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Abstract

In this paper we discuss the analysis of multi-phase, or multi-stage, case-control studies
and present an efficient semiparametric maximum-likelihood approach that unifies and ex-
tends earlier work, including the seminal case-control paper by Prentice & Pyke (1979) as
well as work by Breslow & Cain (1988), Scott & Wild (1997), Breslow & Holubkov (1997),
and others. The theoretical derivations apply to arbitrary binary regression models but we
present results for logistic regression and show that the approach can be implemented by
including additional intercept terms in the logistic model and then making some simple
corrections to the score and information equations from the prospective loglikelihood.

Keywords: Logistic regression; maximum likelihood; multi-stage sampling; response-selective sampling;
semiparametric efficiency; two and three-phase sampling.

1 Introduction

In a two-phase, or stratified, case-control study, a prospective cohort is stratified according
to some variables known for the whole cohort. Separate random samples of cases, i.e. units
with some characteristic of interest, and controls, i.e. units without the characteristic, are then
drawn from each stratum and values of other covariates are obtained for each of the sampled
units. In a three-phase study, some of the more expensive, invasive or difficult covariates are
not measured on all the units sampled at the second phase, but only on a subsample drawn from
them. This can result in considerable savings. Chatterjee & Chen (2007) point to the increasing
importance of such sampling designs in genetic epidemiology, where they can reduce the cost
of studies by limiting expensive ascertainments of genetic and environmental exposure to an
efficiently selected subsample of the main study.

The process can be continued indefinitely. Whittemore & Halpern (1997) discuss several
studies with three or more phases of sampling. For example, in a study to investigate the rela-
tionship of prostrate cancer risk to diet and other lifestyle characteristics, the cases were men
with a history of prostrate cancer and controls were men without such a history. Case-control
status was identified in the initial phase. Then, at the second phase, all the cases and a sample
of controls were asked whether or not they had a father or brother with the disease. This in-
formation was then used to draw the third phase sample in which more detailed information on
family size and structure, age at prostrate cancer occurrence or censoring, and place and date of
prostrate cancer diagnosis was collected. Subjects who had three or more family members with
prostrate cancer were asked to participate in phase four, in which family members provided
blood and/or tissue samples for DNA analysis.

Multi-phase designs have other uses besides reducing the cost of sampling expensive covari-
ates. For example, adding an extra phase of sampling can provide an efficient way of making an
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after-the-fact adjustment for a confounder that was overlooked and not measured in the original
study. In fact, this was the motivation for White (1982) when she introduced the idea of two-
phase sampling. Similarly, if we have administrative or other population information available
on some variables for all individuals in the finite population from which the study data has been
sampled, then efficiency can often be increased by considering the finite-population data as the
first phase and the study data as coming from one or more subsequent phases. The methods of
this paper may also be useful in some missing-data situations when, under missing-at-random
assumptions, the observed/missing mechanism can be thought of as corresponding to an addi-
tional phase of sampling. The missing data example of Arbogast et al. (2002), for example, has
exactly the same structure as a three-phase case-control sample.

What we are calling multi-phase studies have been more commonly called multi-stage stud-
ies in the biostatistics literature; see Whittemore & Halpern (1997), for example. Multi-phase
sampling is the term used in the survey sampling literature where multi-stage sampling already
has another well-established meaning; see Cochran (1977), for example. We follow Breslow
& Holubkov (1997) in using the survey terminology. We note in passing that the “two-phase”
designs of Breslow & Holubkov, in which the initial phase is a case-control sample, are actually
three-phase designs in our terminology.

In this paper we present an efficient semiparametric maximum-likelihood solution for multi-
phase population-based case-control studies that unifies and extends previous work by Prentice
& Pyke (1979), Breslow & Cain (1988), Scott & Wild (1997), Breslow & Holubkov (1997),
and others. In the main body of the paper we present the results in a way that is intended to give
the reader an appreciation of the nature of the problem, the nature of the solution and how it can
be implemented. We will see that for logistic regression the approach can be implemented by
including additional intercept terms in the logistic model and then making some simple correc-
tions to the score and information equations from the prospective loglikelihood. The theoretical
derivations and justifications are given in the Appendices.

2 Results

2.1 Review of two-phase results

Suppose that we have a binary response variable, Y , with units with Y = 1 being the cases and
units with Y = 0 being the controls, and a vector of potential explanatory variables, X . We
want to fit a logistic regression model with

p1(x; β) = pr(Y = 1 | x; β) =
ex

Tβ

1 + exT β
(1)

for the probability that a unit with covariate values X = x is a case and p0(x; β) = 1− p1(x; β)
for the probability of a control.

We start with a prospectively drawn cohort of N units. In the first phase, we measure the
case-control status, Y , and the values of variables X (1), some or all of which may be included
in X , for all units in the cohort. We assume that all components of X (1) have finite support,
with X (1) having possible values {x(1)

1 , . . . , x
(1)
I }. Let Nhi be the number of units in the cohort

with Y = h and X (1) = x
(1)
i for h = 0, 1 and i = 1, . . . , I . In the second phase, we draw a
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simple random sample of nhi of these Nhi units and measure the remaining components of X ,
resulting in sample values {xhij for h = 0, 1; i = 1, . . . , I; and j = 1, . . . , nhi}. Components
measured at the final stage may be discrete or continuous.

The full likelihood,

∏
h,i

⎧⎨⎩pr(Y = h,X(1) = x
(1)
i )Nhi

nhi∏
j=1

pr(xhij | Y = h,X(1) = x
(1)
i )

⎫⎬⎭ ,
depends not only on β, the parameter of interest, but also on the conditional distribution of X
given X (1) = x

(1)
i for i = 1, . . . , I . We are not interested in these distributions for their own

sake, and we are certainly not interested in modelling them in situations of any complexity, so
we want methods for making inferences about β that avoid the need for even thinking about
them.

The conditional maximum likelihood approach developed by Breslow & Cain (1988) and the
semiparametric profile likelihood approach developed by Scott & Wild (1997) are both closely
related to a simple prospective scheme in which units are examined sequentially, retained in the
sample with known probability rhi if (Y = h,X(1) = x

(1)
i ) and otherwise discarded. Under

this scheme, the probability that Y = h, given that (X (1) = x
(1)
i , X = x) and that the unit is

selected, would be

pr(Y = h | X(1) = x
(1)
i , X = x) =

ph(x; β)rhi
p1(x; β)r1i + p0(x; β)r0i

. (2)

Writing αi = log (r1i/r0i) and using (1), we can express pr(Y = 1 | X (1) = x
(1)
i , X = x) in the

form

p∗1i(x;αi, β) =
eαi+x

Tβ

1 + eαi+xT β
. (3)

This is the original logistic regression model (1) modified by the inclusion of stratum-specific
offsets. If our data had been generated by this slightly modified scheme, the log-likelihood
function would be

�̃2(β) =
∑
h,i,j

log p∗hi(xhij ;αi, β) (4)

where p∗0i = 1−p∗1i, and estimation would proceed straightforwardly using an ordinary prospec-
tive logistic regression program by fitting model (1) with the αi = log (r1i/r0i) values included
as offsets.

