Applied Likelihood methods:
With examples in R and SAS

Russell B. Millar
Department of Statistics
University of Auckland

March 4, 2009
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>viii</td>
</tr>
<tr>
<td>Part One: Preliminaries</td>
<td>i</td>
</tr>
<tr>
<td>1 Likelihood</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Motivating example</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Using SAS and R</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1 Using SAS</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Using R</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Exercises</td>
<td>14</td>
</tr>
<tr>
<td>2 A taste of likelihood</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Some necessary notation</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2 MLEs of functions of the parameters</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Interpretation of likelihood</td>
<td>20</td>
</tr>
<tr>
<td>2.3 IID Examples</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Exercises</td>
<td>28</td>
</tr>
<tr>
<td>Part Two: Pragmatics</td>
<td>31</td>
</tr>
<tr>
<td>3 Pragmatics</td>
<td>32</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Approximate normality of MLEs</td>
<td>32</td>
</tr>
<tr>
<td>3.2.1 Estimating the approximate variance</td>
<td>33</td>
</tr>
<tr>
<td>3.2.2 Estimating variances using R and SAS</td>
<td>34</td>
</tr>
<tr>
<td>3.3 Tests, confidence intervals and confidence regions</td>
<td>37</td>
</tr>
<tr>
<td>3.4 Wald tests, confidence intervals and regions</td>
<td>39</td>
</tr>
<tr>
<td>3.4.1 Test for a single parameter</td>
<td>39</td>
</tr>
</tbody>
</table>
3.4.2 Joint test of two or more parameters 39
3.4.3 Using R and SAS .. 40
3.5 Likelihood ratio tests, confidence intervals and regions 42
3.5.1 Using R and SAS .. 44
3.5.2 Using R .. 45
3.5.3 Using SAS .. 46
3.6 More examples .. 48
3.7 Exercises ... 51

4 What you really need to know ... 53
4.1 Introduction ... 53
4.2 Approximate distribution of $g(\theta)$.. 54
 4.2.1 The delta method .. 54
 4.2.2 The delta method in R and SAS ... 59
4.3 Delta method examples .. 60
 4.3.1 Example 1: Variance of a product. 60
 4.3.2 Example 2: Variance of log odds-ratio 62
 4.3.3 Example 3: Vector transformation ... 64
4.4 Wald statistics - quick and dirty? ... 65
 4.4.1 Wald versus likelihood ratio .. 66
4.5 Profile likelihood ... 68
4.6 Model selection ... 71
 4.6.1 Hypothesis tests versus model selection criteria 71
 4.6.2 AIC and BIC ... 71
 4.6.3 In R and SAS ... 71
4.7 Bootstrapping ... 72
 4.7.1 Bootstrap simulation ... 73
 4.7.2 Bootstrap confidence intervals .. 73
 4.7.3 Bootstrap estimate of variance ... 75
 4.7.4 Bootstrapping the Old Faithful geyser 75
 4.7.5 How many bootstrap simulations is enough? 80
4.8 Prediction ... 81
 4.8.1 Prediction in Practice ... 83
 The plug-in approach ... 83
 Predictive likelihood ... 84
 Pseudo-Bayesian prediction ... 84
 Bootstrap prediction ... 85
4.9 Things that can mess you up .. 86
 4.9.1 Multiple maxima of the likelihood 86
 4.9.2 Parameters on the boundary of the parameter space 87
 4.9.3 Non-arrival at Asymptopia 88
4.10 Tweaks .. 88
4.11 Exercises .. 88
4.12 New Chapter on regression models 90
 4.12.1 The linear-normal model 90
 4.12.2 The maximum likelihood model 92

5 Maximizing the likelihood .. 93
 5.1 Introduction .. 93
 5.2 The Newton-Raphson algorithm 94
 5.3 The EM (Expectation - Maximization) algorithm 95
 5.3.1 Properties of the EM algorithm 99
 5.3.2 Inference from the EM algorithm 103
 5.4 Exercises .. 103

6 Some widely used applications of ML 106
 6.1 Box-Cox transformations .. 106
 6.1.1 Case study ... 107
 Using R .. 109
 Using SAS ... 109
 6.2 Models for survival data 110
 6.2.1 Proportional-hazards model 111
 6.2.2 Partial likelihood: Cox’s proportional-hazards model 113
 6.3 Mark-recapture models ... 114
 6.3.1 Mark-recapture likelihood 115
 6.3.2 Inference ... 118
 6.4 Zero-inflated models for count data 118
 6.5 Models for time-series data 118
 6.6 Exercises .. 118

