The BRugs Package

February 15, 2006
Title OpenBUGS and its R interface BRugs
Version 0.2-7
Date 2006-02-14

Author The Chief Software Bug is Andrew Thomas, with web assistance from Real Bug Bob O’Hara.
Other members of the BUGS team are statisticians David Spiegelhalter, Nicky Best, Dave Lunn
and Ken Rice. Dave Lunn has also made major contributions to the software development. R
Code modified, extended and packaged for R by Uwe Ligges and Sibylle Sturtz. Some ideas
taken from the R2ZWinBUGS package based on code by Andrew Gelman.

Description An R package containing OpenBUGS and its R interface BRugs.
Maintainer Uwe Ligges <ligges @statistik.uni-dortmund.de>

Depends R (>=2.0.0)

Suggests coda

SystemRequirements currently the only supported OS is Windows, we expect to support Linux in
future releases

License GPL version 2 or newer

URL http://mathstat.helsinki.fi/openbugs/

R topics documented:

BRugs e 2
BRugsFit e 4
bgrPoint e 5
buffer e 6
bugsData e 6
bugslnits 7
buildMCMC e 7
currentValues 8
dic . . . e 8
dimensions L. e e e e e e e e e e e 10
getObj . . . e 10
getChain e 11
getNumChains e e e 11
help WinBUGS e 12

2 BRugs
loadModule e 12
modelAdaptivePhase 0oL 13
modelCheck e 13
modelCompile e 14
modelData 15
modelGenlInits 15
modellnits 16
modellteration e 17
modelModules L. oL 18
modelNames L 18
modelPrecision 19
modelSaveState 19
modelSeed e 20
modelSetAP 20
modelUpdate 21
PlotAutoC 22
plotBgr . . . e 22
plotDensity 23
plotHistory e e e e 24
ranks 25
TALS . . e e e e e e e e e e 26
samplesAutoC L. 26
samplesBgr e 27
samplesClear L e 28
samplesCoda e e e 29
samplesCorrel L 30
samplesDensity L 31
samplesGet L. 32
samplesHistory L 32
samplesMonitors e 33
samplesSample 34
samplesSet L e 34
samplesSetting 35
samplesSize e 36
samplesStats L. 36
setValues L e e 38
SUMIMATY .+« v v v v v e 38
write.datafile 39

Index 41

BRugs Introduction to BRugs

Description

This manual describes how to use the BRugs software

Usage

help.BRugs (browser = getOption ("browser"))

BRugs 3

Arguments
browser the name of the program to be used as hypertext browser. It should be in the
PATH, or a full path specified.
Details

BRugs is a collection of R functions that allow users to analys graphical models using MCMC tech-
niques. Most of the R functions in BRugs provide a interface to the BRugs dynamic link library
(shared object file). The BRugs dynamic link library is able to make use of many of the WinBUGS
components, in particular those components concerned with graphical models and MCMC simula-
tion. BRugs lacks the GUI interface of WinBUGS but is able to use R to create graphical displays
of the MCMC simulation. BRugs uses the same model specification language as WinBUGS and
the same format for data and initial values. However BRugs always uses plain text files for input
inplace of WinBUGS compound documents. The BRugs functions can be split into two groups:
those associated with setting up and simulating the graphical model and those associated with mak-
ing statistical inference. In general the R functions in BRugs correspond to the command buttons
and and text entry fields in the menus of WinBUGS. Each WinBUGS text entry field splits into two
R functions, one to set the quantity and the other to get the value of the quantity.

Permission and Disclaimer

BRugs is released under the GNU GENERAL PUBLIC LICENSE. For details see http://
mathstat.helsinki.fi/openbugs/ ortype help.BRugs ().

More informally, potential users are reminded to be extremely careful if using this program for
serious statistical analysis. We have tested the program on quite a wide set of examples, but be
particularly careful with types of model that are currently not featured. If there is a problem, BRugs
might just crash, which is not very good, but it might well carry on and produce answers that are
wrong, which is even worse. Please let us know of any successes or failures.

