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SUMMARY. We extend the Bickel–Klaassen–Ritov–Wellner theory of semi-parametric efficiency

bounds to the case of sampling from several populations, and discuss the form of the efficient

score and efficient influence function in this situation. The theory is applied to obtain an

information bound for estimates of parameters in general regression models under case-control

sampling. The variances of the semi-parametric estimates of Scott and Wild (1991, 1997, 2001)

are compared to the bound and the estimates are found to be fully efficient.
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1. INTRODUCTION

In this paper, we present a semi-parametric efficiency bound for the parameters of regression models

fitted to data obtained by choice-based sampling. Previous authors have addressed this question using

the theory of semi-parametric efficiency developed by Bickel et al. (1993). This theory assumes an i.i.d.

sample, so various ingenious devices have been used to apply it to the case of choice-based sampling. For

example, Breslow, Robins and Wellner (2000) consider case-control sampling, assuming that the data are

generated by Bernoulli sampling, where either a case or control is selected by a randomisation device

with known selection probabilities, and the covariates of the resulting case or control are measured. The

randomisation at the first stage means that the i.i.d. theory can be applied.

Breslow, McNeney and Wellner (2003) apply the missing value theory of Robins, Rotnitzky and Zhao

(1994) and Robins, Hsieh and Newey (1995) to render the i.i.d. theory applicable. Here, individuals

in the population are selected at random and their status (case or control) is determined. Then with a

probability depending on their status, the covariates are measured or not. The unobserved covariates are

treated as missing data.
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We adopt a more direct approach. First, the Bickel–Klaassen–Ritov–Wellner theory is extended to

the case of sampling from several populations. Then information bounds for the regression parameters

are derived assuming that separate prospective samples are taken from the case and control populations.

The minor modifications to the standard theory required for the multi-sample efficiency bounds are

sketched in Section 2. This theory is then applied to case control sampling and an information bound

derived in Section 3. The approach to estimation based on profile likelihood outlined by Scott and Wild

(1991, 1997, 2001) is considered in Section 4 and found to be fully efficient.

2. INFORMATION BOUNDS FOR THE MULTI-SAMPLE CASE

2.1 Preliminaries

We first consider a direct sum of Hilbert spaces that will play an important role in the derivation

of the information bound. Suppose H1, . . . ,HJ are Hilbert spaces with inner product (·, ·)j on Hj , and

that w1, . . . , wJ are positive constants. Then we may define an inner product (·, ·) on the direct sum

H = H1 × · · · × HJ by (
(g1, . . . , gJ), (h1, . . . , hJ)

)
=

J∑
j=1

wj(gj , hj)j . (1)

Specifically, the spaces we will consider will be of the form L2,k(P1), . . . , L2,k(PJ), where L2,k(Pj) is the

set of all k-dimensional functions that are square integrable with respect to a probability measure Pj .

The inner product on L2,k(Pj) is

(
(a1, . . . , aJ), (b1, . . . , bJ)

)
=

k∑
l=1

∫
al(x)bl(x) dPj(x) (2)

=
k∑

l=1

(al, bl)lj , (3)

say. The following result will be useful:

Theorem 1 Let H = L2,k(P1)×· · ·×L2,k(PJ), and for h = (h1, . . . , hJ) ∈ H, let [h] denote the subspace

of all functions of the form (Ah1, . . . , AhJ) for some constant k × k matrix A. If g = (g1, . . . , gJ) ∈ H,

then g ⊥ [h] if and only if
J∑

j=1

wjEj(gjh
T
j ) = 0,

where Ej denotes expectation with respect to Pj.
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Proof. Let A = (aij) be an arbitrary k × k matrix. Then

(g,Ah) =
J∑

j=1

wj(gj , Ahj)j

=
J∑

j=1

wj

k∑
i=1

(gij ,
k∑

l=1

ailhlj)lj

=
k∑

i=1

k∑
l=1

ail

J∑
j=1

wj(gij , hlj)lj

=
k∑

i=1

k∑
l=1

ail


J∑

j=1

wjEj(gjh
T
j )il


so that g ⊥ [h] if and only if

∑J
j=1 wjEj(gjh

T
j ) = 0. �

2.2 The multi-sample model

Suppose for j = 1, . . . , J we observe independent random variables Xij , i = 1, . . . , nj , which for fixed

j are identically distributed with density p0j . The densities p0j are members of classes of densities Pj of

the form

Pj = {pj(x;β, η) : β ∈ B, η ∈ N}

where B is a finite dimensional set and N is infinite dimensional. We regard P = P1 × · · · × PJ as a

model for our data. We will need to consider parametric submodels of P; these are models of the form

Q = Q1 × · · · × QJ where

Qj = {pj(x;β, γ) : β ∈ B0, γ ∈ Γ},

B0 is a subset of B and Γ has finite dimension.