7 Exponential Family models (including GLM’s) 120
 7.1 Exponential family distributions 120
 7.2 Generalized linear models .. 122
 7.3 Information calculations .. 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Deviance and Pearson statistics</td>
<td>124</td>
</tr>
<tr>
<td>7.5</td>
<td>Binomial and Poisson models</td>
<td>125</td>
</tr>
<tr>
<td>7.6</td>
<td>Beyond binomial and Poisson models</td>
<td>126</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Quasi-likelihood and quasi-AIC</td>
<td>127</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Parametric alternatives</td>
<td>128</td>
</tr>
<tr>
<td>7.7</td>
<td>Case studies</td>
<td>128</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Logistic regression and inverse prediction</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Using R</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Using SAS</td>
<td>135</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Case study 2: An additive model for count data</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Implementation differences between R and SAS</td>
<td>145</td>
</tr>
<tr>
<td>7.8</td>
<td>Exercises</td>
<td>145</td>
</tr>
<tr>
<td>8</td>
<td>Quasi-likelihood and Estimating functions</td>
<td>146</td>
</tr>
<tr>
<td>8.1</td>
<td>Quasi-likelihood</td>
<td>146</td>
</tr>
<tr>
<td>8.2</td>
<td>Case study: Quasi-likelihood in R</td>
<td>147</td>
</tr>
<tr>
<td>8.3</td>
<td>Estimating functions</td>
<td>152</td>
</tr>
<tr>
<td>9</td>
<td>Maximum likelihood estimation in the presence of nuisance parameters</td>
<td>154</td>
</tr>
<tr>
<td>9.1</td>
<td>Conditional likelihood</td>
<td>154</td>
</tr>
<tr>
<td>9.2</td>
<td>Marginal Likelihood</td>
<td>159</td>
</tr>
<tr>
<td>9.3</td>
<td>Profile likelihood</td>
<td>160</td>
</tr>
<tr>
<td>9.4</td>
<td>Penalized likelihood</td>
<td>162</td>
</tr>
<tr>
<td>9.5</td>
<td>Mixed-effects models (aka. Mixture models, Empirical Bayes models)</td>
<td>163</td>
</tr>
<tr>
<td>10</td>
<td>Models with unobserved random bits</td>
<td>169</td>
</tr>
<tr>
<td>Part Three: Theoretical foundations</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cramér-Rao inequality and Fisher information</td>
<td>171</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>11.2</td>
<td>The Cramér-Rao inequality for $\theta \in \mathbb{R}$</td>
<td>172</td>
</tr>
<tr>
<td>11.3</td>
<td>CR inequality for $g(\theta)$</td>
<td>174</td>
</tr>
<tr>
<td>11.4</td>
<td>Alternative formulae for $I(\theta)$</td>
<td>176</td>
</tr>
<tr>
<td>11.5</td>
<td>The iid data case</td>
<td>177</td>
</tr>
<tr>
<td>11.6</td>
<td>The multi-parameter case, $\theta \in \Theta \subset \mathbb{R}^r$</td>
<td>178</td>
</tr>
<tr>
<td>11.7</td>
<td>Exercises</td>
<td>183</td>
</tr>
</tbody>
</table>
12 Asymptotic theory

12.1 Introduction .. 185

12.2 Consistency and asymptotic normality 186
 12.2.1 Asymptotic normality: $\theta \in \mathbb{R}$ 190
 12.2.2 Asymptotic normality: $\theta \in \mathbb{R}^s$ 192
 12.2.3 Asymptotic normality: Non iid case 193

12.3 Approximate normality 193

12.4 Wald tests and confidence regions 196
 12.4.1 Wald test statistic ... 196
 12.4.2 Wald confidence intervals and regions 198
 12.4.3 Wald tests and regions for $g(\theta) \in \mathbb{R}^p$ 199

12.5 Likelihood ratio statistic 200
 12.5.1 Likelihood ratio test: $\theta \in \mathbb{R}$ 200
 12.5.2 Likelihood ratio test for $\theta \in \mathbb{R}^s$ and $g(\theta) \in \mathbb{R}^p$ 201

12.6 Rao-score test statistic† 201

12.7 Exercises .. 203

13 Theoretical Tools .. 205

13.1 Equivalence of tests and confidence intervals 205

13.2 Transformation of variables 205

13.3 Relevant probability theory 206

13.4 Relevant inequalities 212
 13.4.1 Useful identities .. 214

13.5 Exercises .. 215

14 Fundamental paradigms and principles of inference 218

14.1 Introduction .. 218

14.2 Sufficiency principle 219

14.3 Conditionality principle 223

14.4 The likelihood principle 225
 14.4.1 Relationship with sufficiency and conditionality 226

14.5 Statistical significance versus statistical evidence † 228

14.6 Exercises .. 230

15 Miscellaneous ... 232

15.1 Notation ... 232

15.2 Do you think like a frequentist or a Bayesian? 233
15.3 Useful distributions

15.3.1 Discrete distributions

15.3.2 Continuous distributions

15.4 R miscellania

15.4.1 Modification to profile likelihood function

15.5 SAS miscellania

15.5.1 Useful Macros

Partial solutions to selected exercises