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1 Introduction

Required reading. Chapter 1 of Hilborn and Walters.

Exercise 1.1 There is more to stock assessment than just fitting a curve. For

example, on p. 10 HW say “These are the wrong questions”. Explain why.

1.1 Basic terminology and notation

Biomass:

Cohort:

Recruitment:

Spawners:

Escapement:

Fecundity:

Carrying capacity:

Effort:

CPUE:

Selectivity/vulnerability:

Mortalities:

Otolith:
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1.2 The “hard core”of QFS

Active areas of modeling include:

Stock-recruitment relationship: An extremely fundamental issue. Discussed at length

in HW Chapter 7.

Stock assessment: That is, estimating the current status of the stock, possibly also

population parameters, and “predicting” the effect of exploitation.

Estimation of biological parameters: Such as growth rate, maximum size, age of

maturity etc.

Selectivity: That is, how the fishing gear selects fish of different size. In conjunction

with knowledge of growth, yield-per-recruit analysis can be undertaken. Also,

permits modeling of unaccounted fishing mortality.

Environmental effects: For example, has does water temperature affect recruitment,

growth, migration, carrying capacity...

Multispecies models: For example, multivariate modeling of assemblages, modeling

of tropic levels...

1.3 The quantitative tools

The fundamental tools include the following:

• experimental design

• modeling:

- regression (often nonlinear)

- generalized linear models

- measurement error models

- dynamic (time series) models
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- mixed models

- spatial models.

• witchcraft, e.g., VPA?

The list of “hot” tools currently includes:

• mixed effects models

• errors-in-variables models

• state-space models

• hierarchical models

• meta-analysis

• Bayesian analysis

• ADMB

3



2 Stock-recruitment modeling

This is an extremely fundamental question (see the opening paragraph, Chapter 7 of

Hilborn and Walters). At first glance the problem appears to be just the modeling

of x (stock) against y (recruitment). However, this ignores the errors-in-variables

problem (p. 287 HW) and the temporal structure (p. 290 HW), the modeling of

which has captured a considerable amount of research effort.

2.1 Background

Here, recruitment is assumed to occur prior to fishing mortality (?!?!) and hence

the stock-recruitment relationship is intended to summarize the natural processes

and variabilities occuring between the egg stage and recruitment to the fishery.

It is commonly assumed that stock-recruitment curve will have a decreasing

slope due to “compensation” - processes which lead to higher per-capita recruit-

ment at low stock size. Compensation can arise from habitat limitations, which

could include the extent of suitable habitat for spawning and subsequent survival

of larvae and juveniles, and limits on food availability. The other possibility (aka.,

depensation, or the Allee effect) is that of an increasing slope over some part of the

stock-recruitment curve. This could arise if predators remove a given number of

pre-recruits.

Myers and Cadigan (1993) found strong evidence of compensation in several

commercial species of marine demersal (ground) fish of Atlantic Canada, and Myers

et al. (1995) found little evidence of depensation in a study which analysed data

from 128 fish stocks.

If the species is semelparous (spawning only once) then recruitment to the

spawning stock must exceed spawners over some range of the curve or else the stock

will not be viable even in the absense of fishing.

Exercise 2.1 Read Myers et al. (1995).
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2.2 Beverton-Holt and Ricker curves for stock-recruitment

These are the two most commonly used models for stock-recruitment and they both

assume compensation. These curves can also be given a biological interpretation,

arising under different assumptions on the form of the compensation.

2.2.1 Beverton-Holt curve

The Beverton-Holt curve has an upper asymptote and can be expressed in the

form

r =
as

b+ s
, (1)

where s is the spawning stock size and r is the resulting recruits. Note that a is the

upper asymptote and b is the spawning stock corresponding to recruitment of a/2.

The recruits-per-spawner at low stock size (i.e., the slope of the curve at the origin)

is a/b.

Biological derivation of Beverton-Holt curve

A biological “rationale” for the Beverton-Holt curve is that it is obtained from

the differential equation

dnt
dt

= −(q + pnt)nt , p > 0, q > 0 (2)

where nt is the number of fish alive in the cohort at time t. Note that p = 0

corresponds to no compensation (survival rate independent of nt) because then the

rate of change in nt is proportional to nt. Also, in equation (2) the amount of

compensation decreases over time as nt decreases.

To keep us honest, we will work through the solution of equation (2). Begin by

writing it as

dt = − 1

(q + pnt)nt
dnt (3)

and by noting that
1

(q + pnt)nt
=

1

q

[
1

nt
− p

q + pnt

]
.
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Integrating both sides of equation (3) then gives

t = −1

q
[log(nt)− log(q + pnt)] + c

= −1

q
log

(
nt

q + pnt

)
+ c . (4)

Now, if it is assumed that the number of eggs is proportional to the number of

spawners then n0 = ks, and so at time t = 0 equation (4) gives

0 = −1

q
log

(
ks

q + pks

)
+ c

from which we obtain

c =
1

q
log

(
ks

q + pks

)
and so

t = −1

q
log

(
nt

q + pnt

)
+

1

q
log

(
ks

q + pks

)

=
1

q
log

(
ks(q + pnt)

nt(q + pks)

)

It tr is the age of recruitment then we have r = ntr and taking exponents on both

sides of the above equation gives

eqtr =
ks(q + pnt)

nt(q + pks)

which, by denoting γ = eqtr , can be rearranged to

γnt(q + pks) = ks(q + pnt)

i.e.,

nt(γ(q + pks)− pks) = qks

which gives (finally)

nt =
qks

γq + (γ − 1)pks
=

q
(γ−1)p

s
γq

(γ−1)pk
+ s

which is of the form in equation (1) with parameters a and b depending on q, p,

fecundity, and time of recruitment. 2
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2.2.2 Ricker curve

The Ricker curve is unimodal and falls back down to an asymptote of zero at high

spawning stock size. It can be expressed in the form

r = ase−bs (5)

where a is the recruits-per-spawner at low stock sizes and b controls the amount of

compensation.

The Ricker curve can also be obtained on biological grounds, in this case, via

the differential equation
dnt
dt

= −(q + ps)nt . (6)

Note that, unlike the Beverton-Holt curve, the amount of compensation (given by

the ps term) depends on spawners and does not decrease over time. Hence the

reduced recruitment at high spawning stock sizes.

Solving equation (6) proceeds as shown for the Beverton-Holt case, but here it

is considerable simpler (Exercise).

2.2.3 Lognormal random variability

The lognormal distribution is the standard assumption for the random variability as-

sociated with the observed recruitment, R, and it is assumed to act multiplicatively.

That is, the observed recruitment is

R ∼ rε = f(s)ε (7)

where ε is lognormal distributed and f(s) is the functional form of the stock-

recruitment curve.

The use of the multiplicative lognormal error structure can be justified for a

variety of reasons, including

1. The response variable is restricted to positive values.
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2. Empirical evidence suggests that variability in recruitment increases with its

expected value.

3. Mechanistic justification, by considering the total survival from egg to recruit

as a product of many smaller survival events (p. 264 HW1).

Recall that if W is a normal random variable, then eW is a lognormal random

variable. Hence, it is typical to see equation (7) expressed in the form

R ∼ f(s)eW ,

where it is usually assumed that W has mean 0 and variance σ2
w.

One complication of this error distribution is that the expected value of eW is

greater than one. In general, it can be shown that if W has mean µw and variance

σ2
w then eW has mean ν = eµw+σ2

w/2 and variance ν2(eσ
2
w − 1). In particular, if W

has mean 0, then the lognormal variable eW has expected value E[eW ] = eσ
2
w/2.

Consequently,

E[R] = f(s)eσ
2
w/2 . (8)

It is, however, the case that

Median[R] = f(s) .

2.3 Fitting stock-recruitment curves

With a multiplicative log-normal error structure, the natural approach is to take

logs to obtain the convenience of additive normal errors. For the Beverton-Holt

curve this gives

log(Ry+tr) = log

(
asy
b+ sy

)
+Wy ,

1HW’s mention of the Central Limit Theorem in this context is too glib to be meaningful. It

actually requires application of the Liapunov or Lindeberg-Feller versions of the CLT (see Billings-

ley, P. Probability and measure). One requirment for application of these CLT’s is that no single

survival event dominates the others.
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where Sy denotes the spawners in year y and Ry+tr is the observed number of fish

recruiting at time tr later.

The Beverton-Holt curve is not linear in the parameters a and b and hence

requires the use of nonlinear least squares to minimize

∑
y

(
log(Ry+tr)− log

(
asy
b+ sy

))2

.

For the Ricker curve,

log(Ry+tr) = log(asye
−bsyeWy )

= log(a) + log(sy)− bsy +Wy

= α + log(sy)− bsy +Wy ,

where α = log(a). This is linear in α and b and can be fitted using linear regression.

Note that the log(s) term is simply a constant because, for now, we are regarding

the spawning stock as a known explanatory variable. In the statistical jargon it

is called an offset and in the case of linear regression it is most easily handled by

subtracting it from the response variable. That is, we use linear regression to fit

log

(
Ry+tr

sy

)
= α− bsy +Wy .

2.4 Inference

The Ricker curve is fitted by linear regression, hence (assuming the model is correct)

the statistical properties of the estimators α̂, b̂ and σ̂w are known exactly. In the case

of nonlinear regression, the nice statistical properties only hold approximately, that

is, the properties are obtained asymptotically for large sample sizes. See Appendix

7.3.

2.4.1 Functions of parameters

A frequent aspect of fisheries modeling is that it is often some function of the param-

eters that is of primary interest. For example, the number of recruits-per-spawner
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at low stock size is a quantity that has recently received much attention because it

essentially quantifies the ability of the stock to recover from overexploitation. Recall

that this is the slope of the stock recruit curve at the origin and is given by a/b if

using the Beverton-Holt curve and by a = eα if using the Ricker curve.

Delta method

If the quantity of interest is some function of the parameters, then that function

of the parameter estimates is the natural choice for the estimate of the quantity of

interest. For example, if â and b̂ are the estimates of the Beverton-Holt parameters

then the natural estimate of the slope at the origin will be â/b̂. If α̂ is the estimate

of α in the Ricker curve then the slope would be estimated by eα̂. However, what

are the properties of these estimates, for example, how do you calculate its variance?

The delta-method is a method for obtaining the approximate distribution of

functions of parameter estimates. The delta method is a result of the delta theorem

which states that if the estimates are asymptotically normal (i.e., approximately

normal for large sample sizes) then any differentiable function of the estimates is

also asymptotically normal.

The delta theorem and method are obtained from Taylor series expansion of the

function of parameters, as demonstrated in the following example for the function

eα. The general version of the delta method is presented in Appendix 7.3

Example 2.1 Suppose that a Ricker curve has been fitted to stock-recruit data

using linear regression, which provides an estimate of α and its standard error,

which we’ll denote by α̂ and s2
α, respectively. What is the (approximate) standard

error of â = eα̂? Consider the first-order Taylor’s series expansion of eα̂ around eα,

â = eα̂ ≈ eα + eα(α̂− α) .