We suppose that the family of densities P is regular, in the sense that for every finite-dimensional

subfamily Q with pj0 ∈ Qj , the mapping from B0 × Γ to L2(P0j) defined by

(β, γ) → 2

(√
pj(·, β, γ)
p0j(·)

− 1

)
I{p0j>0}

is Fréchet differentiable for every pj in Qj , j = 1, . . . , J . This is sufficient to guarantee the existence of a

square-integrable score function; see Bickel et al. (1993, Section 2.1) for details.

2.3 Tangent spaces

The tangent space T of the family P is the subspace of H = L2,k(P1) × · · · × L2,k(PJ) formed by

taking the closure of the linear space of all elements of the form (AS1, . . . , ASJ), where A is a constant
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matrix with k rows and S = (S1, . . . , SJ) is the score function of a finite dimensional submodel of P. We

can also define the tangent spaces Tβ and Tη corresponding to the families Pβ and Pη defined by

Pβ = {
(
p1(·, β, η0), . . . , pJ(·, β, η0)

)
: β ∈ B}

and

Pη = {
(
p1(·, β0, η), . . . , pJ(·, β0, η)

)
: η ∈ N}.

The space Tη is called the nuisance tangent space. We will require that T = Tβ + Tη; this will have to be

established for the examples we consider.

2.4 RAL estimators and influence functions.

Let n =
∑J

j=1 nj and suppose that for each j, nj/n→ wj . An estimator β̂n based on our data Xij is

asymptotically linear if

√
n(β̂n − β0) = n−1/2

J∑
j=1

nj∑
i=1

√
wjψj(Xij) + op(1). (4)

where ψ = (ψ1, . . . , ψJ) is in H. The function ψ is called the influence function of the estimator.

As in the i.i.d. case, for a finite dimensional family we will say that an estimate is regular if
√
n(β̂n−βn)

converges to the same distribution whenever
√
n
(
(βn, γn) − (β0, γ0)) converges to a constant. Here the

convergence is under the assumption that for a given n, the data on which β̂n is based are distributed as

pj(·, βn, γn).

An estimate is regular for an infinite dimensional family if it is regular for every finite-dimensional

subfamily. We shall be concerned with estimates that are both regular and asymptotically linear, or

RAL.

A key part of the theory of efficiency bounds in the i.i.d. case is a theorem that relates the influence

function of a RAL estimate to the scores. Versions of this theorem may be found for example in Bickel et

al. (1993, p 39, p 65) and Newey (1990, Theorem 2.2). We now extend this theorem to the multisample

case.

Theorem 2 Let Q be a finite-dimensional parametric family of densities with

Qj = {pj(x;β, γ) : β ∈ B, γ ∈ Γ},

and score function S = (S1, . . . , SJ), where Sj = (Sβ,j , Sγ,j). Suppose that β̂n is a RAL estimator with

influence function ψ. Then
J∑

j=1

wjEj(ψjS
T
β,j) = Ik×k (5)
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and
J∑

j=1

wjEj(ψjS
T
γ,j) = Ok×r (6)

where r is the dimension of Γ.

Proof. For brevity, we write θ = (β, γ). We assume that the densities pj are sufficiently well behaved so

that the log-likelihood

l(θ) =
J∑

j=1

nj∑
i=1

log pj(xij , θ)

satisfies

l(θ0 + n−1/2t)− l(θ0) = tT
∂l

∂θ
− 1

2
tT I(θ)t+ op(1)

where

I(θ) =
J∑

j=1

wjEj(SjS
T
j ).

