make hash vector

index=0; prod=1
for( i in 1:length(dimvec[margin])){

index = index + (level.mat[,margin[i]] - 1)*prod
prod = prod * dimvec[margin[i]]

}
# compute margins
index = index + 1
counts = tapply(y, index, sum)

N.margin=length(margin)
dim.margin=dimvec[margin]
level.mat = matrix(0, length(counts), N.margin)
cumlevels = (c(1,cumprod(dim.margin)[-N.margin]))
margin.index=as.numeric(names(counts)) - 1
for(i in length(dim.margin):1){

level.mat[,i] = margin.index%/%cumlevels[i]
margin.index = margin.index %% cumlevels[i]
}

level.mat = level.mat + 1
out.df = data.frame(counts, level.mat)
dimnames(out.df) = list(1:length(counts), names(A.df)[c(1, margin+1)])
out.df
}

########################################################################
#
make.margin.params = function(params, margin){

# computes parameters for marginal marginal probability table
# margin: a vector of indices representing the margin

J = length(params$tau)
Jnew = length(margin)

101



new.theta = vector(mode="list", length=Jnew)
jj=1
for(j in margin){
new.theta[[jj]] = params$theta[[j]]
jj=jj+1
}
newlist = vector(length=Jnew, mode="list")
for(j in 1:Jnew) newlist[[j]] = params$dimnames[[margin[j]]]
names(newlist) = names(params$dimnames)[margin]
list(tau=params$tau,theta=new.theta, dimnames=newlist)
}

############################################################
# function to turn ungrouped data frame into a grouped data frame

# essentially converts a data set from ungrouped to gouped form

convert = function(curf.df, use.vars){

# curf.df: the data frame containing the subsetted curf e.g. population group 1
# use.vars: a vector denoting which columns of the curf are to be processed

# first convert everything to factors with levels 1,2,3,

working.df = as.numeric(factor(curf.df[,use.vars[1]]))
if(length(use.vars)>1){
for( i in 2: length(use.vars)){
temp.factor = as.numeric(factor(curf.df[,use.vars[i]]))
working.df = data.frame(working.df, temp.factor)
}
}

names(working.df) = names(curf.df)[use.vars]

# get number of factor levels

base.vec = use.vars
for( j in 1: length(use.vars)) base.vec[j] = length(unique(working.df[,j]))

# work out sorting vector

sort.vec = apply(working.df-1, 1, nvec.to.n, base.vec)
y = table(sort.vec)

sort.mat = matrix(sort(unique(sort.vec)), length(y),1)
new.df=data.frame(as.vector(y),t(apply(sort.mat, 1, n.to.nvec, base.vec)) + 1)

102



names(new.df) = c("y", names(curf.df[use.vars]))
new.df
}
#############################################################

########################################################
# a function to convert the file curf1a.df to grouped form

convert = function(curf.df){

# curf.df: the data frame containing the subsetted curf e.g. population group 1
# assumed all levels are coded as 1,2,3,etc

# get number of factor levels

base.vec = numeric(dim(curf.df)[2])
for( j in 1: length(base.vec)) base.vec[j] = length(unique(curf.df[,j]))

# work out sorting vector

sort.vec = apply(curf.df-1, 1, nvec.to.n, base.vec)
y = table(sort.vec)

sort.mat = matrix(sort(unique(sort.vec)), length(y),1)
new.df=data.frame(as.vector(y),t(apply(sort.mat, 1, n.to.nvec, base.vec)) + 1)
names(new.df) = c("y", names(curf.df))
new.df
}
############################################################################

compact.data.frame = function(data.df){
# compacts table by combining identical factor level combinations
# expects counts in the first column

if(!is.numeric(data.df[,1]))stop("data frame must have counts in the first column")
max.levels = get.dim(data.df)
prod = 1
index = 0
dimnames = vector(length=length(max.levels), mode="list")
for(i in 1:length(max.levels)){
index = index + (as.numeric(unclass(data.df[,i+1]))-1)*prod
prod = prod * max.levels[i]
dimnames[[i]]=levels(data.df[,i+1])