See Also

help.WinBUGS and the meta function BRugsFit

Examples

#44# Step by step example: #H#4
library (BRugs) # loading BRugs

Now setting the working directory to the examples' one:
oldwd <- getwd()
setwd (system.file ("OpenBUGS", "Examples", package="BRugs"))

some usual steps (like clicking in WinBUGS) :
modelCheck ("ratsmodel.txt") # check model file
modelData ("ratsdata.txt") # read data file
modelCompile (numChains=2) # compile model with 2 chains
modelInits (rep("ratsinits.txt", 2)) # read init data file
modelUpdate (1000) # burn in
samplesSet (c ("alphaO", "alpha")) # alpha0 and alpha should be monitored
#

modelUpdate (1000) 1000 more iterations
samplesStats ("«") # the summarized results

some plots

http://mathstat.helsinki.fi/openbugs/
http://mathstat.helsinki.fi/openbugs/

samplesHistory ("«", mfrow = c (4, 2))
samplesDensity ("alpha")

samplesBgr ("alpha[l:6]")
samplesAutoC ("alpha[l:6]1", 1)

BRugsFit

plot the chain,

plot the densities,

plot the bgr statistics, and

plot autocorrelations of 1st chain

H H= H=

switch back to the previous working directory:

setwd (oldwd)
Not run:

Getting more (online-)help:

help.BRugs ()

End (Not run)

BRugsFit

BRugs’ meta function

Description

This function takes model, data and starting values as input and automatically runs a simulation in

BRugs.
Usage
BRugsFit (modelFile, data, inits, numChains = 3, parametersToSave,
nBurnin = 1000, nIter = 1000, nThin = 1,

DIC = TRUE, working.directory = NULL, digits = 5)

Arguments

modelFile

data

inits

numChains

File containing the model written in OpenBUGS code.

Either a named list (names corresponding to variable names in the mode1File)
of the data for the OpenBUGS model, or a vector or list of the names of the data
objects used by the model. In these cases data are written into a file ‘data.txt’
into the working directory.

If a filename of an existing file is given, data are read from that file.

A list with numChains elements; each element of the list is itself a list of
starting values for the OpenBUGS model, or a function creating (possibly ran-
dom) initial values. In these cases inits are written into files ‘inits1.txt’, ...,
‘initsN.txt” into the working directory.

If a vector of filenames of existing files is given, inits are read from those files.
Alternatively, if inits is not specified, initial values are generated by Open-
BUGS.

Number of Markov chains (default: 3).

parametersToSave

nBurnin
nlter
nThin

DIC

Character vector of the names of the parameters to save which should be moni-
tored.

Length of burn in (before nIter iterations start).
Number of iterations (without burn in).
Every nThin-th iteration of each chain is stored.

Logical, whether to calculate and return the DIC.

bgrPoint 5

working.directory

Sets working directory during execution of this function; data, inits and
other files are written to / read from this directory if no other directory is explic-
itly given in those arguments. If NULL, the current working directory is chosen.

digits Number of significant digits used for OpenBUGS input, see formatC.

Value

A list containg components

Stats A data frame containing sample statistics. See samplesStats.
DIC The DIC statistics, if DIC=TRUE, else NULL. See dicStats.
See Also

BRugs, help.WinBUGS

Examples
BRugsFit (data = "ratsdata.txt", inits = "ratsinits.txt",
para = c("alpha", "beta"), modelFile = "ratsmodel.txt",
numChains = 1,
working.directory = system.file ("OpenBUGS", "Examples",
package = "BRugs"))
bgrPoint Internal functions (to support plotting the Gelman-Rubin convergence

statistic)

Description

These functions are for internal use only. They support samplesBgr and plotBgr.

Usage

bgrGrid (node, bins = 50)
bgrPoint (node, iteration)

Arguments
node Character vector of length 1, name of a variable in the model.
bins Blocksize
iteration Calculated by bgrGrid

Note

Intended for internal use only.

See Also

samplesBgr, BRugs, help.WinBUGS

6 bugsData

buffer Reading OpenBUGS buffer file

Description

Reads OpenBUGS buffer file, internally used for intefacing to OpenBUGS.