Then [ √
n(β̂n − β0)

l(θ + n−1/2t)− l(θ)

]
=
[

0
− 1

2 t
T I(θ)t

]
+

J∑
j=1

n
−1/2
j

nj∑
i=1

w
1/2
j

[
ψj(xij)
tTSj

]
+ op(1)

which converges to

N

([
0

− 1
2 t

T I(θ)t

]
,

[
Σ11 Σ12

Σ21 Σ22

])
where

Σ11 =
J∑

j=1

wjEj(ψjψ
T
j ),

Σ12 =
J∑

j=1

wjEj(ψjt
TSj),

Σ21 = ΣT
12,

Σ21 = tT I(θ)t.

Hence, by standard contiguity arguments,

√
n(β̂n − βn)

θn=θ0+t/
√

n−→ N(Σ12,Σ11). (7)

Now write t = (tβ , tγ). Since β̂n is regular,
√
n(β̂n−β0−n−1/2tβ) converges to the same limit no matter

what the value of t When t = 0, the limit is N(0,Σ11) by the asymptotic linearity, so that we must have

√
n(β̂n − β0)

θn=θ0+t/
√

n−→ N(tβ ,Σ11). (8)

5



Comparing (7) and (8), we see that tβ = Σ12, or

tβ =
J∑

j=1

wjEj(ψjS
T
β,j)tβ +

J∑
j=1

wjEj(ψjS
T
γ,j)tγ .

Since this is true for all tβ , tγ , we must have (5) and (6). �

Our next result extends this to infinite-dimensional models. We first need the concept of the efficient

influence function.

2.5 Efficient influence functions and the information bound.

Now we return to the case where N may be infinite dimensional. For j = 1, . . . , J , let Sj,β denote

the score ∂pj(·,β,η)
∂β /pj(·, β, η)I{pj>0}, and let Sβ = (S1,β , . . . , SJ,β). The efficient score is the element of

H defined by

Seff = Sβ −Π(Sβ |Tη) = Π(Sβ |T ⊥η )

where Π(·|Tη) denotes the orthogonal projection in H onto the nuisance tangent space Tη.

Let Ieff denote the matrix
∑J

j=1 wjEj(S
eff
j Seff

j

T
). The element (I−1

effS
eff
1 , . . . , I−1

effS
eff
J ) of H is

called the efficient influence function and is denoted by ψeff . Our next result establishes the information

bound.

Theorem 3 Let P be as in Section 2.2 with N infinite dimensional, and suppose that T = Tβ + Tη,

and that β̂n is a RAL estimate with influence function ψ. Then ψ − ψeff ⊥ T and hence the matrix

nVar (β̂n)− I−1
eff is positive definite.

Proof. Let h be the score function for a finite-dimensional submodel Q of P. Since T = Tβ + Tη, we can

write h = hβ+hγ , where hβ ∈ Tβ and hγ ∈ Tη. SinceQ is finite dimensional, hγ must be the score function

of a model of the form {
(
(p1(β0, γ), . . . , pJ(β0, γ)

)
: γ ∈ Γ} where Γ is finite-dimensional. In the rest of the

proof we will make use of the finite dimensional model Q∗ = {
(
(p1(β, γ), . . . , pJ(β, γ)

)
: β ∈ B, γ ∈ Γ}.

We first prove that (ψ − ψeff , hβ) = 0. Since hβ ∈ Tβ = [Sβ ], by Theorem 1 it is enough to prove

that
J∑

j=1

wjEj [(ψj − ψeff
j )Sj,β

T ] = 0. (9)

By Theorem 2 applied to the submodel Q∗, we get

J∑
j=1

wjEj(ψjSj,β
T ) = Ik×k. (10)
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Also,

J∑
j=1

wjEj(ψ
eff
j Sj,β

T ) =
J∑

j=1

wjEj [ψ
eff
j (Ieffψ

eff
j + Π(Sβ |Tη))T ]

=
[ J∑

j=1

wjEj(ψ
eff
j ψeff

j

T
)
]
Ieff +

J∑
j=1

wjEj [ψ
eff
j Π(Sβ |Tη)T

j ]

= Ik×k. (11)

The last line follows by Theorem 1 since Π(Sβ |Tη) is perpendicular to [Seff ]. Combining (10) and (11)

we get (9).

Very similar arguments applied to hγ show that (ψ − ψeff , hη) = 0, so that (ψ − ψeff , h) = 0. Since

T is the closed linear span of elements such as h, it follows that ψ − ψeff ⊥ T .