}

103



totals = tapply(data.df[,1], index,sum)
X = matrix(0, length(totals),length(max.levels))
cumlevels = (c(1,cumprod(max.levels)[-length(max.levels)]))
index = as.numeric(names(totals))
for(i in length(max.levels):1){
X[,i] = index%/%cumlevels[i]
index = index %% cumlevels[i]
}
X=X+1
out.df = data.frame(Count=totals)
for(j in 1:length(max.levels))out.df = data.frame(out.df,factor(X[,j], labels = levels(data.df
colnames(out.df)=colnames(data.df)
out.df
}

##########################################################################

convert.to.numeric = function(data.df){
# converts a data frame with factors into one with numeric levels
# assumes data.df in standard form
nvar = dim(data.df)[2]-1
out.df = data.frame(data.df[,1])
for(j in 1:nvar)out.df = data.frame(out.df, as.numeric(unclass(data.df[,j+1])))
colnames(out.df) = colnames(data.df)
out.df
}

#############################################################

# Function to compute G-squared for mixture model fit

###################################################################
G.sq = function(A.df, params){
# calculates log-likelihood
theta=params$theta
tau=params$tau
T=length(tau)
prob1=numeric(dim(A.df)[1])
J = dim(A.df)[2]-1
for(t in 1:T){
myprod=1
for(j in 1:J)myprod=myprod * theta[[j]][A.df[,j+1],t]
prob1 = prob1 + tau[t]*myprod
}

104



n=sum(A.df[,1])
sum(A.df[,1]*log(A.df[,1]/(n*prob1)))
}

######################################################
pareto = function(A.df, params, number = 30, main="Fitted probabilities versus Frequencies"){

# compares fitted and empirical probs via a pareto graph

theta=params$theta
tau=params$tau
T=length(tau)
prob1=numeric(dim(A.df)[1])
J = dim(A.df)[2]-1
for(t in 1:T){
myprod=1
for(j in 1:J)myprod=myprod * theta[[j]][A.df[,j+1],t]
prob1 = prob1 + tau[t]*myprod
}

prob.empirical = A.df[,1]
prob.empirical = prob.empirical/sum(prob.empirical)

p.e = sort(prob.empirical, decreasing=TRUE)[1:number]
p.f = prob1[order(prob.empirical, decreasing=TRUE)][1:number]

barplot(rbind(p.e, p.f), beside=TRUE, legend.text = c("Empirical probs", "Fitted probs"), main=

}

######################################################################
#

number.of.params = function(A.df,T, type="n"){
K = if(type=="n")get.dim.num(A.df) else get.dim(A.df)
T-1 + T*(sum(K)-length(K))
}

#####################################################################

###################################################################
G.sq.log.lin = function(A.df, glm.obj){
# calculates log-likelihood
probs= predict(glm.obj, type="response")
probs=probs/sum(probs)
n=sum(A.df[,1])
sum(A.df[,1]*log(A.df[,1]/(n*probs)))
}

105



######################################################
pareto.log.lin = function(A.df, glm.obj, number = 30, main="Fitted probabilities versus Frequen

# compares fitted and empirical probs via a pareto graph

prob.fitted = predict(glm.obj, type="response")
prob.fitted = prob.fitted/sum(prob.fitted)

prob.empirical = A.df[,1]
prob.empirical = prob.empirical/sum(prob.empirical)

p.e = sort(prob.empirical, decreasing=TRUE)[1:number]
p.f = prob.fitted[order(prob.empirical, decreasing=TRUE)][1:number]

barplot(rbind(p.e, p.f), beside=TRUE, legend.text = c("Empirical probs", "Fitted probs"), main=

}

get.index = function(n, base.vec,j){

# converts the integer n into a mixed-base representation
# and returns the jth element of the representation
# not called by users