Conditional maximum likelihood:
To adapt these ideas to actual two-phase case-control sampling, suppose that we estimate the
retention probability rhi by the sampling fraction nhi/Nhi, (i = 1, 0) and thus αi by

α̂i,CML =
n1i/N1i

n0i/N0i

, (5)

the log of the relative sampling fractions. The conditional maximum likelihood estimator is
obtained if we maximize (4), with αi replaced by α̂i,CML, with respect to β. In this context (4)
is only a pseudo-likelihood. The parameter estimates can still be obtained from an ordinary
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logistic regression program by fitting model (1) with the α̂i,CML values included as offsets.
However, additional computation is usually required to obtain valid standard errors.

Profile likelihood:
If the αis in the modified model (3) are treated as free parameters, then (3) can be thought of as
the original logistic model (1) augmented by a set of unknown stratum-specific intercepts. By
adapting the results of Scott & Wild (1997), the profile likelihood estimator, β̂, can be obtained
as follows. Take the likelihood that would be appropriate for fitting the augmented logistic
model (3) prospectively, add forcing terms ci(αi) to give

�∗2(φ) = �∗2(α, β) =
∑
h,i,j

log p∗hi(xhij;αi, β) +
I∑
i=1

ci(αi), (6)

and then solve the resulting score equations for φ̂ = (α̂, β̂). The forcing terms, presented in
equation (13) in Section 2.3, have the effect of pushing the unknown αi towards α̂i,CML. In-
ference using (6), including variance estimation and hypothesis testing, is very simple because
we can treat �∗2(φ) almost like an ordinary log-likelihood. We can obtain β̂ by solving the
pseudo-likelihood equations, ∂�∗2/∂φ = 0, we can estimate cov(β̂) using the appropriate sub-
matrix of J∗

2 (φ̂)−1, where J∗
2 (φ) is the observed pseudo-information matrix, and we can treat

the appropriate differences in −2�∗2 as chi-squared random variables to test hypotheses about β.
The profile likelihood itself, �P (β), is obtained by maximizing the full likelihood over the

unknown conditional distributions of X given X (1) = x
(1)
i , i = 1, . . . , I treated nonparamet-

rically. The connection with �∗2(α, β) is that �P (β) = �∗2{α(β), β} with α(β) defined as the
solution of ∂�∗2(α, β)/∂α = 0. The proviso that �∗2(φ) can be treated “almost like an ordi-
nary log-likelihood” is needed because φ̂ can correspond to a saddlepoint of �∗2 rather than
a maximum so that we cannot obtain β̂ by maximizing �∗2(φ) in general. The profile likeli-
hood estimator can be shown to have full semi-parametric efficiency so that it is more efficient
than conditional maximum likelihood; see Breslow, McNeney & Wellner (2003), Lee & Hirose
(2009). The difference in efficiency is often small but there are situations when it is appreciable;
see Scott & Wild (1991), Lawless et al. (1999), for example.

2.2 Results for three phases

Now suppose that only a subset of the remaining components of X , say X (2), are measured
at the second phase of sampling. We assume that X (2) also has finite support, with possible
values {x(2)

1 , . . . , x
(2)
J } say. Let Nhij be the number of second-phase sample units taking values

Y = h,X(1) = x
(1)
i , X(2) = x

(2)
j for h = 0, 1; i = 1, . . . , I; j = 1, . . . , J . Note thatNhi+ = nhi.

Then, at the third phase of sampling, we draw a simple random sample of nhij of these Nhij

units and measure the remaining components of X . This results in sample data {xhijk for h =
0, 1, i = 1, . . . , I, j = 1, . . . , J, and k = 1, . . . , nhij} collected at phase three and a likelihood
of the form

∏
h,i

⎡⎣pr(Y = h,X(1) = x
(1)
i )Nhi

J∏
j=1

{
pr(X(2) = x

(2)
j | Y = h,X(1) = x

(1)
i )Nhij

×
nhij∏
k=1

pr(xhijk | Y = h,X(1) = x
(1)
i , X(2) = x

(2)
j )

}]
. (7)
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As with two-phase sampling, this contains the joint distribution of X as a nuisance parameter
and we want methods that avoid any need to model this joint distribution.

We can extend the profile likelihood method of the previous section directly. Again it is
based on a related prospective scheme, now with

pr(Y = 1 | X(1) = x
(1)
i , X(2) = x

(2)
j , x) = p∗1ij(x;α, β) =

eαi+αij+xTβ

1 + eαi+αij+xTβ
, (8)

as in model (3) but now with an additional intercept term for every cell of the X (1) × X(2)

stratification used to classify the Phase 2 data. The extension of the conditional maximum
likelihood method is to estimate β by fitting model (1) by prospective logistic regression with
stratum-specific offsets α̂i,CML + α̂ij,CML where α̂ij,CML = log {(n1ij/N1ij)/(n0ij/N0ij)}. We
obtain the profile likelihood estimator essentially by expanding (6) to include an additional set
of forcing terms stemming from the phase three subsampling to form

�∗3(α, β) =
∑
h,i,j,k

log p∗hij(xhijk;α, β) +
∑
i

ci(αi) +
∑
i,j

cij(αij), (9)

with p∗0ij = 1 − p∗1ij , and solving the resulting score equations as before. Expressions for the
forcing terms ct(αt) are given in equation (13). We will show that their derivatives, dct/dαt,
increase monotonely from −n1t to n0t crossing zero at α̂t,CML. Thus the effect of the added
terms is to pull the αt-component of the solution of the pseudo-score equation towards α̂t,CML.
Here, and in much of what follows, we have adopted the notational device of using t to represent
an arbitrary cell either in the one-way classification defined by values of X (1) or in the two-
way X(1) ×X(2) classification.This notation also allows for extensions to further phases where
needed.

Although �∗3(φ) is not itself a true likelihood, we show in Appendix 1 that the profile likeli-
hood �P (β) is equal to �∗3{β, α(β)} where α(β) is the solution to ∂�∗3/∂α = 0. A consequence
of this equivalence is that, just as in two phase sampling, we can largely act as if the pseudo-
loglikelihood �∗3(φ) is the true log-likelihood for making inferences about β. Specifically, we
can obtain β̂ by solving the pseudo-score equations obtained by setting the derivatives of (9)
to zero, we can estimate cov(β̂) with the appropriate submatrix of J ∗

3 (φ̂)−1, where J∗
3 (φ) is the

observed pseudo-information matrix, and we can treat the appropriate differences in −2�∗3 as
chi-squared random variables to test hypotheses about β.

