
Reference priors for Bayesian fisheries models

Russell B. Millar
Department of Statistics

Private Bag 92019

University of Auckland

Auckland, New Zealand

1



Abstract: Bayesian models require the specification of prior distributions for all

unknown parameters. This work addresses the situation where it is not possible to

construct priors based on existing knowledge and instead one must obtain a suit-

able prior via some formal method. To maintain consistency of terminology with

the statistical literature such priors are herein called reference priors in recogni-

tion that there is no general consensus about what constitutes a “non-informative”

prior. Here, the Jeffreys’ reference prior is demonstrated for several well known

fisheries models, including the Ricker and Beverton-Holt stock-recruit curves; Von-

Bertalanffy growth curve; Schaefer surplus production model; and sequential pop-

ulation analysis. Reference priors for relevant derived parameters, including the

steepness parameter of the Beverton-Holt stock-recruit curve, are derived. The

practical application of these priors is discussed.
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Introduction

In the context of fisheries science, Bayesian modeling has been promoted as a

methodology for realistically capturing the uncertainties and resulting risks inherent

to any fishery (Punt and Hilborn 1997). Fundamental to this is the requirement

to specify the information (if any) that exists about unknown parameters prior

to collection of the data, and the current popularity of Bayesian models in fisheries

owes much to the recognition by fisheries scientists that substantial prior information

often does exist. For example, Hilborn and Liermann (1998) show how to use meta-

analysis to utilize existing information from studies on related stocks.

In many situations there will, however, be little reliable existing knowledge about

some or all unknown model parameters. This could arise simply because of the

absence of any related studies. Moreover, when studies on related stocks are available

then care must be taken to apply meta-analysis only to those parameters satisfying

the underlying assumptions of this approach. Meta-analysis typically requires that

the parameters be exchangeable, which in this context requires that the parameter of

interest can be reasonably modeled as having a common distribution over all stocks

considered. This may be appropriate for parameters such as catchability, natural

mortality and recruitment depensation (Hilborn and Liermann 1998), but would not

be appropriate for stock-specific parameters such as virgin biomass.

In the absence of prior knowledge it has been common practice to seek an ap-

propriate “non-informative” prior. It is well known that flat priors are not non-

informative (in general) and considerable effort has been devoted to obtaining gen-
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eral purposes methods for constructing priors that express the state of ignorance.

This pursuit has met with mixed success with different axiomatic assumptions lead-

ing to different constructions for non-informative priors. For this reason, the view-

point of Kass and Wasserman (1996) is adopted here — that is, we seek to establish

a catalog of default/reference priors for a variety of fisheries models. These priors

are not presented as formal expressions of ignorance, but rather, as reference priors

that have good properties and that are sensible to use in situations where prior

information can not be exploited.

The search for reference priors is also far from clear cut. Kass and Wasser-

man’s (1996) review article gives details on more than a dozen proposed methods

for obtaining reference priors, however, they do give special emphasis to the Jeffreys’

method and show that several of the other methods produce reference priors similar

to Jeffreys’. Jeffreys’ method is by far the most widely used approach for obtaining

reference priors and has previously been used in Bayesian fisheries modeling (e.g.,

Hoenig et al. 1994). Here, the Jeffreys’ method is employed throughout.

The dominance of Jeffreys’ method for specification of priors is largely due to

its property of parameterization invariance. That inference should not depend on

the particular, possibly arbitrary, choice of model parameterization is generally con-

sidered the most fundamental requirement of a reference prior. Jeffreys’ method

is introduced in the next section, and in the following section is applied to the

Ricker and Beverton-Holt stock-recruit curves, the Von-Bertalanffy growth curve,

the Schaefer surplus production model, and sequential population analysis.
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Jeffreys’ Method

Parameterization invariance

The particular form of parameterization used in a model can be somewhat

arbitrary, or may be driven by numerical considerations (e.g., Ratkowsky 1986).