Taking the variance of both sides gives

Var[â] ≈ (eα)2Var(α̂) ,

and hence the variance of â is estimated by s2
a = e2α̂s2

α. 2
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Re-parameterization

Another way to obtain inferences about a function of the parameters is to re-

parameterize the model so that the quantity of interest is expressed directly as a

parameter. For example, letting δ = a/b, the Beverton-Holt model can be rewritten

as a nonlinear model involving parameters δ and b

log(R) = log

(
δs

1 + s
b

)
+W .

Similarly, the Ricker model can be fitted as a nonlinear model involving parameters

a and b in the form

log
(
R

s

)
= log(a)− bs+W .

Ultimately, one wishes to make inference about the unknown parameters and

this could be done using the estimated standard errors (using the delta method

where necessary) or via likelihood ratio methodology. In general, the likelihood

ratio methodology is the more reliable of the two, but it also can be more work

to implement because it may require re-parameterization and optimization over

subspaces of the parameter space. However, the likelihood profile option in the

ADMB software has the potential to alleviate this task. See Appendix 7.3.

2.5 Example

2.6 Deficiencies in the model

If one stops to think about how the stock and recruitment data are gathered then it

quickly becomes obvious that at least two fundamental assumptions underlying the

use of least squares are violated (p. 287 of HW).

2.6.1 Measurement error in spawning stock

The explanatory variable, spawning stock, is not something that can be easily mea-

sured (as we will see in the next chapters). That is, there is error in the explanatory
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variable. This is known as an errors-in-variables model or alternatively a measure-

ment error model.

The effect of measurement error in the explanatory variables of a linear regres-

sion model are well known (e.g., Seber, 1977). Essentially, the measurement error

tends to “spread” the range of the explanatory variables, thereby resulting in the

magnitude of coefficients being underestimated.

Here, we briefly look at explicit modeling of errors in variables using maximum

likelihood estimation (p. 586 of Casella and Berger). The idea is to consider both

the spawners and recruits as data. In particular, suppose the observed spawners, S,

are assumed to be

S = seV

where V are normal with mean 0 and variance σ2
v . Then, if the recruitment mea-

surement errors W and spawners measurement errors V are all assumed to be inde-

pendent, the log-likelihood function for the data (Sy, Ry+tr), y = 1, ..., n is

−n log(σv)−
∑
y

(log(Sy)− log(sy))
2

2σ2
v

− n log(σw)−
∑
y

(log(Ry+tr)− log(f(sy)))
2

2σ2
w

.

(9)

Note that in addition to σv, σw and the parameters of f(s), each of the sy values is

also an unknown to be estimated.

It turns out that the log-likelihood (9) is not bounded! (Why?) The usual

way to avoid this is to assume that the ratio λ = σ2
v/σ

2
w is known. It can then be

shown that the estimates of the parameters of f(s) are well behaved (i.e., consistent).

However, the estimates of the variances are not! The reason for this odd behaviour

is because the usual assumptions required for maximum likelihood to estimate all

parameters consistently are not valid due to the fact that the number of parameters

to be estimated increases with sample size - this is because there are n values of st

to be estimated.

But wait, the next subsection shows that it gets worse...
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2.6.2 Correlated errors

It should not be forgotten that that Sy and Ry are collected sequentially over time.

Therefore, correlated errors could arise due to another explanatory variable, such as

an environmental influence. Environmental effects (e.g., water temperature) can be

highly auto-correlated and therefore could induce temporal autocorrelation in the

measurement errors of both S and R.

It can also be the case that both spawning stock and recruitment are estimated

from the same survey. For example, for salmon, observed recruitment is often cal-

culated as the sum of catch and number of spawners going up river. Hence, the

measurement errors in Sy and Ry may not be independent.

2.6.3 Time-series bias

There is another, more subtle aspect of the time-series nature of the data that

can cause problems. This arises because the response variable has the potential to

influence subsequent values of the explanatory variable.

Example:

The time series bias is a consequence of small sample size and it disappears as

sample size is increased. However, time series of stock-recruitment data are typically

not very long and hence the time-series bias may be quite prevalent.

2.7 Yield-per-recruit analysis

So far, we have been looking at stock-recruitment relationships with the idea of

ensuring that recruitment is not drastically reduced by fishing the stock too hard.

In this section, we ask the basic question - given a certain number of recruits in a

cohort, how should it be fished in order to maximize the yield. This is typically not
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a statistical question and hence is not covered in any detail here.

Yield-per-recruit analysis essentially just calculates/simulates the passage of

the cohort. It requires certain biological information, specifically an average growth

curve for the fish (to give weight at age), and an assumed natural mortality. Then,

the yield to the fishery can be determined under any given harvest regime. Typically

this simply consists of specifying a target fishing mortality and a minimum size limit.

In yield-per-recruit analysis it is common to make the simplifying assumption

of knife edge recruitment to fishery. That is, the fishing gear is such that all fish

below a certain size are “immune” to fishing, and all fish above the minimum size

are equally vulnerable to fishing. The result of these unrealistic assumptions is that

the optimum fishing strategy is to fish infinitely hard, using a gear with knife-edge

selection occurring at a certain size!

More sophisticated yield-per-recruit analyses use realistic selection curves which

reflect the fact that the fishing gear will catch small fish which may be discarded

and killed. These analyses give much more sensible results.

The yield-per-recruit analysis is probably best regarded as a device for deter-

mining a reasonable minimum size limit and fishing gears to be deployed. It does

not take into consideration how the dynamics of the stock change as it is fished

down (i.e., ignores the stock-recruitment question).

2.8 Closing remarks

Estimation of stock-recruitment relationships is extremely problematic. Unfortu-

nately, the difficulty of this task has been sufficient reason for many fisheries to be

managed under the assumption of no relationship between stock and recruitment,

and this is believed to have lead to the collapse of a number of fisheries worldwide.

More recently, meta-analysis is being employed, whereby stock-recruitment data

on all sockeye salmon run (say) are simultaneously analysed. It has not helped that

the documentation of stock-recruitment databases tends to be very sketchy, and

hence one can seldom be sure of modeling the correct error structure.

14



2.9 References

Beverton, R. J. H., and S. J. Holt. 1957. On the dynamics of exploited fish

populations. Fishery Investigation, Series 2 (19): 533 p. HMSO London.

Casella, G., and R. L. Berger. 1990. Statistical inference. Wadsworth, Pacific

Grove, California. 650 pp.

Ludwig, D., and C. J. Walters. 1981. Measurement errors and uncertainty in

parameter estimates for stock and recruitment. Can. J. Fish. Aquat. Sci. 38:

711-720.

Mertz, G., and R. A. Myers. 1995. Estimating the predictability of recruitment.

Fish. Bull. 93: 657-665.

Myers, R. A. 1997. Comment and reanalysis: paradigms for recruitment studies.

Can. J. Fish. Aquat. Sci. 54: 978-981.

Myers, R. A., N.J. Barrowman, J. A. Hutchings, and A. A. Rosenberg. 1995.

Population dynamics of exploited fish stocks at low population levels. Science.

269: 1106-1108.

Myers, R. A., W. Blanchard, and K. R. Thompson. 1990. Summary of North

Atlantic fish recruitment 1942-1987. Canadian Technical Report of Fisheries

and Aquatic Sciences No. 1743.

Myers, R. A., and N. G. Cadigan. 1993. Density-dependent juvenile mortality in

marine demersal fish. Can. J. Fish. Aquat. Sci. 5x: 1576-1590.

Myers, R. A., G. Mertz, and P. S. Fowlow. 1997. Maximum population growth

rates and recovery times for Atlantic cod, Gadus morhua. Fish. Bull. 95:

762-772.

Seber, G. A. F. 1977. Linear regression analysis. Wiley.

Waters, J. R., and G. R. Huntsman. 1986. Incorporating mortality from catch and

release into yield-per-recruit analyses of minimum size limits. Nth Amer. J.

Fish. Mgmt. 6: 463-471.

15



3 Surplus production models

In this chapter we look at surplus production models for biomass (HW, Chap 8).

(Hilborn and Walters give their Chapter 8 the title “Biomass dynamic models” be-

cause they view surplus production as a concept that is relevant to a wide class of

models.) However, the terminology “surplus production model” is very well estab-

lished in the fisheries arena and we shall stick with it here.

Surplus production models are conceptually very simple because they model

only the total (recruited) biomass without explicit regard to other features such as

the age-distribution, recruitment, natural mortality etc. When information on these

other features is available (e.g., data on the age structure of the population) then

fancier models can be used (see next Chapters!). HW emphasize that the fancier

models may not necessarily always be better - the very simplicity of the surplus

production models can be a virtue. Moreover, in some fisheries it is very difficult,

too expensive, or practicably impossible to get additional information about the

stock. Thus, the surplus production model will continue to be an indispensible tool

of stock assessment.

3.1 Surplus production

If by is the biomass of the stock at time (year) y then

by+1 = by + ry + growthy − cy − dy (1)

where ry is recruitment, cy is catch, and dy is the biomass of fish lost due to natural

mortality. The term growthy is due to the physical growth of fish.

Adding together the recruitment and growth terms gives the total “production”

of the stock. Surplus production is the amount by which this exceeds the loss due

to natural mortality. Denoting surplus production in year y by py, we have

py = ry + growthy − dy ,
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and the biomass dynamics equation can then be written

by+1 = by + py − cy . (2)

Note that surplus production is the amount by which the biomass will increase

when there is no fishing. It is also the amount which can be caught without changing

the biomass.

It could be said that some important components are missing from equation

(2). For example, unaccounted fishing mortality is substantial in some fisheries and

is not included in the documented catch.

3.1.1 Surplus production curves

Surplus production curves give the expected surplus production as a function of

current biomass, that is py ≡ p(by). In general, the curve must go through the

origin and also drop down to zero again for large biomass (Why?).

Schaefer curve

This is the simplest and most widely used surplus production curve. It is simply

a quadratic and is usually expressed in the form

p(by) = rby

(
1− by

K

)
. (3)

This quadratic takes the value zero when biomass is 0 or K. Parameter K is com-

monly called “carrying capacity” because it is the biomass at which the stock is

expected to maintain equilibrium when there is no fishing. The quadratic is sym-

metric, hence it is maximal at by = K/2, whence maximum surplus production is

rK/4.

The Schaefer curve is appealing for its simplicity. It also can be justified on

biological grounds because it is the discrete time version of the differential equation

dby
dy

= rby

(
1− by

K

)

which has the (ecologically popular) logistic model as its solution.
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Pella-Tomlinson curve

This is a generalization of the simple quadratic and can be expressed in the

form

p(by) = rby

1−
(
by
K

)m−1
 . (4)

This curve is skewed to the left for m < 2 and to the right for m > 2.