Usage

buffer ()

Value

Prints the buffer, returns nothing.

See Also

BRugs, help.WinBUGS

bugsData Writing input for OpenBUGS

Description

Write data file for OpenBUGS.

Usage

bugsData (data, fileName = file.path(getwd(), "data.txt"), digits = 5)

Arguments
data either a named list (names corresponding to variable names in the model file) of
the data for the OpenBUGS model, or a vector or list of the names of the data
objects used by the model
fileName the filename, defaults to ‘data.txt’ in the current working directory
digits number of significant digits used for OpenBUGS input, see formatC
Value

Invisibly returns the £ileName.

See Also

BRugs

bugslnits 7

bugsInits Writing input for OpenBUGS

Description

Write files containing inits.

Usage
bugsInits (inits, numChains = 1, fileName, digits = 5)
Arguments
inits a list with n. chains elements; each element of the list is itself a list of start-
ing values for the OpenBUGS model, or a function creating (possibly random)
initial values
numChains number of Markov chains
fileName the filename(s), one for each chain. Defaults to ‘inits1.txt’, ..., ‘initsN.txt” in the
current working directory.
digits number of significant digits used for OpenBUGS input, see formatC
Value

Invisibly returns the £ileName(s).

See Also

BRugs

buildMCMC Generating memc.list objects for package coda

Description

This functions reads samples from OpenBUGS and converts the results into an object of class
mcmc.list that can directly be used by package coda for further analysis.

Usage

buildMCMC (node, beg = samplesGetBeg (), end = samplesGetEnd(),
firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain(), thin = samplesGetThin())

Arguments
node Character vector of length 1, name of a variable in the model.
beg, end Arguments to select a slice of monitored values corresponding to iterations

beg:end.
firstChain, lastChain
Arguments to select a sub group of chains.

thin To only use every thin-th value of the stored sample.

8 dic

Details

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].Astar ‘%’ can be entered as shorthand for all the stored samples.

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Value

An object of class mcmc . 11st which is a list containing mcmc objects.

See Also

mcmc.list, mcmc, BRugs, help.WinBUGS

currentValues Last sampled values

Description

This function returns the current (last sampled) values of a variable.

Usage

currentValues (nodelLabel)

Arguments

nodeLabel Character vector of length 1, name of a variable in the model.

Value

Vector of the current (last sampled) values of a variable.

See Also

setValues, BRugs, help.WinBUGS

dic DIC

Description

These functions are used to evaluate the Deviance Information Criterion.

Usage

dicSet ()
dicStats ()
dicClear ()

dic

Details

These functions are used to evaluate the Deviance Information Criterion (DIC; Spiegelhalter et al.,
2002) and related statistics - these can be used to assess model complexity and compare different
models. Most of the examples packaged with OpenBUGS contain an example of their usage.

It is important to note that DIC assumes the posterior mean to be a good estimate of the stochastic
parameters. If this is not so, say because of extreme skewness or even bimodality, then DIC may
not be appropriate. There are also circumstances, such as with mixture models, in which Open-
BUGS will not permit the calculation of DIC and so the menu option is greyed out. Please see
help.WinBUGS for restrictions.

Value

dicStats returns a data frame with columns:

Dbar

Dhat

pD

DIC

Note

The posterior mean of the deviance, which is exactly the same as if the node
‘deviance’ had been monitored. This deviance is defined as -2 * log(likelihood):
‘likelihood’ is defined as p(y | theta), where y comprises all stochastic nodes
given values (i.e. data), and theta comprises the stochastic parents of y - ‘stochas-
tic parents’ are the stochastic nodes upon which the distribution of y depends,
when collapsing over all logical relationships.

A point estimate of the deviance (-2 * log(likelihood)) obtained by substituting
in the posterior means theta.bar of theta: thus Dhat = -2 * log(p(y | theta.bar)).

The effective number of parameters is given by pD = Dbar - Dhat. Thus pD is
the posterior mean of the deviance minus the deviance of the posterior means.