For example, from Hilborn and Walters (1992) and Quinn and Deriso (1999), the

Beverton-Holt stock-recruit curve appears in the following four forms (and a fifth

form is considered in the Fisheries models section below)

R =
aS

b + S
≡ a∗S

1 + a∗

b∗S
≡ αS

1 + βS
≡ S

α∗ + β∗S
.

The primary motivation for Jeffreys’ method is the desire that inference should not

depend on the particular parameterization of the model.

More generally, if a model is expressed in terms of parameters θ, then it can also

be expressed in terms of parameters ζ = g(θ) where g is any invertible transforma-

tion. If a formal rule for obtaining prior distributions is used then there are two

legitimate ways to calculate the prior on ζ :

1. Calculate the prior on θ and then apply the transformation of random variables

formula (Freund 1992)

π(ζ) = π(θ(ζ))

∣∣∣∣∣det

(
∂θ

∂ζ

)∣∣∣∣∣ (1)

where ∂θ
∂ζ

is the Jacobian matrix with i, j’th element ∂θi

∂ζj
.

2. Express the likelihood in terms of ζ and apply the formal rule.

5



Jeffreys’ rule is termed parameterization invariant because the two above ap-

proaches result in the same prior for ζ .

Jeffreys’ prior

Jeffreys (1961) used measure-theoretic concepts to motivate his choice of a pa-

rameterization invariant prior. Jeffreys’ prior is obtained as the squareroot of the

determinant of the information matrix obtained from the likelihood function for the

data. That is, denoting the parameters by θ = (θ1, θ2, ..., θp) and the loglikelihood

by l(θ), I(θ) is the p× p information matrix with i, jth element

Iij(θ) = E

[
∂l(θ)

∂θi

∂l(θ)

∂θj

]
,

and Jeffreys’ prior is given by

π(θ) ∝ det (I(θ))1/2 . (2)

Apriori independence

Jeffreys (1961) noted that (2) should not be applied verbatim in all situta-

tions, but rather, could be used to help establish conventions for representation

of prior ignorance. One convention that has been justified on several grounds (Jef-

freys 1961, Box and Tiao 1973, Kass and Wasserman 1996) is that scale parameters

(e.g., variances) be excluded from the parameter vector θ and that (2) be applied

separately to θ and the scale parameters. This convention is often justified on the

grounds that the scale parameters can be presumed apriori independent from other

parameters under the state of prior ignorance. Sun and Berger (1998) provide a
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formalization of this notion.

Fisheries models

Jeffreys’ prior depends on the likelihood posed for the data and so will depend

on the assumed form of the error terms. For example, the Jeffrey’s prior on the

asymptotic length parameter of a Von-Bertalanffy growth curve will depend on

whether the length data are assumed to be normally or lognormally distributed.

This is justifiable if one considers that the specification of the error term implicitly

provides information about the parameters. For example, a Von-Bertalanffy growth

model that puts normal error on the length data is theoretically permitting lengths

to be negative, and so it is not unreasonable that a “non-informative” prior would

put positive prior probability on asymptotic length being negative. This would not

occur with lognormal errors.

In the five models considered below, the data are necessarily non-negative and

lognormal error has been assumed throughout. Consequently, separate application

of (2) to the standard error of the data gives the familiar reference prior (e.g., Box

and Tiao 1973)

π(σ) = 1/σ . (3)

This is equivalent to log(σ) having a flat prior (from equation (1)).

Here, the “standard” forms of the models have been used. For example, in the

stock-recruit models there are the considerations of autocorrelated recruitments and

measurement error in estimation of spawners (Ludwig and Walters 1981). These
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considerations are not covered here and the number of spawners is treated as a

known explanatory variable. In the Schaefer surplus production model there is the

consideration of process error (Meyer and Millar 1999), however, here the more tra-

ditional observation error only model (Polacheck, Hilborn and Punt 1993) is used.