3.2 The data

Before jumping into the fitting of surplus production curves, it is very important to

get a feel for the origins of the data.

Catch data Cy are essential. These data are relatively easy to obtain in a

regulated and enforced fishery. The catch data could be obtained from the log-

books of the fishing vessels or from the records of onshore processing plants. In

addition to the catch data, it is necessary to have either data on the fishing effort

or a relative biomass indice.

Ideally the relative biomass indice would be calculated as the catch rate obtained

by fishing with standardized gear and operational procedures. This typically requires

the use of dedicated research effort. The research fishing would typically occur over

a short period of time and take a negligible fraction of the population. Then it may

be reasonable to assume that the catch rate is directly proportional to the biomass.

E[Iy] = qby

or perhaps

E[log(Iy)] = log(q) + log(by) (5)

if one uses lognormal errors.

However, research surveys can be extremely expensive. (the operating cost of

a 70 m. ocean-going research vessel can easily exceed $1000 per hour) and it is very

often the case that the only other data is a measure of fishing effort. Two general

strategies for using catch and effort data are possible.
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1. Calculate the observed catch-per-unit-effort, CPUE. This is just

CPUEy =
Cy
Ey

where Ey is the fishing effort. The CPUE can then be used as a relative

biomass indice. Research surveys indices can be considered a special case of

CPUE data corresponding to a short-term fishery in which a standardized

fishing effort is applied.

2. Model the catch as a function of both biomass and effort. The error term can

arise from variability in the fishery and from measurement error involved in

observing the catch. The distinction is subtle, but is relevant because one

should note that the measured catch, Cy, will typically be used in place of the

true catch cy in equation (1).

The drawback of the first approach lies in the validity of using CPUE as a

relative biomass indice. The second approach avoids this difficulty, but could suffer

from the fact that effort is a covariate which is very difficult to reliably measure, and

hence the “errors-in-variables” problem may arise. (Indeed, this can be used as the

motivation for the total least squares approach to sequential population analysis;

e.g. HW p. 387) These issues are covered in more detail in the next section.

3.2.1 Inherent problems with CPUE data

Despite their widespread use, catch-per-unit-effort data are notoriously unreliable.

In part, this is due to the difficulty of getting good measurements of both catch and

effort.

It can be a considerable challenge to determine the effective amount of effort

applied to the fishery. This is particularly problematic if the fishing fleet contains

vessels of vastly different size and power, and the fishing gear is not common to all

vessels. Even in a homogeneous fishery, some vessels outperform others. Also, when

does fishing start? For example, should effort include time spent searching for fish?
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It is not unusual for considerable modeling effort to be invested in obtaining some

standardized measure of fishing effort. This might be via multiple linear regression

(or GLM) using covariates such as size and power of the vessel, experience of crew,

time of day, addition of fish-finding equipment.

The assumption that CPUE is proportional to biomass requires that the density

of fish increases in proportion to biomass. However, behavioural features of the fish

can render this assumption invalid. For example, if the fish aggregate in large

schools upon which the fishery is directed, then the total stock abundance could

decline substantially before CPUE shows an obvious decline. On the other hand, if

the fish are spatially dis-aggregated then an increase in stock size would result in an

increase in the range of the population without a corresponding increase in density.

Another weakness is that the presumption that CPUE is proportional to biomass

is only strictly valid for small catches obtained from moderate fishing effort. To see

this, note that CPUE ∝ b is equivalent to C ∝ bE which implies that catch can

exceed biomass for sufficiently large effort! Defining b to be the biomass midway

through the season might be more reasonable.

Fishing effort is most appropriately regarded as a measure of the relative rate

at which fish are being caught. For example, if daily fishing effort, E, is constant

and occurs over a short fishing season then one could write

dby
dy

= −qE

which assumes that the fishing season is sufficiently short that natural mortality can

be ignored. This differential equation has solution

by+∆t = bye
−qE∆t

where ∆t is the number of days in the fishing season. Thus, the catch is

cy = by − by+∆t = by
(
1− e−qE∆t

)
. (6)

Exercise 3.1 . Deduce the appropriate equation for catch when natural mortality
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occurs at rate m. That is, when

dby
dy

= −qE −m .

3.3 Fitting surplus production curves

Here, we shall assume that the data to be modeled are a sequence of relative biomass

indices. In principle, the methods herein could be modified to suit the alternative

approach of modeling catch.

Hilborn and Walters cover three estimation methods. Here, we look at these

three and also a further three which have recently been developed.

The first method, based on an equilibrium assumption, is not a true biomass

dynamics model because it does not make use of any of the temporal information

in the data. The other five models do utilize the temporal structure. They differ

in how they apply error terms to the two equations defining the dynamic surplus

production model. These two equations are the “process” equation (the biomass

dynamics equation (2)) which gives the next biomass given the current biomass and

catch, and the “observation” equation (e.g., equation (5)).

3.3.1 Equilibrium methods

These methods assume that the stock is always at equilibrium no matter what the

catch is. That is, it is assumed that the catch, c, corresponds to surplus production.

This enables one to write

c = qEb = rb

(
1− b

K

)
. (7)

Solving this for b gives

b = K
(
1− qE

r

)
and substituting back into equation (7) gives

c = qEK
(
1− qE

r

)
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or equivalently
c

E
= qK

(
1− qE

r

)
.

These last two equations enable one to estimate qK and q/r using a quadratic

regression of catches on effort, or a linear regression of CPUE on effort, respectively.

This enables the optimal effort and corresponding maximum surplus production to

to estimated. Note that it is not possible to get individual estimates for q, K and r.

Exercise 3.2 Show that optimal effort is given by r/2q.

Warning: The equilibrium assumption used above will be absolutely absurd in

almost all fisheries and is just about guaranteed to result in terrible, and probably

very dangerous, estimates of optimal effort and maximum surplus production. This

method is best regarded as part of the ancient history of stock assessment.

3.3.2 Process-error model

This model assumes that there is random error/variability in the process equation.

This assumption is, of course, eminently sensible because we hardly believe that

biological processes such as growth, recruitment and mortality will be deterministic.

They will no doubt be highly dependent on environmental influences. Also, the

process error could also include the effect of misreported catches and unaccounted

mortalities.

The other assumption is that there is no error in the observation equation.

That is, that the relative biomass indices are measured exactly without error! This

assumption is made so that one can write

by =
Iy
q
. (8)

Assuming normal error and the Pella-Tomlinson form of surplus production,

by+1 = by + rby

1−
(
by
K

)m−1
− Cy + εy , (9)
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and substituting (8) into (9) gives

Iy+1 = Iy + rIy

1−
(

(Iy/q)

K

)m−1
− Cy/q + εy .

One can then apply nonlinear least squares to obtain estimates of r, q and K (which

corresponds to maximum likelihood under the assumption that εy are iid Normal

with mean zero). When the Schaefer surplus production curve is used (m = 2) then

the estimates can be obtained by multiple linear regression.

3.3.3 Observation-error model

This model explicitly includes the observation error associated with the measurement

of the relative biomass indice Iy. However, it assumes that the biomass dynamics of

the stock are perfectly described by the process equation. Thus, for any given values

of the inital biomass b0 and parameters r,K and q, the entire biomass trajectory

b0, b1, b2, ... can be specified.

Under the assumption that the errors on the Iy are multiplicative lognormal,

one can write

log(Iy) = log(q) + log(by) + ε

and use nonlinear least squares to obtain the maximum likelihood estimates of

b0, r,K and q. In practice, the likelihood can be extremely flat in the neighbourhood

of the solution. If the stock was not fished heavily prior to time t = 0 then it is

common practice to set b0 = K, that is, to assume that the stock was initially (at

time t = 0) at its carrying capacity.

3.3.4 Penalized likelihood

The stochastic process and observation equations used in the previous two sections

are

by+1 = by + p(by)− Cy + εy (10)

log(Iy) = log(q) + log(by) + εy . (11)

23



Let all εy’s and εy’s be independent with εy’s distributed N(0, σ2) and εy’s distributed

N(0, τ 2).

Since all the error terms are independent and normally distributed then it is very

natural to consider minimizing the “total least-squares” obtained from considering

the negative of the log-likelihoods from the process and observation equations. That

is,

n log(σ) +
∑
y

(by+1 − [by + p(by)− Cy])
2

2σ2

+ n log(τ) +
∑
y

(log(Iy)− log(q)− log(by))
2

2τ 2
. (12)

In practice, it is not possible to reliably estimate both σ and τ and hence it is

usual to assume that the ratio λ = σ2/τ 2 is known. Then, the total least squares

simplifies to the minimization of

−2n log(σ)−
∑
y(by+1 − [by + p(by)− Cy])

2 + λ
∑
y(log(Iy)− log(q)− log(by))

2

2σ2
.

However, the total least-squares approach is not a conventional likelihood ap-

proach for the simple reason that the states are not observed, yet equation (12)

treats them as though they were! This is, in fact, an example of penalized like-

lihood, whereby the “fictitious” likelihood term (the first line of equation (12)) is

viewed as a penalty which penalizes the model for the states departing far from the

biomass dynamics equation.

3.3.5 Classical state-space model

The state-space model is more rigorous than the penalized likelihood because it is

based on obtaining the true likelihood for the observed data. That is, it treats the

by as unobserved states and the Iy as data. The difficulty with state-space modeling

is that obtaining the likelihood for the data can be very difficult because of the fact

that by are now also random.

It is necessary to consider the joint density function for by’s and Iy’s. This is
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given by

fb,I = f(b1, b1, b2, ..., bn, I1, I2, ..., In|C1, C2, ..., Cn)

= f(b1)f(I1|b1)f(b2|b1, C1)× ...× f(bn|bn−1)f(In|bn) . (13)

The conditional densities in (13) are obtained immediately from (11) and (10). The

density function for the data, Iy, is then obtained by integrating over the unobserved

by. That is,

fI = f(I1, I2, ..., In|C1, C2, ..., Cn) =
∫
fb,I db1db2, ..., dbn . (14)

In general, this integral is not tractable, with the exception that when the process

and observation equations are both linear functions of the states, and the errors are

all normally distributed, then it can be obtained via the Kalman filter. However, in

the surplus production model above the process equation is nonlinear, whence an

approximate Kalman filter can be used by working with a linear approximation to

the process equation. This is known as the extended Kalman filter.

The likelihood is simply obtained by noting that the density function fI is a

function of parameters q, σ2, τ 2 and the parameters of the surplus production curve

p(by).