To prove the second part of the theorem, note that

nVar β̂n =
J∑

j=1

wjEj(ψjψ
T
j )

=
J∑

j=1

wjEj(ψ
eff
j ψeff

j

T
) +

J∑
j=1

wjEj [(ψj − ψeff
j )(ψj − ψeff

j )
T
]

= I−1
eff +

J∑
j=1

wjEj [(ψj − ψeff
j )(ψj − ψeff

j )
T
]

The cross product terms vanish by Theorem 1, since ψ − ψeff ⊥ T and [ψeff ] ⊆ T .

�

3. THE INFORMATION BOUND FOR CASE-CONTROL STUDIES

In this section we apply the theory sketched above in Section 2 to regression models where the data are

obtained by case-control sampling. Suppose that we have a response Y (assumed discrete with possible

values y1, . . . , yJ) and a vector X of covariates, and we want to model the conditional distribution of Y

given X using a regression function

fj(x, β) = P (Y = yj |X = x),

say, where β is a k-vector of parameters. If the distribution of the covariates X is specified by a density

η, assumed to be absolutely continuous with respect to a measure µ, then the joint distribution of X and
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Y is

fj(x)η(x)

and the conditional distribution of x given Y = yj is

pj(x, β, η) = fj(x, β)η(x)/πj

where

πj =
∫
fj(x, β)η(x) dµ(x).

In case-control sampling, the data are not sampled from the joint distribution, but rather are sampled

from the conditional distributions of X given Y = yj . We are thus in the situation of Section 2 with

pj(x, β, η) = fj(x, β)η(x)/πj .

To apply the theory of Section 2, we must identify the spaces T , Tβ and Tη.

Theorem 4 Let P = (P1 × · · · × PJ) with Pj = {fj(x, β)η(x)/πj : β ∈ B, η a density}. Then

(i) Tβ = [Sβ ] where Sβ = (Sβ,1, . . . , Sβ,J), and Sβ,j = ∂ log fj(x,β)
∂β − Ej

[∂ log fj(x,β)
∂β

]
.

(ii) The nuisance tangent space is Tη = {
(
h−E1(h), . . . , h−EJ(h)

)
: h ∈ L0

2,k(G0)}, where dG0 = η0dµ,

and L0
2,k(G0) is the space of all k-dimensional functions f satisfying

∫
||f ||2η0(x) dµ(x) < ∞ and∫

f(x)η0(x) dµ(x) = 0.

(iii) The tangent space is T = Tβ + Tη.

Proof. Consider a finite dimensional submodel Q of P, of the form

Qj = {pj(x, γ) = fj(x, β(γ))η(x, γ)/πj : γ ∈ Γ}

where Γ has dimension r, say. The score function for Q is[
∂pj(x, γ)

∂γ
pj

]
I{pj>0}

which for simplicity we write as
∂ log pj(x, γ)

∂γ
.

Direct calculation gives

∂ log pj(x, γ)
∂γ

=
∂β

∂γ

[
∂ log fj(x, β)

∂β
− Ej

(
∂ log fj(x, β)

∂β

)]
+
∂ log η(x, γ)

∂γ
− Ej

(
∂ log η(x, γ)

∂γ

)
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so that for a constant matrix A with k rows,

A
∂ log pj

∂γ
= A1Sβ,j +A2

[
∂ log η(x, γ)

∂γ
− Ej

(
∂ log η(x, γ)

∂γ

)]
. (12)

Now consider the spaces Tβ and Tη. To prove (i), note that Tβ is the closure of the linear span of scores

of finite-dimensional submodels of

Pβ =
{(
p1(x, β, η0) . . . , pJ(x, β, η0)

)
: β ∈ B

}
,

so a calculation similar to (12) shows that Tβ = [Sβ ].

Now define the operator Tr : L0
2,r(G0) → H by

Tr(h) =
(
h1 − E1(h1), . . . , hJ − EJ(hJ)

)
.

Again calculating as in (12), we see that Tη is the closure of the linear span, T 0
η say, of⋃

r

{Tr(h) : h is the score of an r−dimensional submodel of G}

where G = {η : η a density for X}. To prove (ii), we must show that

T 0
η = {Tk(h) : h ∈ L0

2,k(G0)}. (13)

Let h be a score of a submodel of G having dimension r, say, and A an k×r matrix. Then ATr(h) = Tk(Ah)

and Ah is in L0
2,k(G0), so that

T 0
η ⊆ {Tk(h) : h ∈ L0

2,k(G0)}. (14)

Conversely, let h be in L0
2,k(G0). Then using the arguments of Bickel et al. (1993, p 52), it follows that

h is the score function of the k-dimensional submodel

{η0(x)(1 + exp(−2γTh(x))−1 : γ ∈ <k}

so that the reverse inclusion in (14) is also true.