The Deviance Information Criterion is given by DIC = Dbar + pD = Dhat + 2 *
pD. The model with the smallest DIC is estimated to be the model that would
best predict a replicate dataset of the same structure as that currently observed.

Users should ensure their simulation has converged before using these functions. If the MCMC
simulation has an adaptive phase it will not be possible to make inference using values sampled
before the end of this phase.

References

Spiegelhalter, D.J., Best, N.G., Carlin B.P., and van der Linde, A. (2002): Bayesian measures of
model complexity and fit (with discussion). J. Roy. Statist. Soc. B. 64, 583-640.

See Also

BRugs, help.WinBUGS

10 getObj

dimensions Dimension of BUGS variables

Description

This function is intended for internal use only.

Usage

dimensions (node)

Arguments

node Character vector of length 1, name of a variable in the model.

Value

Dimension of BUGS variable specified by node, if it is a non-scalar one, else NULL.

See Also

BRugs, help.WinBUGS

getObj Expert functions

Description

Getting class names of Component Pascal object

Usage

getGraphObj (node)
getUpdaterObj (node)

Arguments

node Character vector of length 1, name of a variable in the model.

Details

OpenBUGS creates Component Pascal objects to represent each component of a name in the graphial
model.

Value
getGraphObj returns a data frame of the class names of the Component Pascal object associated
with each component.

getUpdaterObj returns a data frame of the class names of the Component Pascal object for each
component of a variable that needs updating.

getChain

See Also

BRugs, help.WinBUGS

11

getChain Current chain to be initialized

Description

This function is intended for internal use only.

Usage

getChain ()

Value

Number of the chain to be initialized next.

See Also

BRugs, help.WinBUGS

getNumChains Number of chains

Description

This function returns the number of chains being simulated.

Usage

getNumChains ()

Value

Returns the number of chains from the current simulation.

See Also

BRugs, help.WinBUGS

12 loadModule

help.WinBUGS WinBUGS documentation

Description

Function that open the html version of the WinBUGS manual

Usage
help.WinBUGS (browser = getOption ("browser"))

Arguments

browser the name of the program to be used as hypertext browser. It should be in the

PATH, or a full path specified.

See Also

help.BRugs
Examples

Not run:
help.WinBUGS ()
End (Not run)

loadModule Load a module

Description

This function loads a module.

Usage

loadModule (module)

Arguments

module character, name of the module.

See Also

See mode1Modules for currently loaded modules. BRugs, help.WinBUGS

modelAdaptivePhase 13

modelAdaptivePhase Getting length of adaptive phase

Description

This function returns the length of the adaptive phase of the simulation.

Usage

modelAdaptivePhase ()

Value

This function returns the length of the adaptive phase of the simulation. This is only known after
the simulation has finished adapting. If this function is called while the simulation is still adapt-
ing MAX (INTEGER) is returned. If the simulation does not have an adaptive phase then zero is
returned.

Note

This function can be executed once the model has been compiled and initialized.

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

modelCheck Checking the model file

Description

This function parses a BUGS language description of the statistical model.

Usage

modelCheck (fileName)

Arguments

fileName file containing the BUGS language description of the statistical model.

Value

If a syntax error is detected the position of the error and a description of the error is printed, other-
wise the ‘model is syntaxicaly correct’ message is displayed.

14 modelCompile

Note
If an attempt is made to execute this function in an inappropriate context the generic error message

‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

modelCompile Compiling the model

Description

This function builds the data structures needed to carry out MCMC sampling.

Usage

modelCompile (numChains = 1)
Arguments

numChains Simulation is carried out for numChains chains.
Details

The model is checked for completeness and consistency with the data. A node called ‘deviance’
is automatically created which calculates minus twice the log-likelihood at each iteration, up to a
constant. This node can be used like any other node in the graphical model.

Value

When the model has been successfully compiled, ‘model compiled’ message should be printed.

Note

This command becomes active once the model has been successfully checked (see mode 1Check).

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

modelData 15

modelData Loading the data

Description

This function loads data into the statistical model.