To implement this, we need the first and second derivatives of �∗3 with respect to the φ. Let
us rewrite model (8) in the form

logit p∗1ij(x;φ) = zTφ,

where the first T = (I+IJ) elements of z indicate the presence or absence of the corresponding
components of α, i.e. the first element of zhijk, corresponding to α1, is equal to 1 if i=1 and 0
otherwise, and so on. The final elements of z are made up of the elements of x. Then we can
write

U∗
3 (φ) =

∂�∗3
∂φ

=
∑
h,i,j,k

zhijk {yhijk − p1(zhijk;φ)} +

(
γ
0

)
, (10)

and

J∗
3 (φ) = −∂

2�∗3(φ)

∂φ∂φT
=

∑
h,i,j,k

zhijkz
T
hijkp1(zhijk)p0(zhijk) −

(
diag(A) 0

0 0

)
, (11)
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with γ representing a T -dimensional vector with components γt,A representing a T -dimensional
vector with components At, and yhijk = h. The quantities γt and At are defined below in (12)
and (14). Equations (10) and (11) are just the usual score and information expressions for logis-
tic regression except for adjustments to the components corresponding to elements of α made
by γ and the Ats.

It remains to define the elements of γ and At. If a cell is fully subsampled, i.e. n1t = N1t

and n0t = N0t, then αt ≡ 0, ct(αt) ≡ 0, γt = 0 and At = 0. For cells that are not fully
subsampled, it is convenient to express ct and related quantities in terms of γt(αt), defined as
the unique solution of

log

(
n1t + γt
N1t + γt

)
− log

(
n0t − γt
N0t − γt

)
= αt. (12)

This corresponds to the γ0-parameters used in Scott & Wild (1997, pp 60, 65, 68) where γ0 was
shown to equal N0 − N̂0, the difference between the number of controls in the population and
the number predicted by the fitted model. Working with this parameterization, rather than other
possibilities such as those used in Scott & Wild (2001), proved to be critical in obtaining the
results of this paper. It is shown in Appendix A1 that

ct(αt) = N1t log(N1t + γt) − n1t log(n1t + γt) +N0t log(N0t − γt) − n0t log(n0t − γt), (13)

with γt = γt(αt). Differentiating the expressions in equations (12) and (13) with respect to
αt, it follows that ct(α) has first derivative dct/dαt = γt and second derivative d2ct/dα

2
t = At

where

At =

{
N1t − n1t

(N1t + γ)(n1t + γ)
+

N0t − n0t

(N0t − γ)(n0t − γ)

}−1

. (14)

Setting dct/dαt = 0 leads to αt = α̂t,CML = log {(n1t/N1t)/(n0t/N0t)}. As αt increases from
−∞ to +∞, γt(αt) increases monotonically from −n1t to n0t, with derivative dγt/dαt = At.

Computationally, we solve the pseudo-likelihood equations above using the Newton-Rhapson
method starting from the conditional maximum likelihood solution and J ∗

3 (φ̂) is obtained as a
byproduct. The conditional maximum likelihood solution is obtained by performing an ordinary
logistic regression on the data from the fully observed units, i.e. those observed at Phase 3, but
including the appropriate offsets. To cater for the cases where there are fully subsampled cells,
we need to work with a reduced set of parameters φ̌ = (α̌, β). Here, α̌ contains just the αt-
values for cells that are not fully subsampled. We can write φ̌ = Bφ. Then, ∂�∗/∂φ̌ = B∂�∗/∂φ
and ∂2�∗(φ)/∂φ̌∂φ̌T = B (∂2�∗/∂φ∂φ)BT . Additionally, φ = BT φ̌. Some care is needed in
handling the data structures. A software implementation, in the form of an R function, R De-
velopment Core Team (2008), is available from Chris Wild.

2.3 Extensions

It is straightforward to extend these results to more phases of sampling and to other binary
regression models besides the logistic.

To handle S phases of sampling, we simply have to augment the model in equation (8) with
an additional constant term, αt, and add a corresponding term, ct(αt), defined by equation (13),
to the pseudo log-likelihood in equation (9) for every cell of the X (1) × X(1) × . . . × X(s)
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classification, assuming that X (s) has finite support (s = 1, . . . , S − 1). For example, with four
phase sampling, our pseudo model would have the form

logit{p∗1ijk(α, β)} = xTβ + αi + αij + αijk (15)

and the pseudo log-likelihood would be

�∗4(α, β) =
∑

h,i,j,k,l

log p∗hijk(xhijkl;α, β) +
∑
i=1

ci(αi) +
∑
i,j

cij(αij) +
∑
i,j,k

cijk(αijk).

We can then use �∗S(φ) to make inferences about β just as with two or three phases. To adapt
(10) and (11), the sums are taken over all individuals observed in the final phase of sampling
and γ and A are lengthened in the obvious way.

The extension to non-logistic binary regression models is also simple. Suppose that pr(Y =
h | x) = ph(x; β). Then we just replace xTβ in the definition of pr∗ht(x;φ) by logit{p1(x; β)}
and proceed exactly as with the logistic. Thus, in four phase sampling, (15) would be replaced
by

logit{p∗1ijk(α, β)} = logit{p1(x; β)} + αi + αij + αijk.

All the results for the logistic case, apart from the simplification discussed in the next section
that results when the model contains appropriate dummy variables, then apply immediately.

2.4 Special cases

Prentice & Pyke (1979), following earlier work by Anderson (1972), showed that for the two-
phase case-control studies (S = 2) where the logistic model has a separate intercept β0i for every
level ofX (1), maximum likelihood inferences about all the coefficients except the intercepts can
be obtained by running the sample data through a standard logistic regression program without
any modification. Semiparametric efficiency follows from Breslow, McNeney & Wellner (2003)
and Lee & Hirose (2009). If terms α̂i = log{(n1i/N1i)/(n0i/N0i)} are added as fixed offsets,
then estimates of the β0is are also valid and the variances can be corrected by subtracting n−1

1i −
N−1

1i + n−1
0i −N−1

0i from the estimated variance of β̂0i from the logistic program.
The situation where the first phase of a three-phase study is a simple (unstratified) case-

control sample and our model (1) includes an intercept, β0 say, is another special case of inter-
est. Here I = 1 and Breslow & Holubkov (1997) noted that for making inferences about all
coefficients except β0, we can act as if we had an two-phase study with a prospective first phase.
This was explored further in Lee, Scott & Wild (2007).