# eg if (n-1) = i-1 + (j-1)*I + (k-1)*I*J + (l-1)*I*J*K
# returns (i-1,j-1,k-1,l-1)

Nvar=length(base.vec)
cumlevels = (c(1,cumprod(base.vec)[-Nvar]))
nn=n-1
for(index in length(base.vec):j){
l.index = nn%/%cumlevels[index]
nn = nn %% cumlevels[index]
}
l.index
}
###################################################################

df2table.mix = function(data.df, tau=0.99){

# function to mix empirical distribution with independence distribution
# data.df: a data frame in standard form representing a table
#tau: the mixing probability

if(tau<0 || tau>1)stop("tau must be a probability")

106



# check if data.df is a proper representation of a table
data.df = as.standard(data.df)
table.e = df2table(data.df)
N=sum(table.e)
table.e = table.e/N
# compute independence table
table.i = tapply(data.df[,1], data.df[,2], sum)/N

if(dim(data.df)[2]>2)for(i in 3:dim(data.df)[2])table.i = outer(table.i, tapply(data.df[,1], d
tau*table.e + (1-tau)*table.i
}

#########################################################
log.lin.fitter = function(countfile, Kvec, MAXITER=100, TOL=1.0e-6){

# fits log-linear model counts ~ (A1....+AK)^2 to data in countfile
# countfile contains the counts in reverse lexographic order
# (first factor varying most rapidly)
# processes input file a row at a time
# length of row limited by computer memory
# Kvec is the vector of factor level lengths

n.param = param.count(Kvec, order=2) # currently only does 2 factor ints
beta =get.beta.start(countfile, Kvec) # get starting values
K=length(Kvec)

del=2*TOL
iter=1
while((iter<MAXITER)&&(del>TOL)){

rhs = rep(0,n.param)
A = matrix(0,n.param,n.param)
i=1
skip=0

while(TRUE){
y = scan(countfile, skip=skip, nlines = 1, quiet=TRUE)
if(length(y)==0) break
for(j in 1:length(y)){
# get x
ivec=n.to.nvec(i, Kvec) + 1
x=1
for(l in 1:K) x=c(x,(ivec[l]==(2:Kvec[l])))

107



for(l1 in 1:(K-1)){
for(l2 in (l1+1):K){
dvec1 = (ivec[l1]==(2:Kvec[l1]))*1
dvec2 = (ivec[l2]==(2:Kvec[l2]))*1
x = c(x, as.vector(outer(dvec1,dvec2)))

}}

mu = exp(sum(x*alpha))
rhs = rhs + x*(y[j]-mu)
A = A + outer(x,x)*mu
i = i + 1

}
skip=skip + 1

}
delvec = solve(A,rhs)
beta = beta + delvec
del = sum(abs(delvec))

}
beta
}

#########################################################
get.beta.start= function(countfile, Kvec){

# fits linear model log(counts) ~ (A1....+AK)^2 to data in countfile
# to give starting values for the function log.lin.fitter
# countfile contains the counts in reverse lexographic order
# (first factor varying most rapidly)
# length of rows of file limited by computer memory
# Kvec is the vector of factor level lengths

n.param = param.count(Kvec, order=2) # currently only does 2 factor ints

K=length(Kvec)

i=1
rhs = rep(0,n.param)
A = matrix(0,n.param,n.param)
skip=0

while(TRUE){
y = scan(countfile, skip=skip, nlines = 1, quiet=TRUE)
if(length(y)==0) break
ly=ifelse(y==0, log(0.5), log(y))
for(j in 1:length(y)){
# get x

108



ivec=n.to.nvec(i, Kvec) + 1
x=1
for(l in 1:K) x=c(x,(ivec[l]==(2:Kvec[l])))
for(l1 in 1:(K-1)){

for(l2 in (l1+1):K){
dvec1 = (ivec[l1]==(2:Kvec[l1]))*1
dvec2 = (ivec[l2]==(2:Kvec[l2]))*1
x = c(x, as.vector(outer(dvec1,dvec2)))