3.3.6 Bayesian state-space model

The tractability problems facing the likelihood implementation of the state-space

model are not relevant to the Bayesian implementation. Bayesian analyses can usu-

ally be carried out using general purpose computer intensive Markov Chain Monte

Carlo (MCMC) techniques to sample from the posterior distribution of the un-

knowns. The use of these sampling techniques does require some care and the onus

is on the modeler to ensure that the sample has converged and has been run for

sufficiently long.

Prior specification

The Bayesian approach requires a prior distribution for the unknowns. For example,
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if the surplus production curve is of the Schaefer form with parameters r and K,

then the unknowns are (r,K, q, σ2, τ 2, b1, b2, ..., bn).

Specification of reasonable priors for (r,K, q, σ2, τ 2) can be extremely challeng-

ing. For example, Meyer and Millar (1999) and Millar and Meyer (in press) used a

non-informative prior on q which assumed prior density proportional to 1/q. This

choice for q is widely accepted amongst the Bayesian fisheries literature. Obtain-

ing priors for the other parameters was more problematic and involved the use of

prior information. In particular, the informative prior on r was obtained by a meta-

analysis of similar stocks, and the vaguely informative prior on σ2 was based on

auxilliary data indicating the variability in population processes of the species.

The prior for (r,K, q, σ2, τ 2, b1, b2, ..., bn) is induced from the prior on (r,K, q, σ2, τ 2)

by virtue of the fact that

f(r,K, q, σ2, τ 2, b1, b2, ..., bn)

= f(r,K, q, σ2, τ 2)f(b1|K)f(b2|b1, r,K, σ2)× ...× f(bn|bn−1, r,K, σ
2) .

Note the explicit conditioning on catches, Cy.

Sampling from the posterior distribution

The posterior distribution is

f(r,K, q, σ2, τ 2, b1, b2, ..., bn|I1, I2, ..., In)

∝ f(r,K, q, σ2, τ 2, b1, b2, ..., bn, I1, I2, ..., In)

= f(I1|b1, q, τ 2)f(I2|b2, q, τ 2)× ...× f(In|bn, q, τ 2)f(r,K, q, σ2, τ 2, b1, b2, ..., bn) .

This posterior can be sampled using Gibbs sampling via the BUGS software.

This implementation requires just a few lines of code and has the advantage that the

modeler does not have to explicitly specify the posterior distribution. The ADMB

software is another alternative (Exercise). It uses the Metropolis-Hastings algorithm

and has the ability to acheive an efficient sampler by virture of the fact that it is

able to calculate an approximation to the posterior distribution to be used as the

proposal distribution - see Chapter 6.
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3.4 Closing remarks

It is undeniably the case that both process and observation error are present. The

general consensus is that, if only one source of error is to be modeled, then obser-

vation error models are preferable to process error models.

Penalized likelihood has a strong following in some parts of the stock assessment

world, particularly the Pacific Northwest region. AD model builder is very well

suited to fitting such models. However, penalized likelihood is known to have poor

properties in many applications and this can be true even for large sample sizes.

State-space models have recently opened the door to modeling of both sources

of error. However, as always, it remains to be seen whether the extra complexity of

these models will lead to better inference.
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4 Hybrid models

Here, the term “hybrid” is used to denote models that are midway between surplus

production models and fully age-structured models (see next Chapter). That is,

they dis-aggregate surplus production into the processes of growth, recruitment and

natural mortality, but do not utilize fully age-structured data.

Even if age-structured catch data are not available, it could still be very ad-

vantageous to consider modeling some age-structure. For example, if a recruitment

indice was available and it showed recruitment to be highly variable, then an age-

structured model would utulize knowledge about recruitment strength. The age-

structure also allows the growth process to specified if a growth curve for the species

is available.

4.1 Using biological information

Let na,t be the number of age a fish at time t, and let k be the age at which fish

recruit to the fishery. Suppose that a weight-at-age curve is known for the species

and let wa denote weight at age a. The total recruited biomass at time t is then

bt =
∑
a≥k

na,twa .

The most appropriate form of the dynamics equation will depend on the timing

of the fishery. Following the HW (p. 332) example, if the fishery takes place over a

short season at the start of the time period and recruitment occurs instantaneously

at the start of the time period, then

nk,t = rt (1)

na+1,t+1 = na,t(1− ht)e
−mt , a ≥ k (2)

where ht is the proportion of fish harvested and mt is the instantaneous rate of

natural mortality. In many cases, it will simply be the case that

ht =
ct
bt
.
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though if reliable effort data, Et were available then one might assume ht = 1−e−qEt .

In principle, the form of the equation for population dynamics can be tailored

to the nature of the fishery. For example, if fishing is spread evenly over the entire

year then equation (2) would typically be replaced with

na+1,t+1 = na,t(1− hte
mt/2)e−mt . (3)

Exercise 4.1 Equation (3) can be given a heuristic justification by virtue of the

fact that it is obtained if proportion ht is harvested instantaneously at the middle

of the year. Verify this.

4.1.1 Parameter estimation

If a relative biomass indice is available then one approach would be to use a sim-

ple observation error model using equation (11) of the previous chapter. As with

the surplus production model, one could alternatively use a different form of the

observation equation. For example, one could use equation (3.6) in place of (3.11).

Fitting the observation error model requires a time series of predicted bt values,

which in turn requires initializing the population by specification of numbers at age

at time t0. Thus, there are far too many unknown quantities and it is necessary to

assume some are known (using auxilliary information).

It is typical to either assume constant unknown recruitment r = rt or to use

auxilliary information on recruitment. The auxilliary information could be a recruit-

ment indice obtained from juvenile research surveys or from some function relating

relative recruitment to environmental data. This approach permits the numbers at

age t0 to be deduced by using the recruitment information for A−k years prior to t0

(where A is the maximum age of fish in the model) provided information on harvest

rates prior ot t0 is also available.. Of course, recruitment could also be obtained

from a stock-recruitment curve.

With all these assumptions made, the fit then requires estimation of q (from

equation (11)) and r (in the constant recruitment case).
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4.2 Delay-difference models

The delay-difference model (Deriso 1980) is a special case of the above model in

which a particular shape of the weight-at-age curve is specified. This leads to a

dynamics equation in which bt+1 can be predicted from bt−1 and bt, the advantage

of which is that it is no longer necessary to know the entire age-structure of the

population.

The delay-difference model assumes the weight-at-age curve to be of the form

wa = w∞
(
1− e−c(a−a0)

)
. (4)

This is the well known von-Bertalanffy growth curve. Parameter a0 is the age at

which the fish has zero weight, w∞ is the maximum theoretical weight, and c is the

growth rate.

Remark: The von-Bertalanffy is not the obvious choice for weight-at-age. In fact,

one can use physiological arguments to obtain differential equations for growth, the

solution of which leads to the von-Bertalanffy curve as a model for length-at-age!

However, over the size range of recruited fish, the von-Bertalanffy may be reasonable

to describe weight-at-age.

Exercise 4.2 Show that equation (4) implies that

wa = α + ρwa−1 , α > 0, 0 < ρ < 1 . (5)

The above exercise establishs that weight-at-age can be expressed as a linear

first order difference equation. The weights at age of recruited fish can therefore be

determined once α, ρ and wk−1 (weight of a pre-recruit) are specified.

Exercise 4.3 Show that equations (1), (2) and (5) lead to the second order difference

equation

bt = (1 + ρ)st−1bt−1 − ρst−1st−2bt−2 − ρst−1wk−1rt−1 + wkρt , (6)

where st = (1− ht)e
−mt denotes the overall survival rate.
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4.2.1 Parameter estimation

In theory, parameters α, ρ and wk−1 could be estimated, but in practice this leads to

an overparameterized model and it is best they they be fixed. The same will likely

be true of m.

This leaves parameter q of equation (11), recruitment, and the initial biomass

at times t0 and t0− 1. It would be reasonable to assume that bt0 and bt0−1 are equal

if the fishery has not been fished too hard initially.

As with the surplus production case, the observation error model would be

the “default” method of matching the predicted biomass indice trajectory with the

observed trajectory and it would likely be done using least squares (possibly on the

log scale). State-space modeling has recently been applied to this model, from both

the frequentist and Bayesian viewpoints.

4.3 Closing remarks

When first introduced, there was much initial enthusiasm about delay-difference

models because they were regarded as a much desired compromise between the

simplistic surplus production models and the complicated age-structured models.

However, delay difference models do not appear to have been widely used in stock

assessment. This may be because it can be difficult to obtain good biological knowl-

edge about the species, and it should not be forgotten that growth of fish is known

to exhibit considerable temporal variability.

Because these methods do not utilize catch-at-age data, it is an implicit assump-

tion that the harvest rate is common across all ages. This assumption is seldom true

- and this may well be another reason why these methods are not in widespread use.

Hilborn and Walters note that other data on the fishery can be utilized by these

hybrid models. For example, the models permit calculation of the mean weight, w̄t,

in each year. Higher order moments (e.g., variance and skewness) of the weight

distribution can also be calculated. These can be equated to their observed values
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and added as an additional sums of squares term in the least squares (say) formula.
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5 Sequential Population Analysis

The basic objective of sequential population analysis, SPA, is simple - to model the

annual progression of cohorts (year-classes) from their time of recruitment through

to either their “departure” from the fishery or through to the current year. This

requires that the fish can be reliably aged so that catch-at-age data can be obtained.

Note that here, catch-at-age is numbers at age (not weight).

Fish are usually aged by observing a hard body part such as an otolith or scale.

Typically, on the order of 103 fish are aged, and this information is then presented

in the form of an age-length key which gives the age-distribution of a fish of any

given length. Due to annual variability in growth, it is desirable that age-length

keys be obtained annually. The age-length key enables the age-distribution of the

entire catch to be inferred from the length-distribution of the catch.

Within the general framework of SPA, the implementation for any particular

assessment depends critically on what are considered to be the “data” (i.e., response

variable).

5.1 The data

If a relative index of numbers at age is available from research fishing then it makes

sense that this index will be the response variable because it will almost certainly be

more reliable than measurements obtained from the commercial fleet. In this case,

catch will appear only in the cohort (process) equation.

In the absense of research fishing, one needs to utilize information from com-

mercial fishing. This typically involves treating commercial catch as the response

and treating effort (if available) as an explanatory variable.

Auxiliary data from other sources can also be used (Section 5.5.2) For example,

these could be recruitment indices, CPUE data, estimates from tagging studies etc.

The first example below is an assessment where comprehensive research survey

data are available. The second example assumes such data are unavailable and makes
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use of commercial catch and effort data. The third example gives an alternative

model formulation to the second example whereby the error structure assumed for

observed catch-at-age is probably more realistic and better reflects the nature of the

data.