We now consider three-phase sampling more generally. Setting β∗
0i = β0i + αi and α∗ =

(α11, α12, . . . , αIJ)
T , we can write the model in expression (8) in the form

logit{p∗1t(x;α∗, β∗)} = αt + xTβ∗,

where t ranges over all possible values of (i, j) for i = 1, . . . , I and j = 1, . . . , J . In other
words, the three-phase model (8) can be rewritten in the form of the two-phase model (3) with
X(1) replaced by X∗(1) = (X(1), X(2)) taking I∗ = IJ possible values. Then the three-phase
pseudo log-likelihood (9) can be written in the form

�∗3(φ) = �∗2(φ
∗) +

∑
i

ci(αi),

7



with φ∗ = (α∗, β∗) and �∗2 as in equation (6). It follows that the pseudo-score equations,
∂�∗3(φ)/∂φ = 0, become

∂�∗2(φ
∗)

∂φ∗ = 0 and
dci(αi)

dαi
= 0, for 1 = 1, . . . , I,

and the pseudo-information matrix becomes

J∗
3 = − ∂2�∗3

∂φ∂φT
= D0 ⊕ J∗

2 ,

where J∗
2 = − ∂2�∗2

∂φ∗∂φ∗T and D0 is an I × I diagonal matrix. Thus, to make inferences about
components of β∗, and hence about all the components of β apart from the constant terms, we
can treat �∗2(φ

∗) as a two-phase pseudo-loglikelihood. This can be useful as it does not require
knowledge of the Nhis. If we want to estimate β0i, and we do know the Nhis, then we need to
subtract α̂i,CML = log{(n1i/N1i)/(n0i/N0i)}, the solution of dci(αi)/dαi = 0, from β̂∗

0i and
subtract n−1

1i −N−1
1i +n−1

0i −N−1
0i from the variance of β̂∗

0i estimated from the two-phase program
exactly as in the simpler case above.

More generally, it can be shown that where the model has a separate intercept for every level
of X(1) × . . .×X(s) for some s < S, then the analysis can be reduced to that for (S− s) phases
with offsets and variance adjustments needed where estimation of the intercepts is of interest.

3 Example

We use the Wilm’s tumor data described in Kulich & Lin (2004) to illustrate the method. The
studies from which the data originated were performed by the US National Wilms Tumor Study
Group (DAngio et al., 1989; Green et al., 1998). Wilms tumor is a rare kidney cancer occurring
in young children. The data relates to 3,915 children who had been treated for Wilms tumor.
We take as our binary response variable “relapse within 3 years”. The explanatory variables
available were histological type of the tumor, classified as favorable versus unfavorable, stage
(I − IV), age at diagnosis, and tumor diameter. Breslow & Chatterjee (1999) worked with a
slight superset of this data set, but without the age and tumor diameter variables, to construct
two-phase data.

Quoting from Kulich & Lin (2004), “Histological type was assessed in two ways. Patholo-
gists at the individual sites analyzed a tumor sample and determined a preliminary local histo-
logical type. Each sample was then sent to a central facility, where an experienced pathologist
reevaluated it. This reevaluation was an expensive and time-consuming process. The central
assessment can be considered the ‘true’ histological type, and the local assessment can be con-
sidered an imprecise surrogate.” Although central histology was obtained for all patients in the
study, Breslow & Chatterjee (1999) and Kulich & Lin (2004), performed analyses on two-phase
data sets obtained post-hoc by subsampling and only using the central histology of subsampled
patients in their analysis. They did this to show how well you could do with a cheaper two-phase
study that only obtained the expensive measure, central histology, for a subset of patients.

We do the same thing here. We will use tumor diameter to play the role of a variable, e.g.
genetic, that is even more expensive than central Histology and will only be obtained at Phase 3.
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Unfavourable histologies are coded “1” and favourable are coded as “0”. We set up 24 Phase-1
strata defined by Institutional histology (Inst), Stage and 3 levels of Age (Age ≤ 1, 1 < Age
≤ 4 and Age > 4. The numbers of controls and cases falling into these strata are given in the
N0i andN1i columns of Table 1. This is the Phase 1 information. There were 3312 controls and
603 cases at Phase 1. At Phase 2, n0i controls (i = 1, . . . , 24) and all cases were taken and the
value of central Histology obtained. We sampled n0i = 100 units from any cell with N0i ≥ 100
and retained all units in cells with N0i ≤ 100. This resulted in 1248 controls and 603 cases
being observed at Phase 2. Crossing the new variable, central Histology, with the original set of
24 strata now produces 48 strata. Of those sampled at Phase 2, the numbers falling into each of
these 48 strata are given in theN0i0,N0i1 columns of Table 1 for controls and the corresponding
N1i0, N1i1 columns for cases. At Phase 3, we sampled n0i1 controls with unfavourable (central)
Histology and n0i0 controls with favourable Histology. We subsampled 25 units in cells of more
than 25 and took all units in smaller cells. Cases with favourable histology were subsampled in
the same way. The new variable observed at Phase 3 was Tumor diameter.

Below we present comparative results for a model that fits the full data quite well. The
standard errors presented for 3-phase sampling are averages over 1,000 replications of the pro-
cess of drawing second and third phase samples. We have to expect some loss of information
because values of our “most expensive” variable are only collected for a 25% subsample. If we
had analysed a random 25% subsample of the full data we would expect, on average, a doubling
of the standard errors. We are doing a lot better than that for many of the variables fitted. Even
for Tumor diameter, which was only collected at Phase 3, and its interaction with Stage, there is
only a 40% increase in standard error. We have almost full efficiency for some of the variables
collected at Phase 1 or even central Histology which was only collected at Phase 2. Of course
institutional histology, collected at Phase 1, is a very good surrogate for central histology which
was collected at Phase 2.

4 Discussion

Multi-phase sampling has a considerable potential for delivering efficiency gains for case-
control studies. This paper unifies and extends the methodology for special cases of multi-
phase case-control studies given by Prentice and Pyke (1979), Scott and Wild (1997), Bres-
low and Holubkov (1997), Lawless et al. (1999) and Lee et al (2007) to provide a general
semiparametric-efficient solution to the problem of analyzing multi-phase case-control studies
that collect discrete or continuous covariate information at the last stage of sampling and dis-
crete covariate information at previous phases. The methods are relatively easy to implement,
particularly in the case of logistic regression where we have shown how to make relatively
minor modifications to the score vector and information matrix for ordinary prospective logis-
tic regression. The need for covariate data used in all but the last phase to be discrete is an
important limitation.