}}
rhs = rhs + x*ly[j]
A = A + outer(x,x)
i = i + 1

}
skip=skip + 1

}
solve(A,rhs)
}

##########################################################
calculate.probs= function(beta, Kvec){

# generates fitted probabilities from a given parameter
# vector beta
# Kvec is the vector of factor level lengths

K=length(Kvec)
probs = numeric(prod(Kvec))
for(i in 1:prod(Kvec)){

# get x
ivec=n.to.nvec(i, Kvec) + 1
x=1
for(l in 1:K) x=c(x,(ivec[l]==(2:Kvec[l])))
for(l1 in 1:(K-1)){

for(l2 in (l1+1):K){
dvec1 = (ivec[l1]==(2:Kvec[l1]))*1
dvec2 = (ivec[l2]==(2:Kvec[l2]))*1
x = c(x, as.vector(outer(dvec1,dvec2)))

}}
probs[i] = exp(sum(x*beta))

}
probs/sum(probs)
}

################################################
# new version of ml fitting for mixture models
# uses array input rather than df, minimises storage requirements
# modifies calculation of theta

109



# data structures

#Input data: a J-dimensional array A, containing the probabilities to be fitted

# The mixture will have T components

mixture.fitter.single = function(A, T, params0=NULL, type="n", MAXITER=100, tol=1.0e-8){

# extract counts and totals

# get levels for all the factors

K = dim(A)
J = length(K)
N=prod(K)

if(is.null(params0)){
tau = runif(T)
tau=tau/sum(tau)

theta = vector(mode="list", length=J)
for(j in 1:(J)){
theta[[j]] = matrix(runif(K[j]*T), K[j], T)
theta[[j]] = t(t(theta[[j]]) /apply(theta[[j]], 2,sum))
}
} else{

tau=params0$tau
theta=params0$theta
}

iter=1
del=2*tol

# now iterate
while((iter<MAXITER)&&(del>tol)){
oldtau=tau
# compute pt.tot

p.tot = 0
for(t in 1:T){
ptt = theta[[1]][,t]
if (J>1)for(j in 2:J)ptt = outer(ptt, theta[[j]][,t])
p.tot = p.tot + tau[t]*ptt

110



}

for(t in 1:T){
ptt=theta[[1]][,t]
if (J>1)for(j in 2:J)ptt = outer(ptt, theta[[j]][,t])
ptt = tau[t]*ptt/p.tot
tau[t] = sum(A*ptt)

# compute thetas

r1=1
r2=N
for(j in 1:J){
r2 = r2/K[j]

index = rep(rep(1:K[j],rep(r1,K[j])),r2)
r1=r1*K[j]

theta[[j]][,t] = my.tapply(A*ptt, index, K[j])/tau[t]
}

}
del = sum(abs(tau-oldtau))
iter=iter+1
}

list(tau=tau, theta=theta, dimnames=dimnames(A))

}

##########################################################
params2table = function(params){
# calculates probability table from mixture parameters

J = length(params$theta)
T = length(params$tau)
prob.table=0
for(t in 1:T){
temp.table = params$theta[[1]][,t]
if(J>1) for(j in 2:J) temp.table = outer(temp.table, params$theta[[j]][,t])
prob.table = prob.table + params$tau[t]*temp.table
}
if(!is.null(params$dimnames))dimnames(prob.table) = params$dimnames
prob.table
}

111



##########################################################
my.tapply = function(x,g, ng){
# used in ML.fitter.big.v2
sums = numeric(ng)
for(i in 1:length(x)) sums[g[i]] = sums[g[i]] + x[i]
sums
}

################################################
# new version of ml fitting for mixture models
# uses array input rather than df, minimises storage requirements
# modifies calculation of theta

# data structures

#Input data: a J-dimensional array A, containing the probabilities to be fitted

# The mixture will have T components

mixture.fitter.fusion = function(array.list, T, params0=NULL, MAXITER=100, TOL=1.0e-8){