5.2 Example 1: Northern cod

The so-called “Northern cod” is the stock management group in NAFO (North

Atlantic Fisheries Organization) regions 2J, 3K and 3L. An extensive research cruise

of approximately 6 weeks duration was undertaken each autumn (Oct-Nov).
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Let ca,y denote the commercial catch of age a fish taken during year y. The

observed catch-at-age data are given below (from Myers and Cadigan 1995b)

Table 5.1. Catch at age

Age

Year 3 4 5 6 7 8 9 10 11 12 13

1978 1323 17556 39206 20319 7711 3078 1530 1083 437 219 105

1979 1152 12361 37439 29202 10982 3460 1300 757 560 183 116

1980 2554 12025 28814 30016 18017 4830 1217 520 232 229 56

1981 2185 7172 13191 24800 22014 11848 3175 779 309 195 125

1982 1702 31286 19003 14297 25435 16930 11936 1923 338 156 90

1983 2585 13616 42602 19028 12044 14701 8934 6341 1018 248 90

1984 782 14871 31760 38624 12503 7246 8910 4227 2536 451 146

1985 650 14824 36614 33922 28006 7050 3836 5162 2905 1681 254

1986 831 15219 44168 45869 26025 14722 3104 2000 1977 1101 574

1987 2329 9217 32340 49061 28469 19505 5818 1346 676 873 391

1988 2779 14651 20184 47917 45725 18608 9026 4337 774 422 366

1989 1696 17639 21150 25212 38708 28499 8696 3640 1695 572 244

1990 7693 40557 36410 22695 16390 17940 9156 2865 1084 478 103

1991 3111 31654 53805 29553 9064 6164 4745 1696 641 250 88

1992 430 3860 14535 12211 4526 1372 376 199 104 18 9

1993 940 4993 3343 1940 700 147 21 0 0 0 0

The relative index of numbers at age from the autumn research cruises is the

average number caught per tow:

Table 5.2. Relative indices of numbers at age

Age

Year 3 4 5 6 7 8 9 10 11 12

1978 5.39 11.51 13.95 5.51 1.62 0.63 0.47 0.33 0.12 0.09

1979 1.94 11.78 16.79 10.53 2.27 0.92 0.31 0.26 0.19 0.06

1980 2.48 3.83 13.23 13.31 4.99 1.19 0.37 0.23 0.11 0.16

1981 5.12 2.74 3.26 9.67 8.79 3.66 0.74 0.23 0.10 0.11

1982 5.87 5.92 3.83 2.79 5.82 5.31 2.59 0.57 0.16 0.09

1983 12.22 10.62 10.83 3.87 2.43 5.33 2.93 1.42 0.36 0.14

1984 10.79 15.23 11.34 9.59 2.30 1.37 2.09 1.30 0.54 0.28

1985 7.27 12.35 10.01 7.28 4.24 0.92 0.78 0.67 0.41 0.15

1986 4.77 20.70 31.29 21.28 10.14 5.26 1.37 0.58 0.68 0.42

1987 2.04 4.03 13.23 11.61 4.38 2.67 1.38 0.34 0.17 0.19

1988 3.93 3.20 5.29 10.57 10.13 2.58 1.55 0.79 0.15 0.11

1989 8.98 8.30 6.20 6.52 8.23 4.84 1.62 0.98 0.43 0.16

1990 10.93 12.95 8.61 5.64 3.90 3.98 1.68 0.55 0.23 0.12

1991 3.35 13.97 9.00 3.31 1.10 0.50 0.35 0.16 0.04 0.02

1992 1.78 2.30 2.72 1.42 0.35 0.04 0.02 0.01 0.00 0.01

1993 0.60 0.83 0.34 0.22 0.04 0.01 0.00 0.00 0.00 0.00

The values in Table 5.2 are treated as the response variable and the commercial

catches in Table 5.1 are treated as known constants (measured without error).
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Let na,y denote the number of age a fish at the beginning of year y. The majority

of fishing takes place over the few ice free months around the middle of the year and

hence it is reasonable to use the dynamics equation

na+1,y+1 = na,ye
−m − ca,ye

−m/2 . (1)

The instantaneous natural mortality for this species has traditionally been taken

to be constant for all ages and years, m = 0.2. (Recently, this assumption has been

identified as a likely contributing cause to the infamous demise of Northern cod.)

The data in Table 5.2, denoted Ia,y are modeled as lognormal. One slight

complication is that the research surveys are conducted around November, rather

than at the start of the year. For this reason, Myers and Cadigan (1995b) use the

observation equation

log(Ia,y) = log(qa) +
log(na,y) + 11 log(na+1,y+1)

12
+ εa,y , (2)

where ε’s are iid Normal. The above equation is effectively assuming

log(n∗a,y) =
log(na,y) + 11 log(na+1,y+1)

12
.

where n∗a,y is the number of age a fish (at the beginning of year y) that are still alive

at the time of the survey in November of year y.

The qa quantities are age-specific catchabilities of the research trawl. It is very

apparent from Table 5.2 that these initially increase with age. It is much more

difficult to know whether the catchabilities decline for the older ages. This could

occur if the older fish are more able to avoid the research trawl, or if they migrate

to more remote areas or areas not amenable to bottom trawling.

5.2.1 Parameter estimation

A sequential population analysis of these data would construct the cohort trajecto-

ries from estimates of the numbers at age in 1978, and recruitments in years 1979
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through 1993. That is, it needs to estimate

na,1978 a = 3, ..., 13 (3)

n3,y y = 1979, ..., 1993 . (4)

Note that these quantities correspond to the top row and left hand column of a table

of numbers at age.

Table 5.3. Numbers at age

Age

Year 3 4 ... 11 12

1978 n1978,3 n1978,4 ... n1978,11 n1978,12

1979 n1979,3

1980 n1980,3

. .

. .

. .

1992 n1992,3

1993 n1993,3

The dynamics equation (1) is then used to fill out the rest of this table.

Thus, nonlinear least squares can be used to minimize the objective function

arising from the observation equation (2),

∑
a,y

(
log(Ia,y)− log(qa)−

log(na,y) + 11 log(na+1,y+1)

12

)2

The parameters to be estimated are the catchabilities, qa, the initial population

numbers in 1978, and recruits. One could reduce the number of parameters by

incorporating structure or auxilliary knowledge about the shape of the age-specific

catchabilities.

In contrast, the analysis of Myers and Cadigan proceeds as a VPA (virtual

population analysis) by making assumptions about the terminal fishing mortalities

to obtain the right-hand column and lower row of Table 5.3. The cohorts are then

projected back in time by re-writing equation (1) as

na,y = na+1,y+1e
m + ca,ye

m/2 .

Exercise 5.1 Fit a SPA model to the above Northern cod data using ADMB.
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5.3 Example 2: Doubleday’s Method

This is essentially the methodology described in section 11.6 of HW. Here, research

survey data are not available and hence the actual commercial catch data are treated

as response variables and fishing effort data (if available) are treated as an explana-

tory variable.

As with the previous example, natural mortality will be assumed constant over

all years and ages. This is necessary to reduce the number of parameters in the

model. However, it must be recognized that this is certainly not a desirable as-

sumption.

The cohort dynamics equation takes the form

na+1,y+1 = na,ye
−(fa,y+m) , (5)

where fa,y is (instantaneous) fishing mortality and za,y = fa,y + m is total (instan-

taneous) mortality.

Note that the number of fish removed from the cohort is

na,y − na+1,y+1 = na,y
[
1− e−(fa,y+m)

]
.

The number that are removed as catch is giving by scaling the removals by the

proportion of total mortality that is due to fishing. This gives rise to the well known

“Baranov catch equation”

ca,y = na,y
fa,y

fa,y +m

[
1− e−(fa,y+m)

]
. (6)

Assuming lognormal errors, the observation equation is then

log(Ca,y) = log(na,y) + log

(
fa,y

fa,y +m

[
1− e−(fa,y+m)

])
+ εa,y . (7)

5.3.1 Parameter estimation

As with the previous example, nonlinear least squares can be used to minimize the

objective function arising from the observation equation, which in this case is

∑
a,y

(
log(Ca,y)− log(na,y)− log

(
fa,y

fa,y +m

[
1− e−(fa,y+m)

]))2
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The parameters to be estimated are the initial population numbers, recruits, and

(instantaneous) fishing mortalities fa,y. The model is therefore overparameterized

and it is necessary to place some structure on the fishing mortalities.

It is probably reasonable to assume that the instantaneous fishing mortality on

age a fish in year y is a product of the fishing effort in year y and the age-specific

selectivity. (This is known as the separable mortality assumption.) That is,

fa,y = qaEy . (8)

In principle, the fit could estimate the qa and Ey quantities. However, if reliable

effort data are available then they should be used. Similarly, in some cases, it may

be assumed that the catchabilities, qa, are “known” up to a constant, in which case

one would specify

fa,y = kqaEy .

5.4 Example 3: Fournier and Archibald’s Method

Fournier and Archibald (1982) make the very pertinent point that the assumption of

lognormally distributed catch-at-age (or research indice) may be quite inappropriate.

In particular, catch-at-age data can take on extremely small, or even zero, values

for older age groups (see Tables 5.1 and 5.2). Hence, the log of these data could be

wildly sensitive to random variation.

The idea here is to use what we know about how the catch-at-age data are

obtained. Essentially, if the aged fish are a random sample from the commercial

catch, then the proportions at age obtained from this sample are multiplied by the

total catch numbers to obtain catch-at-age numbers. Thus, it makes good sense

to model the estimated proportions at age as from a binomial distribution, and to

model the total catch numbers as lognormal (say).

If the numbers-at-age in the sample of aged fish are denoted Sa,y and pa,y are

the true proportions at age, then the log-likelihood term for the Sa,y is∑
a,y

Sa,y log(pa,y) .
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Note that the true proportions at age are just

pa,y =
ca,y
c+y

where c+y =
∑
a

ca,y .

The catches, ca,y, are given by the Baranov catch equation (6).

5.4.1 Parameter estimation

Combining the log-likelihood term for the Sa,y and a lognormal term for the total

annual catch, c+y , gives the log-likelihood function

∑
a,y

Sa,y log(pa,y) +

∑
y(log(C+

y )− log(c+y ))2

σ2
(9)

As before, the quantities to be estimated are the inital population numbers,

recruits, and fa,y’s. It is likely that the σ2 parameter in (9) would be specified

rather than estimated.

5.5 Some variations

5.5.1 Parameter reduction

When reliable effort data are not available then it is necessary to estimate an effort

parameter, Ey, for each year (see equation 8). Consequently, as more data are

collected over time, the number of parameters also increases. This means that the

nice optimality properties of maximum likelihood may not hold because these require

the amount of data to increase while the number of parameters remains fixed.