The parameterization invariance of Jeffreys’ method ensures that the results do not

depend on the particular model parameterizations used below.

1: Ricker stock-recruit curve (a, b)

Model

Let St be the spawners at time t and let Rt be the measured number of recruits

resulting from spawning at time t. The Ricker stock-recruit model with multiplica-

tive lognormal errors is

Rt = aSte
−bSteνt , a > 0, b ≥ 0 , (4)

where νt are independent and identically distributed N(0, σ2) random errors.

Reference prior

π(a, b) ∝ 1

a
, a > 0, b ≥ 0

That is, the reference prior for a is uniform on the log scale and for b is uniform on

[0,∞).

2: Beverton-Holt stock-recruit curve (a, b)
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Using the same notation as in the previous model, the Beverton-Holt stock-

recruit model with multiplicative lognormal errors is

Rt =
aSt

1 + bSt
eνt , a > 0, b ≥ 0 . (5)

Reference prior

π(a, b) ∝ sd(y(b))

a
, a > 0, b ≥ 0 ,

where yt(b) = St/(1+bSt) and sd(y(b)) is the standard deviation of yt(b), t = 1, ..., n.

Remarks

1. The reference prior for b,

π(b) ∝ sd(y(b)) (6)

is proper (Appendix). That is, with the appropriate normalizing constant it

integrates to unity and corresponds to a proper density function.

2. For the purposes of meta-analysis of stock-recruit relationships, the Beverton-

Holt stock-recruit model must be reparameterized in a form which permits a

parameter that can reasonably be considered exchangeable over related stocks.

This can be done by expressing the model in terms of a (in equation (5)) and

a steepness parameter hρ (Hilborn and Liermann 1998). Specifically, if S0 is

chosen as some pre-specified virgin number of spawners, then for ρ between

zero and unity,

hρ =
R(ρS0)

R(S0)
(7)
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where R(S) = aS/(1+ bS). It is common practice to take ρ = 0.2, which gives

h0.2 the interpretation as the ratio of recruitment at 20% of virgin numbers to

recruitment in the virgin state.

It is necessarily the case that ρ ≤ hρ ≤ 1. If hρ is close to ρ then recruitment

decreases in a near linear relationship with spawners (as spawners are reduced

in number from S0 to ρS0), and if hρ is close to unity then recruitment is little

reduced by the reduction in spawners.

The reference prior for steepness is obtained from applying the change of vari-

ables technique to π(b) (Appendix). This gives

π(hρ) =
1− ρ

ρS0(1− hρ)2
π(b) , ρ ≤ hρ < 1 .

Example

Equation (6) was applied to the Alaska pink salmon escapement (spawners)

values (Fig. 1) from Quinn and Deriso (1999). The reference prior for b (Fig. 2)

has a maximum of sd(S) = 1.436 at b = 0 (Appendix).

The reference prior for the steepness parameter was calculated for four different

specified values of the virgin number of spawners (S0), 5, 10, 20 and 50 million fish,

respectively (Fig. 3). The reference prior puts increasingly high prior probability

on low values of steepness (corresponding to a greater decrease in recruitment due

to a reduction in spawners) as S0 decreases.

3: Von-Bertalanffy growth curve (L∞, k, t0)
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Model

Let La be the observed length of an age a fish, modeled using the Von-Bertalanffy

growth model with multiplicative lognormal errors:

La = L∞
(
1− e−k(a−t0)

)
eνa , L∞ > 0, k > 0, t0 > min(a) , (8)

where L∞ is asymptotic length, k is the growth rate, t0 is the time at which expected

length is zero, and νa are independent and identically distributed N(0, σ2) random

errors.

Reference prior

The reference prior π(L∞, k, t0) can not be written in a compact form because

of the summations in the terms of the information matrix (Appendix). However, it

can be written in the form

π(L∞, k, t0) ∝
1

L∞
π(k, t0) , L∞ > 0, k > 0, t0 > min(a) . (9)

That is, the reference prior for L∞ is uniform on the log scale and is independent of

the joint reference prior for k and t0.