R = length(array.list)
# get names and dimensions
names.list = vector(mode="list", length=R)
dim.list = vector(mode="list", length=R)

vars=NULL; dims = NULL

for(i in 1:R) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

# remove duplicates and sort variable names into order

dup<-duplicated(vars)

var.names<-vars[!dup]
max.levels<-dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

112



# check for consistency of levels, record factor levels

J=length(var.names) # J is number of variables

levels.list = vector(mode="list", length=J)
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if( !is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels)) stop(paste("Factor levels for f

name, "not compatible"))
if(any(first.levels!= current.levels)) stop(paste("Factor levels for factor",

name, "not compatible"))
}

}

}

levels.list[[j]] = first.levels
}

names(levels.list) = var.names
varmat = matrix(FALSE, J, R)
for( i in 1: R) varmat[match(names(dimnames(array.list[[i]])), var.names),i]=TRUE

# get levels for all the factors

if(is.null(params0)){
# set up and initialise data structures for the parameters

tau = runif(T)
tau=tau/sum(tau)

theta = vector(mode="list", length=J)
for(j in 1:J){
theta[[j]] = matrix(runif(max.levels[j]*T), max.levels[j], T)
theta[[j]] = t(t(theta[[j]]) /apply(theta[[j]], 2,sum))
}

113



}else
{
tau=params0$tau
theta=params0$theta
}

ST = vector(mode="list", length=T)

iter=1
del=2*TOL

# now iterate
while((iter<MAXITER)&&(del>TOL)){
oldtau=tau
oldtheta = theta
# compute pt.tot
for (t in 1:T){

S=0
for(j in 1:J)ST[[j]] = numeric(max.levels[j])

for(r in 1:R){
jvec = (1:J)[varmat[,r]]
# compute denom of Q[i1,...ir,t]
p.tot = 0
for(tt in 1:T){
ptt = oldtheta[[jvec[1]]][,tt]
if (length(jvec)>1)for(j in 2:length(jvec))ptt = outer(ptt, oldtheta[[jvec[j]]][,tt])
p.tot = p.tot + oldtau[tt]*ptt
}

# compute Q[i1,...ir,t]
ptt = oldtheta[[jvec[1]]][,t]
if (length(jvec)>1)for(j in 2:length(jvec))ptt = outer(ptt, oldtheta[[jvec[j]]][,t])
ptt = oldtau[t]*ptt/p.tot
# Accumulate sums for sum(r) f[i1,...ir]Q[i1,...ir,t]

S = S + sum(array.list[[r]]*ptt)

# accumulate sums for sum(j,l,r) f[i1,...ir]Q[i1,...ir,t]

r1=1
K = dim.list[[r]]
r2=prod(K)

for(j in 1:length(jvec)){
r2 = r2/K[j]

114



index = rep(rep(1:K[j],rep(r1,K[j])),r2)
r1=r1*K[j]

ST[[jvec[j]]] = ST[[jvec[j]]] + my.tapply(array.list[[r]]*ptt, index, K[j])
}

}
tau[t] = S/R
for(j in 1:J) theta[[j]][,t] = ST[[j]]/sum(ST[[j]])

}
del = sum(abs(tau-oldtau))
iter=iter+1
print(c(iter,del))
}

list(tau=tau, theta=theta, dimnames=levels.list)

}

#######################################################################
# functions for generating data

###################################################################
# generate.sample.prob

generate.sample.prob = function(N, file, prob.table){

# generates a csv file containing the a sample generated according
# to the probabilities in prob.table

index = sample(prod(dim(prob.table)), N, replace=TRUE, prob = prob.table)

X = matrix(0,N,length(dim(prob.table)))
for(i in 1:length(index)) X[i,]=n.to.nvec(index[i], dim(prob.table))+1