One method of removing the need to estimate the Ey in each year is to set the

observed and expected total annual catches to be equal. That is

∑
a

Ca,y =
∑
a

ca,y =
∑
a

na,y
fa,y

fa,y +m

[
1− e−(fa,y+m)

]
,

where fa,y = qaEy and the equation on the right-hand side is Baranov’s catch equa-

tion. Thus, given na,y, a = 1, ..., A, a value of Ey can be found to satisfy the above

equation. This can not be done explicitly and requires a numerical optimizer. One
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can then use fa,y = qaEy in the cohort dynamics equation (5) to determine the

numbers at age in year y + 1.

If total mortality is not too high then it may be reasonable to simplify the

Baranov catch equation by using the fact that fa,y +m ≈ 1− e−(fa,y+m), and hence

the above equation can be written

∑
a

Ca,y ≈
∑
a

na,yfa,y = Ey
∑
a

na,yqa .

That is,

Ey =

∑
aCa,y∑
a na,yqa

.

Other approximations to the Baranov catch equation could be used. For example,

the methodology employed by NIWA for the age-structured snapper model is based

on the equation ∑
a

Ca,y ≈
∑
a

na,y
[
1− e−fa,y

]
.

5.5.2 Adding extra terms to the log-likelihood

The age-structured of these models permits many other types of observable data to

be used. For example, because recruitment is modeled, it would be straightforward

to include a sums-of-squares term to (9) if a recruitment indices were available. If

reliable weight-at-age information were available then one could compare the average

observed weight at age with the theoretical weight at age.

Another modification to the log-likelihood is given by assuming some annual

variability in equation (8). For example

log(fa,y) = log(k) + log(qa) + log(Ey) +Dy ,

where Dy is normally distributed. The term∑
yD

2
y

σ2
1

is then added to the log-likelihood (with σ2
1 probably specified) and the maximization

is also with respect to theDy. Note, though, that this extra term does not correspond
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in any way to a likelihood because there are no new data being used. It is another

example of penalized likelihood, with a term that penalizes departures from the

assumption of separable mortality. It could also be viewed as a kind of measurement

error term, in that the Dy could be interpretted as modeling the error in estimation

of fishing effort.

5.5.3 Current research

State-space models

Gudmundsson (1994) and Schnute (1994) both added random variability to the

cohort dynamics equation. Scnute’s is a general methodology paper which covers

both the theory and implementation of state-space and penalized-likelihood tech-

niques. However, it does not actually apply these methodologies to data. (NB:

Schnute refers to penalized-likelihood as “errors-in-variables”)

Gudmundsson (1994) incorporates randomness in the dynamics by adding ran-

dom terms to the separable mortality equation (8) and applies state-space method-

ology. This model was implemented using the extended Kalman filter and applied

to Icelandic cod.

Bayesian inference

The models covered in this Chapter could also be fitted under the Bayesian

paradigm. In particular, Millar and Meyer (1999) implemented a Bayesian state-

space model that is somewhat in the spirit of Gudmundsson (1994) in the sense that

it models random variability in mortality. This model was applied to the Northern

cod data of Example 1. The use of MCMC avoided the computational difficulties

associated with the non-Bayesian approaches.

5.6 Closing remarks

The complexity of age-structured models requires that a considerable effort be put

into model implementation because it is unlikely to be achieved within a standard
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software procedure or function. This may result in little time left for the process of

model building and checking.

There are many possible violations to the model assumptions, including ageing

errors, within-year correlations in data, unaccounted mortality etc. Indeed, Richards

and Schnute (1998) demonstrate an age-strucutured model which fits only to the

mean age in each year and which should be less sensitive to ageing errors. Myers and

Cadigan (1995a) present an analysis of the Northern cod data in which the VPA is

extended to allow correlated errors among ages within a year for the research survey

estimates of relative number at age.
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6 Bayesian inference

The fitting methodology we have employed so far is maximum likelihood based.

Historically, this approach has been used in the vast majority of statistical analyses

and inferences. However, Bayesian inference has made a strong re-appearance over

the last few years.

The Bayesian approach to statistics was, in fact, the original way that was pro-

posed for thinking about probability/evidence etc. It fell out of favour in the 1920’s

when Sir Ronald Fisher established the idea of repeatability. Fisher’s approach did

away with the nuisance of having to specify prior knowledge, and it also proved to

be more tractable mathematically.

However, there have always been some statisticians who have maintained that

the Bayesian approach is the only logically consistent way to utilize the information

that is contained in data. Moreover, a new generation of powerful numerical tech-

niques have been developed, with the consequence that it is now easier to implement

complex Bayesian models than frequentist models.

In the fisheries context, it is also the case that some scientists view the use of

prior information as a strength of the Bayesian approach. For example, Hilborn

and Liermann (1998) argue that we are well advised to make use of the experiences

and knowledge of fisheries scientists who have gone before us. These notions can

be formalized through the use of meta-analysis to obtain “formal” priors from the

analysis of existing data on similar species.

The reader should attempt section 6.1 and as much of 6.2 as is palatable.

Sections 6.3 and 6.4 are more mathematical and are included only for completeness,

and may be omitted if desired.
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6.1 Questioning the frequentist approach

Example 6.1 Let X1 and X2 be iid discrete random variables with density function

f(x; θ) = Pθ(X = x) =

 0.5, x = θ − 1

0.5, x = θ + 1

where −∞ < θ < ∞ is an unknown parameter to be estimated. A 75% confidence

“interval” for θ is given by

[L(X1, X2), R(X1, X2)] =

 the point X1+X2

2
, if X1 6= X2

the point X1 − 1, if X1 = X2

because, if used under repetition of the experiment, it contains θ with probability

0.75.

However, if X1 6= X2 then we can be certain that our 75% CI contains θ and

it would seem more appropriate to say that we are 100% confident about the CI.

Similarly, If X1 = X2 then we feel less than 75% “confident”.

Example 6.2 Consider the situation of a laboratory with two weighing machines.

Both machines are unbiased, but the old machine has standard deviation of 1 gm and

the new machine of 0.01 gm. The laboratory uses either machine with probability

0.5.

If our sample is weighed on the new machine, do we draw our inference on the

basis of a standard deviation of 0.01 gm, or should we consider that under repetition

of the experiment there is a 0.5 probability of using the old machine?

Example 6.3 Consider the most powerful test of H0 vs Ha where the density

functions for X ∈ {1, 2, 3} under the null and alternative hypotheses are

x = 1 x = 2 x = 3

P0(X = x) .009 .001 .99

Pa(X = x) .001 .989 .01

The test with critical region {1, 2} is the most powerful size 0.01 test. However,
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it doesn’t seem very sensible to reject H0 when x = 1 because the outcome x = 1 is

actually nine times more likely under H0 than Ha?!?

Example 6.4 Likelihood Principle: “All of the information contained in the data

is contained in the likelihood function”.

The likelihood principle (which is accepted as being sensible by many statisti-

cians) is at odds with the frequentist approach.

6.2 The Bayesian model

Bayesian statistics uses probability to directly specify degrees of belief. This is

achieved by adding one further ingredient to the model - a probability distribution

on the parameter space, Ω.

Prior to observing any data, the probability distribution on Ω is called the prior

distribution, with density f(θ). It can be viewed as quantifying our knowledge of

θ prior to data collection. After observing the data, x, the likelihood for the data

is calculated and Bayes’ theorem is used to update our knowledge/belief about θ -

this is quantified by the posterior density f(θ|x).

We implicity use this approach to inference everyday.

Example 6.5 The enthralled Otago student notices something small and white fall

past the window. What was the object??? Some possibilities are:

1. Snow flake. The data is ”observation of something small and white falling past

the window”, and certainly, a snow flake has a high likelihood of appearing

small and white. Also, being Dunedin, a snow flake has a relatively high prior

probability of being outside a window (at any time of year!).

⇒ Reasonably high posterior probability that the object was a snow flake.

2. Cherry blossom. Also very likely to appear small and white. In spring a cherry

blossom would also have high prior probability, but not otherwise.

⇒ Reasonably high posterior probability that the object was a cherry blossom

46



if it is spring, low otherwise.

3. Computer. Not very likely to appear small and white (unless the student just

caught a glance of it as it whizzed by). Being on campus, there may be a

modest prior probability of a computer being thrown from a window.

⇒ Low posterior probability that object was a computer.

4. Elephant. Not very likely to appear small and white. Also, very small prior

probability of an elephant being outside a window in Dunedin.

⇒ Extremely low posterior probability that the object was an elephant.

6.2.1 The posterior distribution

In earlier chapters we denoted the density function of x as f(x; θ) where θ is the

unknown parameter(s). Here, we shall denote it as f(x|θ) to emphasize that θ

is now considered to be a random variable and that the density function of x is

conditional on the value of the random variable θ.

The posterior density function is obtained from the prior density f(θ) and the

likelihood L(θ) ≡ f(x|θ) by Bayes’ theorem (1763),

f(θ|x) =
f(θ)f(x|θ)

f(x)
=

f(θ)f(x|θ)∫
Ω f(θ)f(x|θ)dθ

. (1)

Example 6.6 Let X|µ be distributed N(µ, σ2) where σ is known and let the prior

distribution for µ be N(ν, τ2). Then, µ|x is distributed N(m, v) where

m =
x/σ2 + ν/τ 2

1/σ2 + 1/τ 2
and v = (1/σ2 + 1/τ 2)−1 .

Exercise 6.1 Let X|p be binomial(n, p) and let the prior for p be a beta distribution

with density function

f(p) =
p(a−1)(1− p)(b−1)

B(a, b)
, 0 < p < 1,

for some a, b > 0. Show that p|x also has a beta distribution and determine its

parameters.
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Exercise 6.2 Let X|λ be Poisson(λ) and let the prior for λ be Γ(α, β). Show that

the λ|x is also Γ distributed and determine its parameters.

Exercise 6.3 Let X|λ be Exp(λ) and let the prior for λ be inverse gamma with

parameters α and β. That is, 1/λ is distributed Γ(α, β).

(a). Determine the (inverse gamma) prior density function for λ.

(b). Show that λ|x is also inverse gamma and with parameters α+1 and β/(xβ+1).

The above example and exercises demonstrated the use of conjugate families.

Definition 6.1 (Conjugate family) If the prior density f(θ) and the posterior

density f(θ|x) ∝ f(θ)f(x|θ) always belong to the same family of distributions (re-

gardless of x) then that family of distributions is the conjugate family to the likelihood

f(x|θ).

Exercise 6.4 Let X|µ be distributed N(µ, σ2) where σ is known and let the prior

distribution for µ be Exp(λ). Calculate the density function of the posterior, in-

cluding the constant of integration.

6.2.2 Interpretting the prior and posterior distributions

The frequentist development of probability is via repetition e.g. a probability is

the long-run proportion of an event. In contrast, a Bayesian views probability as

a subjective expression of knowledge about the unknown parameter. It is possible

that two different Bayesian statisticians may use different priors and hence end up

with different posteriors. This is the aspect of the Bayes method that frequentist

statisticians find most unacceptable.