Usage

modelData (fileName = "data.txt")
Arguments

fileName Filename(s) of file(s) containing the data in OpenBUGS format.
Value

If any syntax errors or data inconsistencies are detected an error message is displayed. Corrections
can be made to the data without returning to the ‘check model’ stage. When the data have been
loaded successfully the message ‘data loaded’ should appear.

Note

This function can be executed once a model has been successfully checked (see mode1Check), it
can no longer be executed once the model has been successfully compiled.

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

modelGenInits Generating initial values

Description
This function attempts to generate initial values by sampling either from the prior or from an ap-
proximation to the prior.

Usage

modelGenInits ()

Details

In the case of discrete variables a check is made that a configuration of zero probability is not
generated. This function will generate extreme values if any of the priors are very vague.

16 modellnits

Value

If the function is successful the message ‘initial values generated: model initialized’ is displayed
otherwise the message ‘could not generate initial values’ is displayed.

Note

This function can be executed once the model has been successfully compiled (modelCompile),
and can no longer be executed once the model has been initialized.

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

modelInits Loading initial values

Description

This function loads initial values for the MCMC simulation.

Usage

modelInits (fileName, chainNum = NULL)

Arguments
fileName Character vector of filenames containing the initial values in OpenBUGS format.
chainNum The initial values will be loaded for the chain number chainNum. By default
chainNum is one the first time mode1Inits is executed and incremented by
one after each call modula the number of chains numChains being simulated
(and restarts at 1 after that). If £i1eName is a vector, chainNum is increased
automatically by default after processing each file. If there is more than one file
containing initial values for one chain, either set chainNum explicitly, or wait
until cycle restarts at chain 1.
Details

This function checks that initial values are in the form of an appropriate R object or rectangular
array and that they are consistent with any previously loaded data. If some of the elements in an
array are known (say because they are constraints in a parameterisation), those elements should be
specified as missing (NA) in the initial values file.

Generally it is recommended to load initial values for all fixed effect nodes (founder nodes with no
parents) for all chains, initial values for random effects can be generated using the mode1GenInits
function.

modellteration 17

Value

Any syntax errors or inconsistencies in the initial value are displayed. If, after loading the initial
values, the model is fully initialized this will be reported by displaying the message ‘model initial-
ized’. Otherwise the message ‘initial values loaded but this or another chain contain uninitialized
variables’ will be displayed. The second message can have several meanings:

a) If only one chain is simulated it means that the chain contains some nodes that
have not been initialized yet.
b) If several chains are to be simulated it could mean (a) or that no initial values

have been loaded for one of the chains.

In either case further initial values can be loaded, or mode1GenInits can be executed to try and
generate initial values for all the uninitialized nodes in all the simulated chains.

Note

This function can be executed once the model has been successfully compiled. It can still be exe-
cuted once MCMC sampling has been started having the effect of starting the sampler out on a new
trajectory.

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

modelIteration Returns number of iterations

Description

This function returns the total number of iterations carried out divided by thin.

Usage

modelIteration ()

Value

This function returns the total number of iterations carried out divided by thin.

Note

This function can be executed once the model has been compiled and initialized.

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.

See Also

BRugs, help.WinBUGS

18 modelNames

modelModules Loaded modules

Description

Displays all the modules (dynamic link libraries) in use.

Usage

modelModules ()

Value

Dataframe containing information on all the modules (dynamic link libraries) in use.

See Also

BRugs, help.WinBUGS

modelNames Get variable names in model

Description

This function returns the names of variables contained in the current model.

Usage

modelNames ()

Value

Character vector of names of variables contained in the current model.

See Also

BRugs, help.WinBUGS

modelPrecision 19

modelPrecision Setting precision for prec figures

Description

This function sets the precision to which results are displayed to prec figures.

Usage

modelPrecision (prec)

Arguments

prec

Details

It does not affect the precision of any calculations!

See Also

BRugs, help.WinBUGS

modelSaveState Save the model’s current state

Description

This function saves the sate of each chain in OpenBUGS model

Usage

modelSaveState (stem)

Arguments

stem 27777,

Value

Note

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed. ???7??