To complete the proof of (13), we show that {Tk(h) : h ∈ L0
2,k(G0)} is closed. Let hn be a sequence

in L0
2,k(G0) such that Tk(hn) → g in H. Note that by definition of the norm in H, we have

||Tk(hn)− g||2H ≥ wj

πj

∫
|hn − Ej(hn)− gj |2fj dG0

so that (hn−Ej(hn))f1/2
j → gjf

1/2
j in L0

2,k(G0), and hence, since the fj ’s are bounded, (hn−Ej(hn))b→

gjb in L0
2,k(G0), where b =

∏J
j=1 f

1/2
j . Subtracting, we have (Ej(hn)−EJ(hn))b→ (gj−gJ)b in L0

2,k(G0),
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which implies that Ej(hn) − EJ(hn) converges to a constant cj say, and that (gj − gJ)b = cjb a.e. G0.

Since b 6= 0, gj = gJ + cj . Moreover, Ej(gj) = 0, j = 1, . . . J , so that cj = −Ej(gJ), and g = Tk(gJ).

Finally, we show that gj is in L0
2,k(G0). The limit gjf

1/2
j and hence (since the fj ’s are bounded) gjfj is

in L0
2,k(G0) , so ∑

j

gjfj =
∑

(gJ − cj)fj

= gJ −
∑

j

cjfj (since
∑

j

fj = 1)

is also in L0
2,k(G0). Since

∑
j cjfj is bounded and hence in L0

2,k(G0), so must be gJ . Thus g is of the

form Tk(h) with h ∈ L0
2,k(G0), which proves (ii).

To prove (iii), let T 0 be the linear span of scores of finite-dimensional submodels of P. From (12), we

have T 0 ⊆ [Sβ ] + T 0
η , and the reverse inclusion is also true since [Sβ ] ⊆ T 0 and T 0

η ⊆ T 0. Hence

T = T 0

= [Sβ ] + T 0
η

= [Sβ ] + T 0
η (since [Sβ ] is finite-dimensional)

= Tβ + Tη.

�

Our next result derives the efficient score.

Theorem 5 Let A be the operator L2(G0) → L2(G0) defined by

(Ah)(x) = f∗(x)h(x)−
J∑

j=1

wj

πj
fj(x)(fj/πj , h)2 (15)

where

f∗(x) =
J∑

j=1

wj

πj
fj(x),

and (·, ·)2 is the inner product in L2(G0). Let Sβ,j = (Sβ,j1, . . . , Sβ,jk)T where Sβ,jl ∈ L2(G0), and define

φl =
∑J

j=1
wj

πj
Sβ,jlfj(x). Then the efficient score has j, l element

Sβ,jl − h∗l + Ej [h∗l ]

where h∗l is any solution in L2(G0) of the operator equation

Ah∗l = φl. (16)
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Proof. The efficient score is the projection of Sβ onto T ⊥η , so is of the form Sβ − g, where g is the unique

minimizer of ||Sβ − g||2H in Tη. By Theorem 4, this is Sβ − Tk(h∗), where h∗ is the (unique) minimizer of

||Sβ − Tk(h)||2H in L0
2,k(G0). Write h∗ = (h∗1, . . . , h

∗
k). Then

||Sβ − Tk(h∗)||2H =
k∑

l=1

J∑
j=1

wj

πj

∫
(Sβ,jl − h∗l − Ej(h∗l ))

2fj dG0 (17)

so that we must choose h∗l to minimize

J∑
j=1

wj

πj

∫
(Sβ,jl − h∗l − Ej(h∗l ))

2fj dG0 =
J∑

j=1

wjEj(S2
β,jl) + (Ah∗l , h

∗
l )2 − 2(φl, h

∗
l )2

= Iββ,ll + (Ah∗l , h
∗
l )2 − 2(φl, h

∗
l )2 (18)

where Iββ is the information matrix for the parametric part of the model.

Note that (18) is unaltered if we change h∗l by constant function. Hence, minimising (18) over L0
2(G0)

is the same as minimising over L2(G0). If h∗l in L2(G0) minimises (18), so does h∗l − E0(h∗l ) in L0
2(G0),

where E0 denotes expectation with respect to G0.