Example

The reference prior π(k, t0) from equation (9) was calculated for the rougheye

rockfish age values from Quinn and Deriso (1999). The prior density increases as k

decreases or t0 increases (Fig. 4).

Quinn and Deriso (1999) assumed additive normal errors in their fit of the Von

Bertalanffy growth curve to these data. By analagous calculations to those shown

in the Appendix, this model also results in prior independence of L∞ and (k, t0),
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but with π(L∞) ∝ L2
∞. Also, π(k, t0) increases with increasing t0, but is unimodal

in k (Fig. 4).

4: Schaefer surplus production model (Q,K, r)

Hoenig et al. (1994) used the equilibrium Schaefer surplus production model

and calculated the Jeffrey’s prior for the parameter corresponding to optimal effort.

Hilborn and Walters (1992) and Polacheck et al. (1993) demonstrate serious inad-

equacies with the equilibrium model and recommend use of the observation error

version of the dynamic surplus production model, and this model is presented below.

Model

Letting By denote the biomass at the start of year y, and Cy the catch in year

y. The dynamic Schaefer surplus production model gives the biomass in year y

according to the equation

By = By−1 + rBy−1

(
1− By−1

K

)
− Cy−1 , r > 0, K > 0 , (10)

where K is carrying capacity and r is the productivity parameter. B0 is the biomass

at the start of the fishery and it is usual to set B0 = K, and this will be assumed

here.

It is assumed that a relative biomass index, Iy, measured with multiplicative

lognormal error, is observed each year. That is,

Iy = QBye
νy Q > 0 , (11)

where νy are independent and identically distributed N(0, σ2) random errors.
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Reference prior

The elements of I(r, K, Q) can not be written in closed form because of the recur-

sive definition of the sequence of biomasses. However, it can be shown (Appendix)

that the resulting reference prior can be written in the form

π(r, K, Q) ∝ 1

Q
π(r, K) , Q > 0, r > 0, K > 0 .

That is, the reference prior for Q is uniform on the log scale and is independent of

the joint reference prior for r and K.

Example

The reference prior π(r, K) was calculated for the catch values of the South At-

lantic albacore tuna used in Polacheck et al. (1993) and Meyer and Millar (1999).

The prior density increases with decreasing values of K and r (Fig. 5).

5: Sequential population analysis (Qa0 , ..., QA, m)

There are many variants of sequential population analysis depending on the

nature of the fishery and the data that are available. Here, it will be assumed that

instantaneous natural mortality and fishing mortality can reasonably be taken as

constant throughout each year and that a relative index of numbers-at-age, I, is

available.

Model

Let Na,t be the number of age a fish at time t, and let Fa,t denote the instanta-

neous fishing mortality applied to these fish. Numbers-at-age are modeled as

Na,t = Na−1,t−1e
−(m+Fa−1,t−1) , m > 0 ,
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and the statistical model for the data is

Ia,t = QaNa,te
νa,t , Qa > 0 (12)

where Qa is the catchability of age a fish and νa,t are independent and identically

distributed N(0, σ2) random errors.

Reference prior

If a0 is age of recruitment and A is maximum age, then the reference prior for

Qa0 , ...QA and m is (Appendix)

π(Qa0 , ...QA, m) ∝
A∏

a=a0

1

Qa
, Qa > 0, m > 0 .

That is, the reference priors for the catchabilities are independent and uniform on

the log scale and are independent of the reference prior for instantaneous mortality

which is uniform on (0,∞). Consequently, the reference prior on natural annual

survival s = e−m is π(s) = 1/s, 0 < s < 1.