See Also

BRugs, help.WinBUGS

20 modelSetAP

modelSeed Seed of Random Number Generator

Description

These functions set/return the seed of the random number generator.

Usage

modelSetSeed (newSeed)
modelGetSeed (i = 1)

Arguments
newSeed a positive, non zero (vector of) integer(s). More than one integer if the chosen
random number generator requires more seed components.
i indicates which component of the seed should be returned.
See Also

BRugs, help.WinBUGS

modelSetAP Changing settings of updating algorithms

Description

These functions change adaptivePhase, iterations, and overRelaxation settings.

Usage

modelSetAP (factoryName, adaptivePhase)
modelSetIts (factoryName, iterations)
modelSetOR (factoryName, overRelaxation)

Arguments

factoryName String defining which particular MCMC updating algorithm is to be tuned. Tech-
nically this string is the type name of the factory object used to create the up-
dater, for example ‘UpdaterMetnormal.Factory’ for the random walk metropolis
sampler.

adaptivePhase
length of the updater’s adaptive phase

iterations number of times an iterative algorithm is run before a failure is reported
overRelaxation
amount of over relaxation the updater uses

modelUpdate 21

Details

Once a model has been compiled, the various updating algorithms required in order to perform the
MCMC simulation may be ‘tuned’ somewhat via these three functions.

See Also

BRugs, help.WinBUGS

modelUpdate Updating the model

Description

This function updates the model.

Usage

modelUpdate (numUpdates, thin = 1, overRelax = FALSE)

Arguments

numUpdates This function updates the model by carryingout thin * numUpdates MCMC
iterations for each chain.

thin The samples from every kth iteration will be used for inference, where k is the
value of thin. Setting thin > 1 can help to reduce the autocorrelation in
the sample, but there is no real advantage in thinning except to reduce storage
requirements.

overRelax If overRelax is TRUE an over-relaxed form of MCMC (Neal, 1998) which
will be executed where possible. This generates multiple samples at each itera-
tion and then selects one that is negatively correlated with the current value. The
time per iteration will be increased, but the within-chain correlations should be
reduced and hence fewer iterations may be necessary. However, this method
is not always effective and should be used with caution. The auto-correlation
function may be used to check whether the mixing of the chain is improved.

Note

This function can be executed once the model has been compiled and initialized.

If an attempt is made to execute this function in an inappropriate context the generic error message
‘command is not allowed (greyed out)’ is displayed.
References

Neal, R. (1998): Suppressing random walks in Markov chain Monte Carlo using ordered over-

relaxation. In M.I. Jordan (Ed.): Learning in Graphical Models, Kluwer Academic Publishers, Dor-

drecht, 205-230. http://www.cs.utoronto.ca/~radford/publications.html
See Also

BRugs, help.WinBUGS

http://www.cs.utoronto.ca/~radford/publications.html

22 plotBgr

plotAutoC Plot autocorrelation function for a scalar variable

Description

This function plots the autocorrelation function of a scalar variable.

Usage

plotAutoC (node, plot = TRUE,
colour = c("red", "blue", "green", "yellow", "black"),

lwd = 5, main = NULL, ...)

Arguments
node Character, name of a scalar variable in the model.
plot Logical, whether to plot the ACF or only return the values. If TRUE, values are
returned invisibly.
colour Colours used to represent different chains.
lwd, main graphical parameters, see plot .default
Further graphical parameters as in par.
Details

Acts on a scalar variable. See the wrapper function samplesAutoC for more details.

Value

An acft object. See acf for details.

See Also

samplesAutoC, acf, BRugs, help.WinBUGS

plotBgr Plot the Gelman-Rubin convergence statistic for a scalar variable

Description

This function calculates and plots the Gelman-Rubin convergence statistic for a scalar variable, as
modified by Brooks and Gelman (1998).