X.df=data.frame(X)
colnames(X.df) = if(is.null(names(dimnames(prob.table)))) paste("V",1:length(dim(prob.table))
write.table(X.df, file, row.names=FALSE, quote=FALSE, sep=",")
}

#################################################################
# generate.sample.MH

generate.sample.MH = function(N, file, param.vec, margin.list, thin=10, burn = 1000){

# generates a csv file containing a sample generated
# according to the log-linear parameters in param.vec

115



Kvec = lapply(margin.list, length)
X = generate.data.MH(param.vec, margin.list, Kvec, N, thin=thin, burn = burn)
X.df=data.frame(X)
colnames(X.df) = if(is.null(names(dimnames(prob.table)))) paste("V",1:length(Kvec), sep="") el
write.table(X.df, file, row.names=FALSE, quote=FALSE, sep=",")
}

#################################################################
generate.sample.mix = function(N, file, params){

J = length(params$theta)
T = length(params$tau)
X =NULL

tvec = as.vector(rmultinom(1, N, prob = params$tau))
for( t in 1:T){
X.temp = matrix(0,tvec[t], J)
for(j in 1:J) X.temp[,j] = sample(dim(params$theta[[j]])[1], tvec[t], replace=TRUE, prob = para
X = rbind(X,X.temp)
}
# randomly reorder rows

X = X[order(runif(N)),]
X.df=data.frame(X)
colnames(X.df) = if(is.null(names(params$dimnames))) paste("V",1:length(Kvec), sep="") else na
write.table(X.df, file, row.names=FALSE, quote=FALSE, sep=",")
}

################################################################
make.margin = function(countfile, Kvec){
K = length(Kvec)
margin.list = vector(length=K, mode="list")
for(k in 1:K) margin.list[[k]] = rep(0, Kvec[k])
i=1
skip=0
while(TRUE){

y = scan(countfile, skip=skip, nlines = 1, quiet=TRUE)
if(length(y)==0) break
for(j in 1:length(y)){
ivec=n.to.nvec(i, Kvec) + 1
for(k in 1:K) margin.list[[k]] [ivec[k]] = margin.list[[k]] [ivec[k]] + y[j]
i = i + 1
}

116



skip=skip + 1
}

margin.list
}
###############################################################
# program to generate data using the metropolis-hastings algorithm

generate.data.MH = function(param.vec, margin.list, Kvec, N, thin=10, burn = 1000){

# generates data using using the metropolis-hastings algorithm
# param.vec is a parameter vector produced by the function log.lin.fitter
# Kvec gives the number of levels in the factors
# thin is the thinning period, run chain for thin*N values to return N
# burn is the length of the burn-in period
# margin.list is the list of marginal distributions

get.random = function(margin.list){
i = numeric(length(margin.list))
for(k in 1:length(margin.list))i[k] = sample(length(margin.list[[k]]),1, prob=margin.list[[k]]
i
}

get.prob = function(i,margin.list){
prob = 1
for(k in 1:length(margin.list)) prob = prob * (margin.list[[k]])[i[k]]
prob
}

get.x = function(i, Kvec){
K=length(Kvec)
x=1
for(l in 1:K) x=c(x,(i[l]==(2:Kvec[l])))

for(l1 in 1:(K-1)){
for(l2 in (l1+1):K){

dvec1 = (i[l1]==(2:Kvec[l1]))*1
dvec2 = (i[l2]==(2:Kvec[l2]))*1
x = c(x, as.vector(outer(dvec1,dvec2)))

}}
x
}

# store results in matrix X

X = matrix(0, N, length(Kvec))
index = 1
# initial value

117



i = get.random(margin.list)
q.i = get.prob(i,margin.list)
xi = get.x(i,Kvec)
pi.i = exp(sum(xi*param.vec))

n = burn + thin*N
for (iter in 1:n){
j = get.random(margin.list)
q.j = get.prob(j,margin.list)
Xj = get.x(j,Kvec)
pi.j = exp(sum(Xj*param.vec))
alpha = min(1, (pi.j*q.j)/(pi.i*q.i))
if(runif(1)<alpha) {
i=j
q.i = get.prob(i,margin.list)
Xi = get.x(i,Kvec)
pi.i = exp(sum(Xi*param.vec))
}
if ((iter>burn)&&((iter-burn)%%thin)==0){
X[index,] = i
index = index + 1
}
}
X
}