Now we show that the operator A is self-adjoint and positive semi-definite, in the sense that (Ah, h)2 ≥

0. First, for any h1, h2 in L2(G0), we have

(h1, Ah2)2 =
∫
h1h2f

∗ dG0 −
J∑

j=1

wj(h1, fj/πj)2(h2, fj/πj)2

which is symmetric in h1 and h2. Thus A is self-adjoint.

To demonstrate that A is positive semi-definite, put Sβ,jl = 0 in (18). Then

(Ah, h) =
J∑

j=1

wj

πj

∫
(h− Ej(h))2fj dG0 ≥ 0.

Now let h∗l be any solution in L2(G0) to (16). Then for any h in L2(G0), using the fact that A is

self-adjoint,

Iββ,ll + (Ah, h)2 − 2(φl, h)2 = Iββ,ll − (Ah∗l , h
∗
l )2 +

(
h− h∗l , A(h− h∗l )

)
2

≥ Iββ,ll − (Ah∗l , h
∗
l )2

with equality if h = h∗l , so that the efficient score has j, l element Sβ,jl − h∗l + Ej [h∗l ] as asserted. �

It remains to identify a solution to (16). Define pj = wj

πj
fj/f

∗ and vjj′ =
∫
pjpj′f∗ dG0. Let V = (vjj′),

W = diag(w1, . . . , wJ) and M = W − V . Note that the row sums of M are zero, since

wj −
J∑

j′=1

∫
pjpj′f∗ dG0 = wj −

wj

πj

∫
fj dG0 = 0.

11



Using these definitions and (15), we get

Ahl = hlf
∗ −

J∑
j=1

(hl, fj/πj)2pjf
∗

so that Ahl = φl if and only if

hl =
φl

f∗
+

J∑
j=1

(hl, fj/πj)2pj .

This suggests that h∗l will be of the form

h∗l =
φl

f∗
+

J∑
j=1

cjpj

for some constants c1, . . . , cJ . In order that h∗l satisfy (16), we must have

f∗

 φl

f∗
+

J∑
j=1

cjpj

−
J∑

j=1

( φl

f∗
+

J∑
j=1

cjpj , fj/πj

)
2
pjf

∗ = φl,

or, equivalently,
J∑

j=1

cj −
J∑

j′=1

cj′(pj′ , fjπj)2 − w−1
j (φl, pj)2

 pjf
∗ = 0. (19)

Now

(pj′ , fjπj)2 =
∫
pj′ , fj/πj dG0

= w−1
j

∫
pj′ , pjf

∗ dG0

= (W−1V )jj′

so that (19) will be satisfied if the vector c = (c1, . . . , cJ)T satisfies

Mc = d(l) (20)

where d(l) = (d1l, . . . , dJl)T with djl = (φl, pj)2. Thus we require that c = M−d(l) where M− is a

generalised inverse of M .

Our final result in this section gives the information bound.

Theorem 6 The variance - covariance matrix of the efficient score is Ieff where

Ieff,ll′ = Iββ,ll′ −
∫
φlφl′

f∗
dG0 − dT

(l)M
−d(l′). (21)
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Proof.

Ieff,ll′ =
J∑

j=1

wj

πj

∫ (
Sβ,jl − h∗l − Ej(h∗l )

)(
Sβ,jl′ − h∗l′ − Ej(h∗l′)

)
fj dG0

= Iββ,ll′ + (Ah∗l , h
∗
l′)2 − (φl, h

∗
l′)2 − (φl′ , h

∗
l )2

= Iββ,ll′ − (φl, h
∗
l′)2

= Iββ,ll′ −
∫
φlφl′

f∗
dG0 − dT

(l)M
−d(l′).

�

4. EFFICIENCY OF THE SCOTT-WILD ESTIMATOR

In a famous paper, Prentice and Pyke (1979) showed that it is possible to estimate odds-ratio parameters

from simple case-control studies by using an ordinary prospective regression program. In a series of

papers (Scott and Wild 1991, 1997, 2001) Scott and Wild have generalised the classic Prentice-Pyke

result to general regression models for a variety of choice-based sampling situations. In this section, we

focus on general regression models for case control studies, and show that the Scott-Wild estimators are

fully efficient. More general sampling situations will be considered in a forthcoming publication.