Usage

plotBgr (node, plot = TRUE, main = NULL, xlab = "iteration",
ylab = "bgr", col = c("red", "blue", "green"), bins = 50,

-)

plotDensity 23

Arguments
node Character, name of a scalar variable in the model.
plot Logical, whether to plot the BGR statistics or only return the values. If TRUE,

values are returned invisibly.
main, xlab, ylab
annotation, see plot.default

col Colours, see Details Section in samplesBgr.
bins Number of blocks

Further graphical parameters as in par.

Details

Acts on a scalar variable. See the wrapper function samplesBgr for more details.

Value

Data frame with elements

Iteration end iteration of corresponding bin
pooledChain80pct)
80pct interval (normalized) of pooled chains
withinChain80pct
80pct interval (normalized) of mean within chain
bgrRatio BGR ratio
See Also

samplesBgr, BRugs, help.WinBUGS

plotDensity Plot density estimate or histogram of a scalar variable

Description

This function plots a smoothed kernel density estimate for a scalar variable if it is continuous or a
histogram if it is discrete.

Usage

plotDensity (node, main = NULL, xlab = "" , ylab = "", col = "red",
Arguments

node Character, name of a scalar variable in the model.

main, xlab, ylab, col
graphical parameters, see plot .default

Further graphical parameters as in par.

24 plotHistory

Details

Acts on a scalar variable. See the wrapper function samplesDensity for more details.

See Also

samplesDensity, BRugs, help.WinBUGS

plotHistory Trace of a scalar variable

Description

This function returns and plots a complete trace for a scalar variable.

Usage
plotHistory(node, plot = TRUE,
colour = c("red", "blue", "green", "yellow", "black"),
main = NULL, xlab = "iteration", ylab = "", ...)
Arguments
node Character, name of a scalar variable in the model.
plot Logical, whether to plot the trace or only return the values. If TRUE, values are

returned invisibly.

colour Colours used to represent different chains.

main, xlab, ylab
graphical parameters, see plot .default

Further graphical parameters as in par.

Details

Acts on a scalar variable. See the wrapper function samplesHistory for more details.

Value

A matrix containing samples of node, each row corresponds to one chain.

See Also

samplesHistory, BRugs, help.WinBUGS

ranks 25

ranks Calculation of ranks

Description

These functions are used to calculate ranks of vector valued quantities in the model.

Usage

ranksSet (node)
ranksStats (node)
ranksClear (node)

Arguments

node Character, name of a vector (one dimensional array) variable in the model.

Details

ranksSet creates a monitor that starts building running histograms to represent the rank of each
component of node. An amount of storage proportional to the square of the number of components
of node is allocated. Even for large numbers of components this can require less storage than
calculating the ranks explicitly in the model specification and storing their samples, and it is also
much quicker.

ranksStats displays summarises of the distribution of the ranks of each component of node.

ranksClear removes the monitor calculating running histograms for node.

Value
ranksStats returns a data frame with columns:
val2.5pc 0.025 quantiles

median medians

val97.5pc 0.975 quantiles

Note

Users should ensure their simulation has converged before using these functions. Note that if the
MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

See Also

BRugs, help.WinBUGS

26

samplesAutoC

rats

ratsdata example

Description

ratsdata example

Usage

data (ratsdata)
data(ratsinits)

Format

The list rat sdata contains data originally taken from section 6 of Gelfand and Smith (1990).

Source

A. Gelfand and A. Smith (1990): Sampling-based Approaches to Calculating Marginal Densities.
Journal of the American Statistical Association, 85, 398-409.

samplesAutoC

Plot autocorrelation function

Description

This function calculates and plots the autocorrelation function of a variable.

Usage

samplesAutoC (node, chain, beg = samplesGetBeg(),
end = samplesGetEnd (), thin = samplesGetThin(), plot = TRUE,

mfrow =

Arguments

node
chain

beg, end

thin
plot

mfrow, ask,

c(3, 2), ask

NULL, ann = TRUE, ...)

Character vector of length 1, name of a variable in the model.
Selects a chain to plot autocorrelation function for.

Arguments to select a slice of monitored values corresponding to iterations
beg:end.

To only use every thin-th value of the stored sample for statistics.