Comments

The derivation (Appendix) of the above reference prior made the assumption

that recruitments were not functionally related to instantaneous mortality. This

would be true in models which allow recruitments to be freely estimated, however,

it would not be the case in models which use a spawner-recruit relationship because

recruitment then depends on number of spawners which in turn depends on m.
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Discussion

Reference priors have been used in the existing Bayesian fisheries literature, but

only in the simplest of cases. These include the use of (3) for standard deviations and

for the catchability coefficient Q (i.e., π(Q) = 1/Q) when the catch data are modeled

as lognormal (McAllister, Pikitch, Punt and Hilborn 1994, Walters and Ludwig 1994,

Punt, Butterworth and Penney 1995, Millar and Meyer 2000). This present work

demonstrates the applicability of such priors to several standard multiparameter

models.

Such reference priors should be utilized even in situations where there is prior

information about the parameter(s). The elicitation and quantification of existing

prior information is far from being an unequivocal practice and in particular it

could be highly contentious regarding the selection of related stocks that can be

considered exchangeable with respect to the chosen parameters. Also, if few related

stocks are available then the prior obtained could be sensitive to the hyperpriors.

Thus, sensitivity to the prior obtained from the meta-analysis should be examined,

and in this endeavour the reference prior would be a natural alternative prior to use.

References priors calculated using Jeffreys’ method can be both algebraicly com-

plex and improper. This could be problematic for some Bayesian software packages.

For example, the symbolic BUGS software (Spiegelhalter, Thomas, Best and Gilks

1996) requires customized programming to use improper priors and may fail to

compile if the prior is too complicated. Complex priors would be more reliably im-

plemented in software which requires explicit algebraic expression of the prior and
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data likelihood terms.

Algebraic complexity of Jeffreys’ method will become a restrictive factor in many

practical applications of fisheries models. A single fisheries model may require si-

multaneous inference about a multitude of parameters such as those arising in the

stock-recruit curve, growth curve, and in specification of age-specific fishing mortal-

ities for several gears. It would be a formidable task to determine the joint reference

prior for so many unknowns. In such cases it may be reasonable to assume prior

independence of particular subsets of parameters, and apply Jeffreys’ method sepa-

rately to each.
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Appendix

The derivation of the reference prior for the Ricker stock recruit curve model is

presented in considerable detail. Only brief detail is provided for the other models.

1: Ricker stock-recruit curve (a, b)

Taking the log of (4) gives

rt = log(Rt) = log(a) + log(St)− bSt + νt

and the contribution to the loglikelihood from the data value Rt is therefore

lt(a, b, σ) =
1

2
log(2πσ2)− (rt − log(a)− log(St) + bSt)

2

2σ2
.

Using the aprior independence form of Jeffreys’ method we can remove σ from the

likelihood, giving (to within a constant of proportionality)

lt(a, b) = −(rt − log(a)− log(St) + bSt)
2 .

Thus,

∂lt
∂a

=
2

a
(rt − log(a)− log(St) + bSt) =

2

a
νt

∂lt
∂b

= −St(rt − log(a)− log(St) + bSt) = −Stνt .

Hence,

∂lt
∂a

∂lt
∂a

=
4

a2
ν2

t ,
∂lt
∂b

∂lt
∂b

= S2
t ν

2
t , and

∂lt
∂a

∂lt
∂b

=
∂lt
∂b

∂lt
∂a

=
−2St

a
ν2

t . (13)

The expected value of ν2
t is σ2, giving

E

[
∂lt
∂a

∂lt
∂a

]
=

4

a2
σ2 , E

[
∂lt
∂b

∂lt
∂b

]
= S2

t σ
2 , (14)
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and E

[
∂lt
∂a

∂lt
∂b

]
= E

[
∂lt
∂b

∂lt
∂a

]
=
−2St

a
σ2 . (15)