One possible solution is to use a noninformative prior as an expression of no

prior knowledge about θ. For example, if θ is a location parameter (e.g. the mean

of a normal distribution) with parameter space RI then it is usual to use the non-

informative prior f(θ) = 1,−∞ < θ < ∞. If θ is a scale parameter (e.g. the
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standard deviation of a normal distribution) then the usual noninformative prior

is f(θ) = 1/θ, θ > 0. These are examples of improper priors because they do not

integrate to 1.

If the parameter space is finite with N elements then a natural noninformative

prior is to set f(θ) = 1/N for all θ ∈ Ω.

Example 6.7 Dice throw. The obvious prior for a fair dice is f(θ) = 1/6, θ ∈

{1, 2, 3, 4, 5, 6} and this specifies our (subjective) believe about the outcome of a

coin toss. Suppose the coin is tossed and we are told that the outcome is an even

number. What is our posterior believe now?

For θ = 2, 4, or 6,

f(θ|even) =
f(θ)f(even|θ)

f(even)
=

1/6× 1

1/2
= 1/3

and for θ = 1, 3 or 5, f(θ|even) = 0 because then f(even|θ) = 0.

Exercise 6.5 Example 7.1 revisited. Using a noninformative prior on the location

parameter θ, determine the posterior density functions f(θ|x1 6= x2) and f(θ|x1 =

x2). Are they consistent with intuition??

Exercise 6.6 Let X|λ be Exp(λ) and suppose we let f(λ) be the improper non-

informative prior for scale parameters, f(λ) = 1/λ, λ > 0. Show that λ|x has an

inverse gamma distribution, i.e., the distribution of 1/λ, given x, is gamma.

It is sometimes possible to give the prior distribution a frequentist interpreta-

tion. For example, the scenario of Exercise 7.4 arises in estimation of earthquake

magnitude. The (prior) distribution of earthquake magnitudes on the Richter scale

is well modelled as exponential. The observation X|µ is the estimated magnitude (of

an earthquake of true magnitude µ) and can be assumed to be normally distributed

with mean µ. The posterior distribution µ|x then has a frequentist interpretation

because we can talk about repeat experiments (from the population of earthquakes).

This kind of approach is quite widely used and is known as empirical Bayes (or su-
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perpopulation modeling; or mixture modeling). It is not viewed as an acceptable

approach by true Bayesian statisticians whom argue that probability must be viewed

as a subjective statement of belief.

6.3 Bayesian inference

Inference is viewed as a decision problem. The decision could be specification of

a single values of θ (point estimation), or specification of an interval/region, or

acceptance/rejection of a hypothesis.

Given observation of x, let L(d(x), θ) be the loss function associated with a

decision d(x) when θ is the value of the parameter.

Definition 6.2 Bayes decision. Given x, the Bayes decision is the decision min-

imizing the posterior expected loss, Ex(L(d(x), θ)).

The notation Ex is expectation over θ given x and Ex(h(x, θ)) is equivalent to

E(h(X, θ)|X = x). That is, the expectation is taken with respect to f(θ|x).

6.3.1 Point estimation

If θ ∈ Ω ∈ RI then a quadratic loss function would typically be used, L(d, θ) =

(d− θ)2. Then

Ex([d(x)− θ]2) = Ex([d(x)− Ex(θ)]
2) + Ex([θ − Ex(θ)]

2)

which is minimized by the Bayes decision estimator, d(x) = Ex(θ). This is just the

expected value of θ with respect to the posterior density f(θ|x).

6.3.2 Interval or region estimation

Here, the set of possible decisions is the collection of all subsets of Ω and a possible

loss function would be 1[θθ /∈d(x)] which penalises when θ is not in the region d(x).

This is not a sensible loss function because it has expected posterior loss equal to

P (θ /∈ d(x)|x) and therefore is always minimized by choosing d(x) = Ω.
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It is necessary to penalize for width of d(x) and a more reasonable loss function

is given by

L(d, θ) = 1[θθ /∈d] + w(d)

where w(d) is a loss due to the width of d. Then, the posterior expected loss is

Ex(L(d, θ)) = P (θ /∈ d(x)|x) + w(d) .

Note that for any fixed width, the posterior expected loss is obtained by a

region of the form {θ : f(θ|x) > a}, where a depends on the width. Thus, the

Bayes decision is a region of highest posterior density.

6.3.3 Hypothesis tests

Consider testing H0 : θ ∈ Ω0 ⊂ Ω versus H1 : θ ∈ Ω1 = Ω \ Ω0. Only two decisions

are available, d0 (accept H0) or d1 (accept H1). The loss function would typically

be of the form

L(di, θ) =

 0, if θ ∈ Ωi

ci, if θ /∈ Ωi,

where i = 0, 1 and ci is the cost of incorrectly choosing hypothesis Hi.

Exercise 6.7 Show that the Bayes decision is to reject H0 (i.e., accept H1) if

P (θ ∈ Ω0|x) < c0/(c0 + c1).

Remark: When θ is a continuous random variable then the above test assumes that

both hypotheses are composite.

6.4 Admissibility

In Chapter 4 we developed techniques for obtaining minimum variance unbiased

estimators (if they existed) and we also looked at the notion of mean squared er-

ror (MSE). Here, we present the more general concept of risk and the criterion of

admissibility. We see that Bayes decisions are admissible.
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Definition 6.3 For a fixed θ, the risk of decision d(x) is Rθ(d) = Eθ(L(d(X), θ))

where the expectation is over values of X.

If quadratic loss is used for point estimation of θ ∈ RI then the risk of an

estimator is its MSE,

Rθ(d) = Eθ([d(X)− θ]2) = Eθ([d(X)− Eθ(d(X))]2) + Eθ([Eθ(d(X))− θ]2)

= V arθ(d(X)) + bias2θ(d(X)) .

Definition 6.4 A decision rule d(x) is said to be inadmissible if there exists another

decision rule d(x) such that

Rθ(d∗) ≤ Rθ(d) ∀θ ∈ Ω

with strict inequality for at least one value of θ.

A decision rule is said to be admissible if it is not inadmissible.

It is clear that only admissible decisions are worthy of consideration.

Theorem. Bayes decisions minimize the expected (over θ) risk.

Proof. It can be shown (Exercise) thatE(h(X, Y )) = E(E(h(X, Y )|Y )) = E(E(h(X, Y )|X)),

or, using the notation of this chapter, E(h(X, Y )) = E(EY (h(X, Y ))) = E(EX(h(X, Y ))).

Hence,

E(R(θ)) = E(Eθ(L(d(X), θ)))

= E(EX(L(d(X), θ))) . (2)

The Bayes decision minimizes EX(L(d(X), θ)) for all values of X, and hence mini-

mizes (2).

Corollary. Bayes decisions are admissible.

Proof. Suppose not. Then there exists a decision d∗(x) with lower risk for at least

one value of θ. But, then d∗(x) has lower expected risk, contradicting the above

theorem.
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[The proof is not complete because d∗(x) could have lower risk at just one θ value

(say), and if θ is a continuous random variable then d(x) and d∗(x) will still have the

same expected risk. However - we don’t really care about differences in decision risk

on sets or probability zero. Moreover, risk functions will typically be continuous

functions of θ and values of θ for which one risk function betters another will

therefore constitute an interval or region.]

6.5 MCMC

The (joint) posterior density is given by equation (1) in section 6.2. In practice, θ

may be of high dimension, but one may just be interested in some quantities such

as E(θ1|x), calculation of which would then require a high dimensional integration.

A similar problem is faced if one wishes to obtain the marginal density of any of the

unknowns.

Markov Chain Monte Carlo (MCMC) is a general numerical technique for sam-

pling from the joint posterior distribution. An estimate of E(θ1|x) can then be

obtained as the average of the θ1 values in this sample.

6.5.1 Metropolis-Hastings algorithm

Suppose we wish to generate a sample from a distribution with density function g(θ).

Let a starting value θ(0) be given, and let q(θ(t+1)|θ(t)) be the proposal density. The

sample is generated as follows: the candidate value φ is accepted with probability

α(θ(t),φ) = min

(
1,

g(φ)q(θ(t)|φ)

g(θ(t))q(φ|θ(t))

)
. (3)

It accepted, the next value is θ(t+1) = φ, otherwise there is no move, i.e., θ(t+1) =

θ(t).

Exercise 6.8 From equation (3) show that

g(θ(t))q(θ(t+1)|θ(t))α(θ(t), θ(t+1)) = g(θ(t+1)q(θ(t)|θ(t+1))α(θ(t+1), θ(t)) .
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The above Exercise establishes that

g(θ(t))p(θ(t+1)|θ(t)) = g(θ(t+1)p(θ(t)|θ(t+1)) . (4)

Note that if θ(t) is distributed according to g, then the left-hand side of equation

(4) is the joint density of (θ(t), θ(t+1)). Integrating the joint density with respect to

θ(t) gives∫
g(θ(t))p(θ(t+1)|θ(t))dθ(t) =

∫
g(θ(t+1)p(θ(t)|θ(t+1))dθ(t) = g(θ(t+1)) .

That is, if θ(t) is distributed according to g, then the value θ(t+1) obtained by the

Metropolis-Hastings algorithm is also distributed according to g.

6.5.2 Gibbs Sampler

The Gibbs sampler (Gelfand and Smith, 1990) is a numerical technique for sampling

from the joint posterior distribution, f(θ1, θ2, ..., θn|x), where θ = (θ1, θ2, ..., θn)

are the unknowns and x denotes the observables. Given a starting vector θ(0) =

(θ
(0)
1 , . . . , θ(0)

n ) the Gibbs sampler proceeds by sampling from the univariate full-

conditional posteriors as follows

simulate θ
(1)
1 ∼ f(θ1|θ(0)

2 , . . . , θ(0)
n ,x)

simulate θ
(1)
2 ∼ f(θ2|θ(1)

1 , θ
(0)
3 , . . . , θ(0)

n ,x)

...

simulate θ(1)
n ∼ f(θn|θ(1)

1 . . . , θ
(1)
n−1,x)

and yields θ(m) = (θ
(m)
1 , . . . , θ(m)

n ) after m such cycles. This defines a Markov chain

with transition kernel k(θ(m+1), θ(m)) =
∏n
i=1 f(θ

(m+1)
i |θ(m+1)

1 , . . . , θ
(m+1)
i−1 , θ

(m)
i+1 , . . . , θ

(m)
n ,x),

that, under mild conditions, converges to the joint posterior as its equilibrium distri-

bution (see Gilks et al., 1996). More generally, it is enough to just sample each full

conditional using a Metropolis-Hastings step (Gilks, 1996) which is convenient if the

full conditionals are of non-standard form. This technique is known as Metropolis-

Hastings within Gibbs (MH-Gibbs) sampling, or alternatively, as single-component

Metropolis-Hastings.
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To see why the Gibbs sampler works, consider the bivariate case where we wish

to sample from a bivariate density f(θ) where θ = (θ1, θ2). The equation

f(θ1, θ2) = f(θ1)f(θ2|θ1)

can be interpretted as saying that if θ1 is distributed according to f(θ1) and, θ2 is

then chosen conditional on θ1, then the pair θ = (θ1, θ2) is jointly distributed f(θ).