#########################################################
# function to make all the data frames
# input is null or a directory path

make.all = function(...){
input.list<-list(...)
path = if(length(input.list)==0) "" else input.list[[1]]

if(path!="" ) {
path.parts=unlist(strsplit(path,"\\\\"))
if(rev(path.parts)[1]!="SNZtables final")stop("Directory must be SNZtables final")
path = paste(paste(path.parts, collapse="\\"),"\\",sep="")
}

current.dir = getwd()

# save directory

path1 = paste(path,"usually resident", sep="")
setwd(path1)
source("age.sex\\age.sex.r")

118



source("birthplace.sex\\birthplace.sex.r")
source("languages.age.sex\\languages.age.sex.r")
source("usualres5yrsago.age.sex\\usualres5yrsago.age.sex.r")
source("yearsatres.age.sex\\yearsatres.age.sex.r")

setwd(current.dir)

path2 = paste(path,"usually resident 15+", sep="")
setwd(path2)

files = c("income.age.sex","income.qual.age","income.qual.sex","income.work","income.work.sex"
"legalms.age.sex", "qual.age.sex", "qual.birthplace.sex", "qual.income.age",
"qual.income.sex", "qual.industry.sex", "qual.occupation.sex", "socialms.age.sex", "work.age.s
"work.income.sex", "work.qual.sex" )
r.files = paste(files,"\\",files,".r", sep="")
for(i in 1:length(files))source(r.files[i])

setwd(current.dir)

path3 = paste(path,"employed usually resident 15+", sep="")
setwd(path3)

files = c("hours.sex",
"income.emp.age",
"income.emp.sex",
"income.hours.age",
"income.hours.sex",
"income.industry.age",
"income.industry.sex",
"income.occupation.sex",
"industry.emp.sex",
"industry.work.age",
"industry.work.sex",
"occupation.age.sex",
"occupation.emp.sex",
"occupation.industry.sex",
"occupation.work.age",
"occupation.work.sex",
"qual.emp.age",
"qual.emp.sex",
"qual.work.age",
"qual.work.sex",
"sector.age.sex",
"sector.income.sex",
"sector.qual.sex",

119



"sector.work.sex",
"travel.age",
"travel.income",
"travel.sex",
"travel.work.emp",
"travel.work.industry",
"travel.work.occupation")
r.files = paste(files,"\\",files,".r", sep="")
for(i in 1:length(files))source(r.files[i])

# restore directory
invisible(setwd(current.dir))
}

my.setwd = function(mydir)setwd(mydir)

####################################################
KLDist = function(my.array,params){

# calculates KL distance between distn in my.array
# and mixture distribution

my.table = params2table(params)
sum(my.table*log(fitted.table/my.table))
}

######################################################
loglin2table= function(beta, Kvec, dimnames=NULL){

# generates fitted probabilities from a given log-linear
# parameter vector beta for 2fi model
# Kvec is the vector of factor level lengths

K=length(Kvec)
probs = numeric(prod(Kvec))
for(i in 1:prod(Kvec)){

# get x
ivec=n.to.nvec(i, Kvec) + 1
x=1
for(l in 1:K) x=c(x,(ivec[l]==(2:Kvec[l])))
for(l1 in 1:(K-1)){

for(l2 in (l1+1):K){
dvec1 = (ivec[l1]==(2:Kvec[l1]))*1
dvec2 = (ivec[l2]==(2:Kvec[l2]))*1

120



x = c(x, as.vector(outer(dvec1,dvec2)))
}}
probs[i] = exp(sum(x*beta))

}
array(probs/sum(probs), Kvec, dimnames)
}

121