All of our asymptotics are carried out under the assumption that the model to be true. As a
referee has pointed out, however, it would be beneficial to investigate whether the asymptotic
methods of Newey (1994), which allow for fairly general model misspecifications, can be gener-
alized to multiphase case-control studies. As as shown in Scott and Wild (2002), the parameter
estimated by semiparametric maximum likelihood from a case-control study will not generally

9



Table 1. Three-phase sampling counts

Controls Cases
Ph 1 Phase 2 Phase 3 Ph 1 Phase 2 Phase 3

Phase 2 Hist Hist Hist Hist
strata 0 1 0 1 0 1 0 1

Inst Stg Age N0i n0i N0i0 N0i1 n0i0 n0i1 N1i n1i N1i0 N1i1 n1i0 n1i1

0 1 ≤ 1 387 100 100 0 25 0 35 35 32 3 25 1
0 1 (1,4] 672 100 97 3 25 3 49 49 48 1 25 1
0 1 > 4 283 100 97 3 25 3 36 36 35 1 25 1
0 2 ≤ 1 78 78 76 2 25 2 9 9 8 1 8 1
0 2 (1,4] 432 100 96 4 25 4 60 60 56 4 25 4
0 2 > 4 254 100 96 4 25 4 66 66 58 8 25 8
0 3 ≤ 1 40 40 37 3 25 3 4 4 4 0 4 0
0 3 (1,4] 337 100 100 0 25 0 37 37 34 3 25 3
0 3 > 4 296 100 99 1 25 1 63 63 55 8 25 8
0 4 ≤ 1 1 1 1 0 1 0 5 5 3 2 3 2
0 4 (1,4] 141 100 97 3 25 3 33 33 31 2 25 2
0 4 > 4 162 100 98 2 25 2 53 53 48 5 25 5
1 1 ≤ 1 8 8 1 7 1 7 8 8 0 8 0 8
1 1 (1,4] 36 36 4 32 4 32 7 7 1 6 1 6
1 1 > 4 19 19 1 18 1 18 3 3 0 3 0 3
1 2 ≤ 1 4 4 0 4 0 4 7 7 0 7 0 7
1 2 (1,4] 32 32 5 27 5 27 11 11 0 11 0 11
1 2 > 4 25 25 4 21 4 21 15 15 0 15 0 15
1 3 ≤ 1 2 2 0 2 0 2 17 17 0 17 0 17
1 3 (1,4] 41 41 8 33 8 33 21 21 0 21 0 21
1 3 > 4 26 26 6 20 6 20 22 22 2 20 2 20
1 4 ≤ 1 0 0 0 0 0 0 12 12 0 12 0 12
1 4 (1,4] 22 22 13 9 13 9 15 15 2 13 2 13
1 4 > 4 14 14 9 5 9 5 15 15 2 13 2 13

Totals 3312 1248 1045 203 327 203 603 603 419 184 247 181

10



Table 2. Full-data analysis compared with 3-phase analysis

Full data 3-phase Ratio
Estimate se z Estimate se z of ses

Intercept -4·08 0·390 -10·4 4·02 0·538 7·5 1·38
Histology 1·30 0·125 10·4 1·33 0·133 10·0 1·06
Stage 0·81 0·149 5·5 0·86 0·204 4·2 1·37
Age ≤ 1 -0·29 0·180 -1·6 -0·26 0·187 -1·4 1·04
1 < age < 4 -0·47 0·102 -4·6 -0·47 0·105 -4·4 1·03
Hist× Age ≤ 1 1·77 0·347 5·1 1·61 0·351 4·6 1·01
Tumor diam· 0·14 0·031 4·6 0·13 0·045 3·0 1·45
Stage×Tumor -0·04 0·012 -3·4 -0·04 0·017 -2·6 1·42
[3-phase results are means from 1,000 subsamples]

be the same as the parameter estimated from from complete-cohort data when there is model
misspecification. Using the broader form of asymptotics would, for example, facilitate investi-
gating asymptotic efficiencies in a way that penalises departures from the complete-cohort limit.
The issues are subtle, however, and our earlier work casts some doubt on whether this is always
the relevant comparison. We hope to explore this in the future.

Appendix 1

Derivation of the estimating equation

All derivations are for an arbitrary regression function of the form ph(x, β) = pr(Y = h | X =
x).

Set XT = (X(1)T , X(2)T , X(3)T ) and assume first that X (3) has finite support, taking on values
x

(3)
k . Let Nhijk denote the number of times the value x(3)

k appears in the hij stratum and let
phijk(β) = pr(Y = h | X(1) = x

(1)
i , X(2) = x

(2)
j , X(3) = x

(3)
k ). We parameterize the log-

likelihood in terms of the basic parameters gijk = pr(X(3) = x
(3)
k | X(1) = x

(1)
i , X(2) = x

(2)
j ),

ξij = pr(X(2) = x
(2)
j | X(1) = x

(1)
i ) and ζi = pr(X(1) = x

(1)
i ). It is convenient to introduce the

notation

ψhij =
∑
k

phijk(β)gijk = pr(Y = h | X(1) = x
(1)
i , X(2) = x

(2)
j ),

πhi =
∑
j

ψhijξij = pr(Y = h|X(1) = x
(1)
i ).

Then from equation (7) in Section 2.2 and recalling that Nhi+ = nhi, the log-likelihood is

�(β, ζ, ξ, g) =
∑
hijk

nhijk log phijk(β) +
∑
hi

(Nhi − nhi) log πhi +
∑
hij

(Nhij − nhij) logψhij

+
∑
ij

N+ij log ξij +
∑
ijk

n+ijk log gijk +
∑
i

N+i log ζi. (16)

11



We want to maximize �(β, ζ, ξ, g) with respect to ζ , ξ and g to obtain the profile likelihood of
β. We see that terms involving β, which is the quantity of interest, cannot be factored out from
the nuisance parameters ξ and the gijk’s, which are of little or no interest in their own right.
However, the parameter ζ is orthogonal to the other parameters, and can be ignored in what
follows. Accordingly we drop the last term from the log-likelihood and write �(β, ξ, g).

We introduce Lagrange multipliers ηi and ηij to take care of the constraints
∑
j ξij = 1 and∑

k gijk = 1. Differentiating (16) with respect to ξij and setting the result equal to ηi leads to

N+ij

ξij
+
∑
h

(Nhi − nhi)
ψhij
πhi

= ηi. (17)

Multiplying (17) through by ξij and summing over j gives ηi = N+i so that the maximizing
values of ξij satisfy

ξij =
N+ij∑
h
μhiψhij

πhi

(18)

where μhi = N+iπhi−(Nhi−nhi). Similarly, differentiating (16) with respect to gijk and setting
the result equal to ηij leads to

n+ijk

gijk
+
∑
h

{
(Nhi − nhi)

ξij
πhi

+ (Nhij − nhij)/ψhij

}
phijk = ηij . (19)

Multiplying (19) through by gijk, summing over k and applying (17) then gives ηij = N+iξij .
Thus the maximizing values of gijk satisfy the equations

gijk =
n+ijk∑

h
μhij

ψhij
phijk(β)

, (20)

where

μhij = N+ijπhij − (Nhij − nhij)

πhij =
μhiψhij/πhi

μ0iψ0ij/π0i + μ1iψ1ij/π1i
. (21)

Substituting the expressions (18) and (20) for ξij and gijk into (16), we obtain the profile likeli-
hood

�P (β) =
∑
hijk

nhijk log p∗hijk(β) +
∑
hi

(Nhi log πhi − nhi logμhi)

+
∑
hij

(Nhij log πhij − nhij logμhij) (22)

where

p∗hijk =

μhij

ψhij
phijk∑

h
μhij

ψhij
phijk

.