In particular, θ2 is distributed according to f(θ2) and so we can make use of the

equation

f(θ1, θ2) = f(θ2)f(θ1|θ2)

to say that if we now sample θ1 conditional on θ2 then we have another observation

from f(θ1, θ2)...., and so on, successively generating samples from f(θ) by alternating

the sampling from the two conditional distributions.
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7 Appendices

7.1 Automatic Differentiation Model Builder, ADMB

The ADMB package from Otter Research Ltd (http://otter-rsch.com/admodel.htm)

has gained a strong following from many fisheries research groups worldwide and

is being used by many leading fisheries scientists. It is particularly strong in the

Pacific Northwest region where it was developed, but is also being used by Atlantic

fisheries agencies, International Pacific Halibut Commission, CSIRO and in NZ by

NIWA and the Sea Food Industry Council.

ADMB is notorious for being a challenge to use. The reasons for this include the

need to be moderately conversant with C++, the limited documentation, and the

sheer power of ADMB to fit models! It is the latter reason which has earned ADMB

the support it currently has - it appears to be (by far) the most powerful piece of

software for fitting complex models and it can be surprisingly fast. Moreover, at the

“flick of a switch” it can perform Bayesian inference by doing Metropolis-Hastings

sampling from the posterior.

7.1.1 What is automatic differentiation?

Essentially, automatic differentiation is just repeated application of the chain rule

for differentiation. By way of example, suppose that one had catch and effort data

and wished to use the model

ct = bt(1− e−qEt) .

If multiplicative lognormal errors are assumed then the estimates of q and the pa-

rameters determining bt are obtained by minimization of

f =
∑
t

(
log(Ct)− log(bt)− log(1− e−qEt)

)2
.

For demonstration purposes, it will suffice to consider the automatic differenti-

ation of a single component of the above objective function, say

ft =
(
log(Ct)− log(bt)− log(1− e−qEt)

)2
.
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Then,

∂ft
∂q

=
∂ft

∂ (log(Ct)− log(bt)− log(1− e−qEt))

×
∂
(
log(Ct)− log(bt)− log(1− e−qEt)

)
∂ log(1− e−qEt)

×∂ log(1− e−qEt)

∂(1− e−qEt)

∂(1− e−qEt)

∂e−qEt

∂e−qEt

∂(−qEt)
∂(−qEt)

∂q

∂q

∂q
.

Note that in the above expansion of the derivative, the numerator and denom-

inator differ by just a single unary or binary operation. Thus, if the operators are

defined to not only calculate and return their value, but also to calculate and return

their derivative, then derivatives can be calculated with just a moderate increase in

computational effort.

The above example is rather simple because q only appears once in the objective,

but in principle the idea of exploiting the chain rule still applies. The following

example is based on an example from the Autodiff manual of Otter Research Ltd,

f = sin(θ2
1 + θ2

2) + eθ1+3θ2 .

Let u = θ2
1 + θ2

2 and v = θ1 + 3θ2 so that we can write f = sin(u) + ev. Now,

∂f

∂θ1
=

∂f

∂ sin(u)

∂ sin(u)

∂θ1
+
∂f

∂ev
∂ev

∂θ1

=
∂f

∂ sin(u)

∂ sin(u)

∂u

∂u

∂θ2
1

∂θ2
1

∂θ1

∂θ1
∂θ1

+
∂f

∂ev
∂ev

∂v

∂v

∂θ1

∂θ1
∂θ1

= 1× cos(u)× 2θ1 × 1 + 1× ev × 1× 1 .

Exercise 7.1 Repeat the above automatic differentiation for ∂f
∂θ2

. 2

In ADMB, the automatic differentiation has been implemented for a wide range

of operations, including matrix operations.
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7.2 The Newton-Raphson algorithm

For simplicity, consider the situation where we want to find the minimum of f(θ)

where θ is in some subset of RI . Assume also that f is twice differentiable and

has only one extrema, corresponding to a unique minimum at θ0. The idea of the

Newton-Raphson algorithm is to find the value of θ for which the derivative of f is

zero (which is θ0).

Let θ(i) be the current estimate of θ0. The N-R algorithm is based on a Taylor’s

series expansion of f
′
(θ0) about θ(i). That is,

0 = f
′
(θ0) ≈ f

′
(θ(i)) + f

′′
(θ(i))(θ0 − θ(i)) .

Solving this for θ0 gives

θ0 ≈ θ(i) − f
′
(θ(i))

f ′′(θ(i))

which gives the next estimate,

θ(i+1) = θ(i) − f
′
(θ(i))

f ′′(θ(i))
.

If f is a quadratic function then the minimum is found in one iteration.

More generally, θ will be a vector. The derivation of the N-R algorithm is

unchanged, except that the Taylor’s series expansion is now expressed in terms of

derivative vectors and Hessian matrices (matrices containing the second derivatives

of f with respect to θ). The N-R algorithm is then

θ(i+1) = θ(i) − f
′′
(θ(i))−1f

′
(θ(i)) .

One can regard f
′′
(θ(i))−1f

′
(θ(i)) as the direction in which to move, but sometimes

it is better not to move the whole step and instead to consider

θ(i+1) = θ(i) − λif
′′
(θ(i))−1f

′
(θ(i)) ,

where a reasonable value of λi can be determined by a quick one-dimensional search.
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7.3 Inference from maximum likelihood

This appendix briefly looks at how to estimate (approximate) standard errors and

confidence intervals for the maximum likelihood estimates or for functions of the

MLE’s. It is assumed that the parameter vector is of size s, i.e., θ ∈ RI s.

The variance matrix of the estimates can be estimated from the Hessian ma-

trix of the log-likelihood, which is immediately available if the N-R algorithm was

used to find the MLE by maximimizing the log-likelihood. The negative of the Hes-

sian matrix is known as the (observed) information matrix, I(θ̂). The estimated

variance matrix is simply the inverse of the information matrix. This variance ma-

trix is asymptotically correct, in the sense that the MLE’s converge in distribution

(at a n1/2 rate) to a normal distribution having that variance matrix. Thus, it is

approximate for finite sample sizes.

Confidence intervals and hypothesis tests can be performed using the estimated

variance matrix (known as the Wald test), however in general it is usually safer to

perform a likelihood ratio test instead.

We consider two cases

Simple hypothesis: H0 : θ = θ0. That is, we wish to test that θ is a particular

value.

Composite hypothesis: H0 : θ ∈ Θ0 ⊂ Θ where Θ0 is an s − r dimensional subset

of Θ. We shall assume (reparameterizing if necessary) that θ =

 ψ

λ

 where

ψ ∈ RI r, λ ∈ RI s−r, and θ ∈ Θ0 are all points in Θ for which ψ equals some

specified value ψ0.

Simple hypothesis

Under appropriate conditions: under H0

LR : 2[l(θ̂n;X)− l(θ0;X)] →D χ2
s

Wald : (θ̂n − θ0)
T I(θ̂n)(θ̂n − θ0) →D χ2

s
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Composite hypothesis

If θ̂n is denoted (ψ̂n, λ̂n) and θ̂0n = (ψ0, λ̂0n) is the ML estimator in Θ0 then (under

appropriate conditions),

2[l(θ̂n;X)− l(θ̂0n;X)] →D χ2
r

when H0 is true.

Example 7.1 Modeling catches from a covered cod-end selectivity experiment. A

logistic regression was fitted to binomial data corresponding to the retention pro-

portions of haddock of differing size retained in a cod-end with 113 mm mesh. A

contour plot for the two parameters a and b is shown below.

Using the likelihood ratio statistic:

1. Test H0 : (a, b) = (−10, 0.3) using α = 0.05.

2. Determine an approximate 95% CI for parameter a.
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For the composite hypothesis the Wald test statistic becomes

(ψ̂n − ψ0)
T [[I−1(θ̂n)]ψψ]−1(ψ̂n − ψ0) →D χ2

r

where [I−1(θ̂n)]ψψ] is the upper r × r submatrix of I−1(θ̂n) (i.e., the asymptotic

covariance matrix of ψ̂n) and [I−1(θ̂n)]ψψ]−1 is called the Fisher information for ψ,

evaluated at θ̂n, in the presence of the “nuisance” parameter λ. It can be shown

that [I−1(θ̂n)]ψψ]−1 = Iψψ − IψλI
−1
λλ Iλψ.

7.3.1 Likelihood profiles in ADMB

Note that performing a test or obtaining a confidence interval for a single parameter

corresponds to the In the composite hypothesis case. This requires that the like-

lihood be maximized over a subspace of the parameter space, and hence typically

requires additional programming effort. A nice feature of ADMB is that it can do

this at the “flick of a switch”.

7.3.2 Delta Theorem

Suppose g : RI s → RI p where

g(θ) =



g1(θ)

.

.

.

gp(θ)


and that each co-ordinate gi : RI s → RI has derivative g

′
i = ( ∂gi

∂θ1
, ..., ∂gi

∂θs
)T that is

continuous at θ0.

Then, the approximate variance matrix for g(θ) is

G(θ0)I
−1
1 (θ0)G(θ0)

T ,
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where

G(θ0) =



g
′
1(θ0)

T

.

.

.

g
′
p(θ0)

T


,

and I−1(θ̂) is the approximate variance matrix for θ.
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7.4 Discrete versus instantaneous rates of mortality

Let nt denote the number of fish in a particular cohort at the start of year t. Then,

one might write

nt+1 = stnt

where st is the proportion of the cohort surviving to the end of year t. If fishing

occurs in a pulse (over a very short time interval) at the start of the year then

one might partition st as the product of the proportion surviving harvest and the

proportion of these surviving through to the end of the year, st = (1− ht)pt, say.

However, in many fisheries it is often more useful to consider mortality as

a process that is spread throughout the year and this can be expressed via the

differential equation
dnt
dt

= −ztnt . (1)

The mortality rate zt is known as the total instantaneous mortality and it may be

partitioned into natural mortality and mortality caused by fishing, zt = mt+ft, say.

The latter is often assume to be proportional to the fishing effort.

Rearranging equation (1) and integrating over year t gives

∫ nt+1

nt

1

nt
dnt = −

∫ t+1

t
ztdt

giving

log(nt+1)− log(nt) = −zt ,

which results in

nt+1 = nte
−zt .

Exercise 7.2 If total instantaneous mortality, z, is constant over time, show that

nt = n0e
−zt, where n0 is the size of the cohort at time 0.
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