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SECOND SEMESTER, 2014
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STATISTICS

Statistical Inference

(Time allowed: TWO hours)

NOTE: Attempt all questions. The total mark is 100.

Be sure to show your working and define notation
-full marks WILL NOT be awarded for answers that are not proved or
argued, even if those answers are correct.
-partial marks WILL be awarded for incorrect answers if partial progress
toward the correct answer is demonstrated.
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1. [20 marks] Suppose that y1 = 4 is observed from a Poisson(λ1) distribution. Recall

that a Poisson(λ) distribution has density function

f(y;λ) =
e−λλy

y!
, y = 0, 1, 2, ...

(a) Show that the MLE of λ1 is λ̂1 = y1 = 4.

(b) Calculate the curvature of the log-likelihood, and hence provide an estimate of

the variance of λ̂1.

Suppose now that y2 = 12 is observed from a Poisson(λ2) distribution, and is inde-

pendent of y1.

(c) Calculate the Wald test statistic for H0 : λ1 = λ2.

(d) Calculate the Wald test statistic for H0 : (λ1, λ2) = (10, 10).

(e) Recalculate the Wald test statistic for the hypothesis in part (d), but using the

alternative parameterization (ζ1, ζ2) where ζi = log(λi), i = 1, 2.

(f) Calculate the likelihood ratio test statistic for H0 : λ1 = λ2.

(g) Calculate the likelihood ratio test statistic for H0 : (λ1, λ2) = (10, 10).

For the final part of this question, consider prediction of the random variable z∗ =

y∗2−y∗1 where y∗1 ∼ Poisson(λ1) and y∗2 ∼ Poisson(λ2) are future realizations from their

respective distributions.

(h) Using your choice of either bootstrap prediction or pseudo-Bayesian prediction,

write a short piece of R code to implement the generation of 1000 future realiza-

tions of z∗.

CONTINUED
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2. [8 marks] Consider a one-parameter statistical model f(y; θ) with MLE θ̂.

(a) Show that the Wald and likelihood ratio test statistics of H0 : θ = θ0 are equal if

the log-likelihood function is quadratic. Assume that the Wald statistic uses the

usual variance estimate, v̂ar(θ̂) = −1/l
′′
(θ̂).

(b) Use the result from part (a) to provide a justification for preferring likelihood

ratio tests to Wald tests.

3. [10 marks]

(a) State and prove Jensen’s inequality. You may use the following definition of a

convex function defined on D ⊂ RI .

Definition: φ : D → RI is convex if for every y0 ∈ D there exists a c ∈ RI such that

φ(y0) + c(y − y0) ≤ φ(y) for all y ∈ D.

(b) Subject to regularity conditions, it is known that the likelihood is higher at the

true parameter value, θ0, than at any other fixed parameter value with probability

that becomes arbitrarily close to 1 as the sample size increases. Using this fact,

show that the maximum likelihood estimator θ̂ is consistent. (You may assume

θ ∈ RI and that the likelihood is unimodal.)

4. [5 marks] Derive the Newton-Raphson algorithm for numerical optimization.

CONTINUED
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5. [10 marks] Consider a mark-recapture experiment where 100 animals are caught and

marked on the first capture occasion. On the second capture occasion, 75 animals are

caught, of which 25 were marked.

(a) Arrange the data in the form of a partially completed 2-by-2 contingency table.

making sure to clearly label the row and columns.

(b) Write down the multinomial model log-likelihood for the above contingency table,

and explain how profile likelihood can be employed to simplify the maximization

of this log-likelihood. Recall that a s-cell multinomial with n trials and cell

probabilities p1, ..., ps has density function

f(y1, ..., ys; p1, ..., ps) =
n!

y1!...ys!
py11 ...p

ys
s .

Be sure to define your notation.

6. [8 marks] Show that the inverse-Gaussian density function

f(y;µ, σ2) =
1√

2πσy3/2
exp

(
−(y − µ)2)

2σ2µ2y

)
,

can be written in exponential dispersion family form

log f(y;ψ, φ) =
yψ − b(ψ)

φ/w
+ c(y, φ, w) . (1)

Be sure to clearly specify ψ, φ and b(ψ).
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7. [6 marks] In your answers to the items below, be sure to define all relevant notation

and terminology.

(a) Define AIC.

(b) Define deviance residual.

(c) The model deviance can not be used for assessing the fit of generalized linear

mixed models. Why?

8. [12 marks] Count data were obtained from an experiment with two explanatory factors,

A and B, each with 2 levels. Ten observations were measured for each of the four

combinations of levels of the two factors, resulting in a sample size of n = 40.

The attachment contains R code and output from fitting a selection of log-linear

models to the data. Be sure to provide relevant working when answering the following

questions:

(a) What is the deviance of the null model?

(b) Which model is preferred by AIC?

(c) Are these data over-dispersed?

(d) Which model is preferred by quasi-AIC?