Suppose we sample prospectively n1 cases and n2 controls from their respective populations, and

observe covariates x1,1, . . . , xn1,1 for the cases and x1,2, . . . , xn2,2 for the controls. Suppose, as in Section

3, that we have regression functions fj(x, β), j = 1, 2, giving the conditional probability that an individual

with covariates x is a case (j = 1) or a control (j = 2). The unconditional distribution G0 of the covariates

is unspecified. As in Section 3, let π1 and π2 be the unconditional probabilities of being a case or control

respectively.

Now let n1 and n2 converge to infinity with nj/(n1+n2) → wj , j = 1, 2, and let κ = (w1/π1)/(w2/π2).

Put θ = (β, κ)T and define P ∗j (x, θ) by

logitP ∗j (x, θ) = logit fj(x, β) + log κ. (22)

Then the Scott-Wild estimator of θ is the solution of the “pseudo-score” equations
2∑

j=1

nj∑
i=1

∂ logP ∗j (xij , θ)
∂θ

= 0.

Scott and Wild show that asymptotic variance of the estimate of β is the appropriate block of the inverse

of the “pseudo” information matrix

I∗(θ) =
2∑

j=1

wjEj

((∂ logP ∗j (xij

∂θ

)(∂ logP ∗j (xij

∂θ

)T
)
.

13



We now demonstrate that the inverse of this block coincides with the information bound in Theorem 6,

thus showing that the Scott-Wild estimate is fully efficient. Using the partitioned matrix inverse formula,

the inverse of the block is

I(1) − I(2)I(2)T
/I(3) (23)

where

I∗ =

[
I(1) κ−1I(2)

κ−1I(2)T
κ−2I(3)

]
.

Let S0
j denote the vector ∂ log fj

∂β . Then routine calculations give P ∗j (x, θ) = pj and

I(1) =
∫

(S0
1 − S0

2)(S0
1 − S0

2)T p1p2f
∗ dG0,

I(2) =
∫

(S0
1 − S0

2)p1p2f
∗ dG0,

I(3) =
∫
p1p2f

∗ dG0.

Now we evaluate the information bound Ieff using (21) in Section 3. We have

Iββ,ll′ =
2∑

j=1

wj

πj

∫
Sβ,jlSβ,jl′fj dG0

=
2∑

j=1

∫
Sβ,jlSβ,jl′pjf

∗ dG0 (24)

and
φl

f∗
= Sβ,jlp1 + Sβ,2lp2

so that after some algebra we get

Iββ,ll′ −
∫
φlφl′

f∗
dG0 =

∫
(Sβ,1l − Sβ,2l)(Sβ,1l′ − Sβ,2l′)p1p2f

∗ dG0. (25)

Now consider the matrix M . Since the row sums of M are zero, we can write M as

M =
[

I(3) −I(3)

−I(3) I(3)

]
so that a generalised inverse of M is

M− =
[

1 0
0 0

]
/I(3)

and dT
l M

−dl′ = d1ld1l′/I
(3). Finally, we have Sβ,1l − Sβ,2l = (S0

1 − S0
2)l − Kl where Kl =

(
E1(S0

1) −

E2(S0
2)
)
l
, so that

Iββ,ll′ −
∫
φlφl′

f∗
dG0 =

∫ (
(S0

1 − S0
2)l −Kl

)
((S0

1 − S0
2)l′ −Kl′

)
p1p2f

∗ dG0

= I
(1)
ll′ −KlI

(2)
l′ −Kl′I

(2)
l +KlKl′I

(3). (26)
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Moreover, d1l = (φl, p1)2 =
∫

(Sβ,1l − Sβ,1l)p1p2f
∗ dG0 so that

dT
l M

−dl′ = d1ld1l′/I(3)

=
∫ (

(S0
1 − S20)l −Kl

)
p1p2f

∗ dG0 ×
∫ (

(S0
1 − S20)l′ −Kl′

)
p1p2f

∗ dG0/I
(3)

= (I(2)
l −KlI

(3))(I(2)
l′ −Kl′I

(3))/I(3). (27)

Substituting (26) and (27) into (21) we see that

Ieff,ll′ = I
(1)
ll′ − I

(2)
l I

(2)
l′ /I(3)

so that the Scott-Wild estimator is fully efficient.
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