Note that (21) and the fact that ψ+ij = 1 imply that

ψhij =
πhiπhij/μhi∑
h πhiπhij/μhi

12



so that �P (β) is a function of the π’s. These parameters are not free, but rather satisfy the
equations ∑

k

n+ijkp
∗
hijk = μhij,

∑
j

N+ijπhij = μhi, (23)

which come from substituting the expressions from (18) and (20) into the definitions of π ij and
ψijk.

We have reparameterized our profile log-likelihood in terms of the π’s, which must satisfy
the equations (23). Since π+i = π+ij = 1 there are I + IJ free parameters. Next, we introduce
a further parameterization corresponding to that used by Scott & Wild (1997) in the two-phase
case. Put γi = N+iπ1i−N1i and γij = N+ijπ1ij−N1ij . Then μ1i = n1i+γi and μ1ij = n1ij+γij ,
and the profile log-likelihood can be written in terms of these new parameters as

�P (β) =
∑
hijk

nhijk log p∗hijk(β) +
∑
i

ci(αi) +
∑
hij

cij(αij)

where αt is defined as a function of γt by (12) and ct is given by (13). Here, as in Section 2.2,
we use the subscript t to mean either i or the double subscript ij. In terms of αt, p∗1ijk can be
written as

logit(p∗1ijk) = logit(p1ijk) + αi + αij.

The conditions (23) can be written in terms of the γt’s as∑
k

n+ijkp
∗
1ijk = n1ij + γij, γi+ = γi. (24)

Now consider the function �∗3 defined by (9), where the αt’s are regarded as free parameters. We
have shown that

�P (β) = �∗3{β, α(β)},
where the elements αt of α(β) are given by (12), and the γt’s satisfy equations (24).

Finally, we show that the equations (23) are implied by the derivative conditions ∂�∗3/∂αt =
0. We have ∂�∗3/∂αij = n1ij+ −∑

k n+ijkp
∗
1ijk + γij, so that ∂�∗3/∂αij = 0 implies the first part

of (24). Similarly,
∂�∗3
∂αi

= n1i++ −∑
jk

n+ijkp
∗
1ijk + γi.

Thus, adding the equations ∂�∗3/∂αij = 0 over j gives n1i++ =
∑
jk n+ijkp

∗
1ijk + γi+ so that

∂�∗3/∂αi = 0 and ∂�∗3/∂αij = 0 imply equations (24). It follows that β̂ = argmax �P (β)argmax �∗3(β, α(β))

is found by solving the estimating equation ∂�∗3
∂φ

= 0, where φT = (βT , αT ).
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Appendix 2

Establishing the efficiency bound

In this Appendix we establish the asymptotic efficiency of the semiparametric maximum like-
lihood estimate obtained by solving the estimating equation considered above. We begin by
calculating the asymptotic variance of β̂.

Asymptotic variance of the estimate

Let NT = N + n++ + n+++ and set I∗ = −plimNT →∞NT
−1 ∂2�∗3
∂φ∂φT

,

where all derivatives are evaluated at the true values φ(0). The reason for this non-standard
normalization will be come clear below. It can be shown (see Scott & Wild 2001, Lee, Scott &
Wild 2006, 2007) that

lim
NT→∞

Ncov(β̂) = {I∗ββ − I∗βα(I
∗
αα)

−1I∗αβ}−1, (25)

where I∗ is partitioned in accordance with (α, β). This result follows from the fact that, un-
der suitable regularity conditions, the solution φ̂ of ∂�∗∂φ = 0 is asymptotically normal with
asymptotic variance I∗−1ΣI∗−1 where the matrix Σ is of the form

Σ = I∗ − I∗
(

0 0
0T D

)
I∗

for some matrix D. Thus, the asymptotic variance of φ̂ is

I∗−1 −
(

0 0
0T D

)
,

and it follows from the partitioned matrix inverse formula that the asymptotic variance matrix
of β̂ is given by (25).

We now derive an explicit expression for I∗ under a different but equivalent three-phase
sampling scheme. Suppose that

1. (Phase 1). We take a random sample of N individuals from the population of cases
and controls. Then {Nhi}, the number out of N with Y = h and X (1) = x

(1)
i , have a

multinomial distribution with probabilities Δhi = pr(Y = h,X(1) = x
(1)
i ). This is the

same as the original sampling scheme.

2. (Phase 2). For h = 0, 1 and i1 = 1, . . . , I , we take nhi individuals sampled, independently
of what happens at Phase 1, from the conditional distribution of X (2) = x

(2)
j , given Y =

h and X(1) = x
(1)
i . Let Nhij be the number of these having X (2) = x

(2)
j . Then the

{Nhij} have a multinomial distribution with probabilities Δhij = pr(X(2) = x
(2)
j | Y =

h,X(1) = x
(1)
i ).
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3. (Phase 3). For h = 0, 1 and i = 1, . . . , I, j = 1, . . . , J , we take a sample of nhij
individuals, independently of what happens at Phase 2, from the conditional distribution
of X(3), given Y = h,X (1) = x

(1)
i , X(2) = x

(2)
j , with density

phij(x, β)gij(x
(3))/ψhij,

where gij is the conditional density of X (3) given X (1) = x
(1)
i , X(2) = x

(2)
j , and ψhij =

pr(Y = h | X(1) = x
(1)
i , X(2) = x

(2)
j ) =

∫
phij(x, β)gij(x

(3)) dx(3). We denote con-

ditional expectation with respect to X (3), given Y = h,X (1) = x
(1)
i , X(2) = x

(2)
j , by

Ehij.

This sampling scheme has the same likelihood, and hence the same asymptotics, as the one
considered previously. Thus, if an estimator is efficient under the new sampling scheme, it will
be efficient under the old. For a proof of this for two-phase sampling, see Lee (2007). The
general case for arbitrary S is essentially identical.