Using the fact that the information matrix for a data set with n independent

observations is the sum of the information matrices calculated for each individual

observation (Azzalini 1996), we have

I(a, b) = σ2

 4n
a2 −2

a

∑
t St

−2
a

∑
t St

∑
t S

2
t

 (16)

and the determinant of this matrix is

det(I(a, b)) =
4σ4

a2

n
∑

t

S2
t −

[∑
t

St

]2


=
4σ4

a2

∑
t

(St − S̄)2

where S̄ is the average of the St, t = 1, ..., n. Thus, the reference prior for a and b is

π(a, b) ∝ det(I(a, b))1/2 ∝
(

1

a2

)1/2

=
1

a
. (17)
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2: Beverton-Holt stock-recruit curve (a, b)

Taking the log of (5) gives

rt = log(Rt) = log(a) + log(St)− log(1 + bSt) + νt

and the contribution to the loglikelihood from the data value Rt is therefore

lt(a, b) ∝ −(rt − log(a)− log(St) + log(1 + bSt))
2 .

Thus,

∂lt
∂a

∝ 1

a
(rt − log(a)− log(St) + log(1 + bSt)) =

1

a
νt

∂lt
∂b

= − St

1 + bSt

(rt − log(a)− log(St) + log(1 + bSt)) = − St

1 + bSt

νt .

Hence,

I(a, b) ∝

 n
a2 −1

a

∑
t

St

1+bSt

−1
a

∑
t

St

1+bSt

∑
t

(
St

1+bSt

)2

 . (18)

Denoting yt(b) = St/(1 + bSt), the determinant of I(a, b) is

det(I(a, b)) =
1

a2

n
∑

t

y2
t (b)−

[∑
t

yt(b)

]2


=
n

a2

∑
t

(yt(b)− ȳ(b))2 ∝ Var(y(b))

a2

where yt(b) = St/(1 + bSt) and ȳ(b) is the average of the yt(b), t = 1, ..., n. Thus,

the reference prior for a and b is

π(a, b) ∝ det(I(a, b))1/2 ∝ sd(y(b))

a
. (19)

Remarks:

1. The reference prior π(b) = sd(y(b)) is proper, that is, is integrable with respect

to b. This is established by using the following two inequalities:
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(i) sd(y(b)) ≤ sd(S), and

(ii) sd(y(b)) ≤ c
b2

for some constant c.

The first inequality is established by virtue of the fact that, for any i and j

and all b > 0, |yi(b) − yj(b)| < |Si − Sj |. The second inequality is established

by noting that

sd(y(b)) =
1

b
sd
(

1

1 + bS

)
.

2. To obtain the prior on the steepness parameter, write equation (7) as

hρ = 1− 1− ρ

1 + ρbS0
.

The inverse of this is

b =
hρ − ρ

ρS0(1− hρ)
,

which has derivative

∂b

∂hρ

=
1− ρ

ρS0(1− hρ)2
.
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3: Von-Bertalanffy growth curve (L∞, k, t0)

Letting ai denote the age of the ith fish in the sample, taking the log of (8) gives

log(Lai
) = log(L∞) + log

(
1− e−k(ai−t0)

)
+ νi

and the contribution to the loglikelihood from the data value Lai
is therefore

li(L∞, k, t0) ∝ −(log(Lai
)− log(L∞)− log(1− e−k(ai−t0))2

Thus,

∂lai

∂L∞
∝ 1

L∞
νi

∂lai

∂k
=

(ai − t0)e
−k(ai−t0)

1− e−k(ai−t0)
νi

∂lai

∂t0
= − ke−k(ai−t0)

1− e−k(ai−t0)
νi .

Hence,

I(L∞, k, t0) ∝


n

L2
∞

1
L∞

∑
i

δie−kδi

1−e−kδi
− k

L∞

∑
i

e−kδi

1−e−kδi

1
L∞

∑
i

δie−kδi

1−e−kδi

∑
i

[
δie−kδi

1−e−kδi

]2
−k

∑
i δi

[
e−kδi

1−e−kδi

]2
− k

L∞

∑
i

e−kδi

1−e−kδi
−k

∑
i δi

[
e−kδi

1−e−kδi

]2
k2∑

i

[
e−kδi

1−e−kδi

]2

 ,

(20)

where δi = ai − t0.