(e) For the model preferred by quasi-AIC, provide an over-dispersion corrected 95%

Wald confidence interval for the intercept parameter.

(f) Write the R code that would be required to obtain an over-dispersion corrected

95% likelihood ratio confidence interval for the intercept parameter.
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9. [21 marks]

(a) Explain the concept of separability and how it can be used to ease the computa-

tional burden of fitting latent variable models.

(b) Application of Gauss-Hermite quadrature results in the exact formula∫ ∞
−∞

(a+ bu+ cu2)e−(u−µ)
2

du =
√
π(a+ bµ+ c(µ2 + 0.5)) . (2)

Deduce this formula by utilizing the known properties about the first and second

order moments of a normal distribution with mean µ and variance 1
2
. This

distribution has density function f(u) = 1√
π
e−(u−µ)

2
.

(c) Write R code to numerically approximate the integral on the left-hand side of (2)

using importance sampling, using random samples taken from a standard Cauchy

distribution. The standard Cauchy has density function f(u) = 1
π(1+u2)

. Func-

tion rcauchy randomly generates values from this distribution, and the density

function is evaluated by the dcauchy function.

(d) Determine the form of the Laplace approximation to the integral∫ ∞
0

uα−1e−u/βdu .

[You can ignore the fact that this integral restricted to the non-negative reals - it

will be assumed that α and β are such that the Laplace approximation will still

be reasonable.]

(e) From part 9(d) above, evaluate your Laplace approximation for α = 10 and

β = 0.25. If you have done things correctly, you will have calculated a value that

is close to the true value Γ(10)× 0.2510 = 0.34607.

ATTACHMENT FOLLOWS
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R code for Question 8

> #Summary function to provide parameter table, log-likelihood, Pearson chi-square,
> #and likelihood ratio confidence intervals.
> gSummary=function(gfit,level=0.95) {
+ list(pars=coef(summary(gfit)),logLik=logLik(gfit),
+ Pchisq=sum(resid(gfit,type="pearson")^2),LRCI=confint(gfit,level=level)) }
>
> #Null model
> g0=glm(y~1,family=poisson,data=df)
> #Effect of A only
> gA=glm(y~A,family=poisson,data=df)
> #Effect of B only
> gB=glm(y~B,family=poisson,data=df)
> #Additive effects of A and B
> gAB=glm(y~A+B,family=poisson,data=df)
> #Full model with interaction
> gFull=glm(y~A*B,family=poisson,data=df)
> #Saturated model
> gSatd=glm(y~as.factor(1:40),family=poisson,data=df)

> gSummary(g0)
$pars

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.844909 0.03812464 74.62127 0

$logLik
’log Lik.’ -225.624 (df=1)

$Pchisq
[1] 279.6744

$LRCI
2.5 % 97.5 %

2.769243 2.918712

> gSummary(gA)
$pars

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.124565 0.04688072 66.649252 0.000000e+00
AYes -0.669259 0.08055835 -8.307754 9.753029e-17

$logLik
’log Lik.’ -189.1582 (df=2)

$Pchisq
[1] 202.2072

$LRCI
2.5 % 97.5 %

(Intercept) 3.0312495 3.215062
AYes -0.8285793 -0.512626

CONTINUED
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> gSummary(gB)
$pars

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.1201599 0.04698410 66.408848 0.000000e+00
BYes -0.6563066 0.08039169 -8.163861 3.244824e-16

$logLik
’log Lik.’ -190.4838 (df=2)

$Pchisq
[1] 221.1853

$LRCI
2.5 % 97.5 %

(Intercept) 3.026635 3.2108529
BYes -0.815270 -0.4999712

> gSummary(gAB)
$pars

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.3998156 0.05433051 62.576547 0.000000e+00
AYes -0.6692590 0.08055755 -8.307837 9.746229e-17
BYes -0.6563066 0.08039037 -8.163996 3.241200e-16

$logLik
’log Lik.’ -154.0179 (df=3)

$Pchisq
[1] 135.1952

$LRCI
2.5 % 97.5 %

(Intercept) 3.2916598 3.5046733
AYes -0.8285793 -0.5126260
BYes -0.8152700 -0.4999712
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> gSummary(gFull)
$pars

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.3499041 0.05923485 56.552922 0.000000e+00
AYes -0.5285252 0.09726830 -5.433684 5.520229e-08
BYes -0.5166907 0.09690625 -5.331862 9.721092e-08
AYes:BYes -0.4328860 0.17529276 -2.469503 1.353009e-02

$logLik
’log Lik.’ -150.8939 (df=4)

$Pchisq
[1] 126.3584

$LRCI
2.5 % 97.5 %

(Intercept) 3.2315120 3.46379538
AYes -0.7208845 -0.33930271
BYes -0.7082965 -0.32813191
AYes:BYes -0.7806047 -0.09266573

> logLik(gSatd)
’log Lik.’ -89.39534 (df=40)