We work with this new scheme for the remainder of this section. We consider asymptotics
where N/NT → w, nhi/NT → whi and nhij/NT → whij. Corresponding to the fact that
Nhi ≥ nhi and Nhij ≥ nhij in the original scheme, we will assume that wΔ

(0)
hi ≥ whi and

whiΔ
(0)
hij ≥ whij. Here, we are using the additional superscript 0 to denote the true value of the

corresponding parameter. We also let π(0)
hi denote the true value of the conditional probability

pr(Y = h | X(1) = x
(1)
i ).

Under the new scheme, and applying the law of large numbers directly toNT
−1 ∂2�∗3

∂φ∂φT , where
�∗3 is given by (equation10) , we obtain

I∗ = −∑
hij

whijEhij

{
∂2 log p∗hij(X

(3), φ)

∂φ∂φT

}
−∑

i

∂2ci
∂φ∂φT

−∑
ij

∂2cij
∂φ∂φT

= −∑
hij

whijEhij

{
∂2 log p∗hij(X

(3), φ)

∂φ∂φT

}
−
(

0 0
0 A

)

where A is a (I+IJ)×(I+IJ) diagonal matrix with entriesAt, since ∂2ct/∂α
2
t ∂γt/∂αt = At.

Using the identity
∂2 log h

∂φ∂φT
=

1

h

∂2h

∂φ∂φT
− ∂ log h

∂φ

∂ log h

∂φT

and noting that

Ehij

{
1

p∗hij

∂2p∗hij
∂φ∂φT

}
= 0,

we finally obtain

I∗ =
∑
hij

whijEhij

{
∂ log p∗hij(X

(3), φ)

∂φ

∂ log p∗hij(X
(3), φ)

∂φT

}
−
(

0 0
0 A

)
. (26)

A general result
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We first describe a general result that shows how an efficiency bound can be calculated.
Suppose that we have independent observations z of J different types, with respective densities
fj(z, β, γ) for j = 1, . . . , J where β is a finite dimensional parameter and γ can be infinite-
dimensional. Then if β̂ is a regular asymptotically linear semi-parametric estimate of β, the
covariance matrix of β̂ must satisfy var(β̂) ≥ B where B is the semi-parametric efficiency
bound. The matrix B may be found as follows. Consider the “expected population log likeli-
hood” ∑

j

wjEj{log fj(z, β, γ)}, (27)

where Ej denotes expectation with respect to the true density fj(z, β(0), γ(0)), and the weights
are the limiting proportions of the different types of observations. For fixed β, let γ(β) be
the maximizer of (27). This is called the “least favourable distribution” for the problem. The
“efficient scores” S∗

j are given by

S∗
j =

∂ log fj(z, β, γ(β))

∂β

∣∣∣∣∣
β=β(0)

, j = 1, . . . , J

and the efficiency bound is given by

B−1 =
∑
j

wjEj[S
∗
jS

∗
j
T ].

Thus, to establish the efficiency of our procedure, we need only show that the asymptotic vari-
ance of our estimate coincides withB. This approach to semi-parametric efficiency is described
in Tsiatis (2006) in the case of a single population, and extended to more than one population in
Lee & Hirose (2009). The characterization of the least favourable distribution as the maximizer
of an ”expected log-likelihood” was first considered by Newey (1994). Newey’s formulation is
more general than the one considered here, in that it makes no assumption that the parametric
part of the model is correctly specified, as is the case in the Tsiatis formulation.

Application to three-phase sampling

Now we apply the theory sketched above to regression models for data obtained by the
modified three-phase sampling scheme described in the previous section. The results obtained
also apply to the original three-phase sampling scheme.

First, we parameterize the distributions in phases 1 to 3 of our sampling scheme in terms
of the conditional densities gij(x

(3)
k ) of X(3), given X (1) = x

(1)
i and X(2) = x

(2)
j , the con-

ditional probability ξij = pr(X(2) = x
(2)
j , | X(1) = x

(1)
i ) and the unconditional probability

ζi = pr(X(1) = x
(1)
i ). The first phase distribution is

Δhi = πhiζi.

For the second phase, the distributions are

Δhij =
ψhijξij
πhi

,
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where

ψhij =
∫
phij(x, β)gij(x

(3)) dx(3),

πhi =
∑
j

ψhijξij.

Finally, the third phase distributions have densities

phij(x, β)gij(x
(3))/ψhij.

The “expected log likelihood” is, up to a constant not involving ζ i, ξij or gij

E =
∑
hi

wΔ
(0)
hi log Δhi +

∑
hij

whiΔ
(0)
hij log Δhij +

∑
hij

whijEhij [log gij(X
(3))/ψhij]. (28)

Finding the least favourable distribution

To find the least favourable distribution, we must maximize (28) over the gij’s and the ξij’s
for fixed β. Recall that phij(x, β) depends on x only through x(3). As in A1, the parameter ζi
can be ignored in what follows. From Appendix 3, the maximizing values satisfy the equations

ĝij(x
(3), β) =

Pij(x
(3))g

(0)
ij (x(3))∑

h
μhij(β)

ψhij(β)
phij(x, β)

, (29)

ξ̂ij(β) =
w(ij)∑

h μhi(β)ψhij(β)/πhi(β)
, (30)

where
Pij(x

(3)) =
∑
h

whij

ψ
(0)
hij

phij(x, β
(0))

and w(ij) =
∑
hwhiΔ

(0)
hij. The quantities μhi, μhij, πhi, πhij are scaled limiting versions of those

considered in Appendix 1, and are defined in terms of further quantities γt by

μhi = whi + δhγi, πhi =
wΔ

(0)
hi + δhγi

wΔ
(0)
+i

,

μhij = whij + δhγij, πhi =
whiΔ

(0)
hij + δhγij

whiΔ
(0)
+ij

,

where we have written δh = ±1 according as h = 1 or 0. Also, as in A1, let

logitp∗1ij(x
(3), φ) = logitp1ij(x

(3), β) + αi + αij,

where

αi = log

(
w1i + γi

wΔ
(0)
1i + γi

)
− log

(
w0i − γi

wΔ
(0)
0i − γi

)
,

αij = log

⎛⎝ w1ij + γij

w1iΔ
(0)
1ij + γij

⎞⎠− log

⎛⎝ w0ij − γij

w0iΔ
(0)
0ij − γij

⎞⎠ .
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The quantities γt satisfy the equations

γi+ = γi,
∫
p∗1ijPij(x

(3))g
(0)
ij (x(3)) dx(3) = w1ij + γij. (31)

The proof of these assertions is almost the same as that given in A1. Note that the γt’s, and
hence the αt’s, are functions of β, although this is suppressed in the notation. When β = β (0),
then γt = 0 is a solution of equations (31).

For the first distribution, the efficient scores are

∂ log Δhi

∂β
|β=β(0) = δh

1

wΔ
(0)
hi

∂γi
∂β

.