The determinant of I(L∞, k, t0) can be calculated by many familiar software

packages, or directly using the formula for the determinant of 3 by 3 matrices (e.g.,

p. 150 of Jacob 1990). From this formula it can be noted that L∞ appears in the

determinant only as a multiplicative constant.
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4: Schaefer surplus production model (Q,K, r)

Taking the log of equation (11) gives

iy = log(Iy) = log(Q) + log(By) + νy .

The contribution to the loglikelihood from the data value Iy is therefore

ly ∝ −(iy − log(Q)− log(By))
2/.

Thus, letting k = 1/K,

∂ly
∂Q

∝ 1

Q
νy

∂ly
∂r

=
∂ly
∂By

∂By

∂r
=

1

By

∂By

∂r
νy

∂ly
∂K

=
∂ly
∂k

∂k

∂K
=

∂ly
∂By

∂By

∂k

−1

K2
=

−1

K2By

∂By

∂k
νy .

The above derivatives of By are obtained from the recursive surplus production

equation (10), which can be denoted By = g(By−1, r, K). Then,

∂By

∂r
=

∂g(By−1, r, K)

∂r
=

∂g(B, r, K)

∂B

∂B

∂r
/

By−1,r,K
+

∂g(B, r, K)

∂r
/

By−1,r,K
,

and similarly for ∂By

∂k
. The partial derivatives of g are

∂g(B, r, K)

∂B
= 1 + r − 2rkB

∂g(B, r, K)

∂r
= B(1− kB)

∂g(B, r, K)

∂k
= −rB2 .
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5: Sequential population analysis (natural mortality, m)

Taking the log of equation (12) gives

log(Ia,t) = log(Qa) + na,t + νa,t

where na,t = log(Na,t). The contribution to the loglikelihood from the data value

Ia,t is therefore

la,t ∝ −(log(Ia,t)− log(Qa)− na,t)
2 .

With a0 denoting the age of recruitment,

na,t = na−1,t−1 −m− Fa−1,t−1

= na0,t−(a−a0) − (a− a0)m−
a−a0∑
i=1

Fa−i,t−i

= rt−(a−a0) − (a− a0)m−
a−a0∑
i=1

Fa−i,t−i

where rt is the log-recruitment of age a0 fish at time t. Assuming that recruitment

is independent of m, differentiation of the loglikelihood gives

∂la,t

∂Qα
∝
{

1
Qa

νa,t , a = α

0 , a 6= α

and

∂la,t

∂m
∝ −(a− a0)νa,t .

The derivative of the loglikelihood with respect to m is a constant that does not

involve any parameters, and it follows that

det(I(Q,m))1/2 ∝
(

A∏
a=a0

1

Q2
a

)1/2

=
A∏

a=a0

1

Qa

.
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Figures

Fig 1: Alaska pink salmon escapement (spawners) and recruitment data from p.

105 of Quinn and Deriso (1999).

Fig 2: Reference prior for parameter b of the Beverton-Holt stock-recruit model,

calculated for the spawner data of Figure 1.

Fig 3: Reference prior for the steepness parameter of the Beverton-Holt stock-

recruit model, calculated for the spawner data of Figure 1 for various S0 values.

Fig 4: Joint reference prior for parameters k and t0 of the Von-Bertalanffy growth

curve, calculated for the age data from p. 136 of Quinn and Deriso (1999). Top plot

is for multiplicative lognormal errors. Lower plot is for additive normal errors.

Fig 5: Joint reference prior for parameters K and r of the Schaeffer surplus pro-

duction model, calculated for the tuna catch data of Meyer and Millar (1999).
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