For the second distribution, the efficient score is

∂ log Δhij

∂β
|β=β(0)= δh

⎛⎝ 1

whiΔ
(0)
hij

∂γij
∂β

− 1

whi

∂γi
∂β

⎞⎠
and for the third

∂

∂β
log phij(x, β)gij(x

(3))/ψhij
∂ log p∗hij(x, φ)

∂β
− δh

1

whij

∂γij
∂β

.

Note also that

Ehij

{
∂ log p∗hij(X, φ)

∂β

}
δh

1

whij

∂γij
∂β

.

Thus, the inverse of the information bound B is, writing x⊗2 for xxT ,

B−1 =
∑
hi

wΔ
(0)
hi

(
1

wΔ
(0)
1i

∂γi
∂β

)⊗2

+
∑
hij

whiΔ
(0)
hij

⎛⎝ 1

whiΔ
(0)
hij

∂γij
∂β

− 1

whi

∂γi
∂β

⎞⎠⊗2

+
∑
hij

whijEij

⎧⎨⎩
(
∂ log p∗hij(X

(3), φ)

∂β
− δh

1

whij

∂γij
∂β

)⊗2
⎫⎬⎭

=
∑
hij

whijEij

⎧⎨⎩
(
∂ log p∗hij(X

(3), φ)

∂β

)⊗2
⎫⎬⎭−∑

i

A−1
i

(
∂γi
∂β

)⊗2

−∑
ij

A−1
ij

(
∂γij
∂β

)⊗2

where

Ai =

(
1

wΔ
(0)
1i

− 1

whi

)−1

, Aij =

⎛⎝ 1

whiΔ
(0)
1ij

− 1

whij

⎞⎠−1

and all derivatives are evaluated at β = β(0). Since ∂γt/∂β = (∂γt/∂αt)At we finally obtain

B−1 =
∑
hij

whijEij

⎡⎣(∂ log p∗hij(X
(3), φ)

∂β

)⊗2
⎤⎦−∑

i

Ai

(
∂αi
∂β

)⊗2

−∑
ij

Ai

(
∂αij
∂β

)⊗2

.

Since φT = (βT , α(β)T ), the chain rule and (26) imply that

B−1 = I∗ββ +

(
∂α

∂β

)T
I∗αβ + I∗βα

(
∂α

∂β

)
+

(
∂α

∂β

)T
I∗αα

(
∂α

∂β

)
. (32)
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To calculate ∂α
∂β

, let E be the expected log-likelihood (28). Then, by the results in Appendix 3,
for each fixed β we have

E(β, ξ̂, ĝ) = E∗(β, α(β))

where E∗ is given by (35) in Appendix 3. Using the same arguments as those used in Appendix
1 for the sample case, α(β) satisfies

∂E∗(β, α)

∂α

∣∣∣∣∣
α=α(β)

= 0

for each β. Differentiating again by the chain rule, we get

∂2E∗(β, α)

∂β∂αT

∣∣∣∣∣
β=β(0),α=α(β(0))

+

(
∂α

∂β

)T
∂2E∗(β, α)

∂α∂αT

∣∣∣∣∣
β=β(0),α=α(β(0))

= 0.

Thus, by (28), we get I∗βα +

(
∂α

∂β

)T
I∗αα = 0

so that ∂α/∂β = − (I∗αα)
−1 I∗αβ. Substituting this into (32) shows thatB−1 = I∗ββ−I∗βα(I∗αα)−1I∗αβ ,

and so by (25), the estimating equation leads to asymptotically efficient estimates.

Appendix 3

Maximizing the expected log-likelihood

Again, we begin by assuming that the support of the variable X (3) is finite. By following the
same argument as in Appendix 1, the Lagrange multiplier argument suggests that the maximiz-
ing values of gij and ξij satisfy (29) and (30). In fact, this remains true even when the support
of X(3)is not finite, at least for values of β in a neighbourhood of β (0). We now verify this.

For ĝij and ξ̂ij as defined in (29) and (30), and for arbitrary densities gij and probabilities
ξij, we must show that∑

hij

whiΔ
(0)
hij log Δhij(β) +

∑
hij

whij

ψ
(0)
hij

∫
log ĝij(x

(3))phij(x, β
(0))g

(0)
ij (x(3)) dx(3) −∑

hij

whij logψhij(β)

≥ ∑
hij

whi1Δ
(0)
hij log Δ∗

hij +
∑
hij

whij

ψ
(0)
hij

∫
log gij(x

(3))phij(x, β
(0))g

(0)
ij (x(3)) dx(3) −∑

hij

whij logψhij
∗ (33)

where ψhij
∗ =

∫
gij(x

(3))phij(x, β) dx(3) and Δ∗
hij = ψhij

∗ξij/
∑
j ψhij

∗ξij. The inequality (33)
is equivalent to

∑
hij

whiΔ
(0)
hij log

Δhij

Δ∗
hij

−∑
hij

whij log
ψhij
ψhij

∗ +
∑
hij

whij

ψ
(0)
hij

∫
log

ĝij(x
(3))

gij(x(3))
Pij(x

(3))g
(0)
ij (x(3)) dx(3) ≥ 0.(34)

When β = β(0), ĝij(x(3), β) = g(0)(x(3)) and Δij = Δ
(0)
ij , the left hand side of (34) becomes

∑
hij

whiΔ
(0)
hij log

Δ
(0)
hij

Δ∗
hij

−∑
hij

whij log
ψ

(0)
hij

ψhij
∗ +

∑
hij

whij

ψ
(0)
hij

∫
log

g
(0)
ij (x(3))

gij(x(3))
Pij(x

(3))g
(0)
ij (x(3)) dx(3).

19



An argument based on the Kullback-Leibler information inequality shows that

whij

ψ
(0)
hij

∫
log

g
(0)
ij (x(3))

gij(x(3))
Pij(x

(3))g
(0)
ij (x(3)) dx(3) > whij log

ψ
(0)
hij

ψhij
∗ ,

provided gij �= g
(0)
ij . Moreover, the Kullback-Leibler inequality implies that

∑
hij

wiΔ
(0)
hij log

Δ
(0)
hij

Δhij
≥ 0.

Hence, the right-hand side of (34) is strictly positive at β = β (0), and by a continuity argument is
non-negative for all β in some neighbourhood of β (0). Thus, (29) and (30) do indeed maximize
the expected log-likelihood. Substituting these maximizing values back into (32), we get the
analogue of (22) for the expected log-likelihood:

E(β, ξ̂, ĝ) = E∗(β, α(β))

where
E∗(β, α) =

∑
hij

whijEhij[log p∗hij(X
(3), φ)] +

∑
i

ci(αi) +
∑
ij

cij(αij). (35)
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