Logical, whether to plot the ACF or only return the values. If TRUE, values are
returned invisibly.

ann

Graphical parameters, see par for details. ask defaults to TRUE unless it is
plotting into an already opened non-interactive device.

Further graphical parameters as in par may also be passed as arguments to
plotAutoC.

samplesBgr 27

Details

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0:upper0
lowerl:upperl, ...].Astar ‘x’ can be entered as shorthand for all the stored samples.

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Value
A list containing acf objects - one for each scalar variable contained in argument node. See acft
for details on the list elements.

Note
If the MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

See Also

plotAutoC, acf, BRugs, help.WinBUGS

samplesBgr Plot the Gelman-Rubin convergence statistic

Description

This function calculates and plots the Gelman-Rubin convergence statistic, as modified by Brooks
and Gelman (1998).

Usage

samplesBgr (node, beg = samplesGetBeg (), end = samplesGetEnd(),
firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain (), thin samplesGetThin (),
bins = 50, plot = TRUE, mfrow = c(3, 2), ask = NULL,

ann = TRUE, ...)
Arguments
node Character vector of length 1, name of a variable in the model.
beg, end Arguments to select a slice of monitored values corresponding to iterations
beg:end.

firstChain, lastChain
Arguments to select a sub group of chains to calculate the Gelman-Rubin con-
vergence statistics for. Number of chains must be larger than one.

thin Only use every thin-th value of the stored sample for statistics.
bins Number of blocks
plot Logical, whether to plot the BGR statistics or only return the values. If TRUE,

values are returned invisibly.

mfrow, ask, ann
Graphical parameters, see par for details. ask defaults to TRUE unless it is
plotting into an already opened non-interactive device.
Further graphical parameters as in par may also be passed as arguments to
plotBgr.

28 samplesClear

Details

The width of the central 80% interval of the pooled runs is green, the average width of the 80%
intervals within the individual runs is blue, and their ratio R(= pooled/within) is red. For plotting
purposes the pooled and within interval widths are normalised to have an overall maximum of one.
The statistics are calculated in bins of length 50: R would generally be expected to be greater than
1 if the starting values are suitably over-dispersed. Brooks and Gelman (1998) emphasise that one
should be concerned both with convergence of R to 1, and with convergence of both the pooled and
within interval widths to stability.

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].Astar ‘x’ can be entered as shorthand for all the stored samples.

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Value

A list containing data frames - one for each scalar variable contained in argument node. Each data
frames contains elements

Iteration end iteration of corresponding bin
pooledChain80pct)
80pct interval (normalized) of pooled chains
withinChain80pct
80pct interval (normalized) of mean within chain
bgrRatio BGR ratio
Note

If the MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

References

Brooks, S.P. and Gelman A. (1998): Alternative Methods for Monitoring Convergence of Iterative
Simulations. Journal of Computational and Graphical Statistics, 7, 434-455.

See Also

plotBgr, BRugs, help.WinBUGS

samplesClear Clear recorded values

Description

This function is used to remove the stored values of a variable.

Usage

samplesClear (node)

samplesCoda 29

Arguments
node Character vector of length 1, name of a variable in the model.

Details
If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].Astar ‘+’ can be entered as shorthand for all the stored samples.

See Also

BRugs, help.WinBUGS

samplesCoda Writing files in CODA format

Description

This function writes files in CODA format to be processed or imported, e.g, by some other software.

Usage
samplesCoda (node, stem, beg = samplesGetBeg(),
end = samplesGetEnd (), firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain (), thin = samplesGetThin())
Arguments
node Character vector of length 1, name of a variable in the model.
stem The filestem of the CODA files to be generated. See details.
beg, end Arguments to select a slice of monitored values corresponding to iterations

beg:end.
firstChain, lastChain
Arguments to select a sub group of chains.

thin to only use every thin-th value of the stored sample.

Details
Example for argument stem: If stem = "c:/myFolder/foo", the resulting files are called
‘fooCODAchain1.txt’, ..., looCODAchainN.txt’, and ‘fooCODAindex.txt’. They are written

into the tempdir () and copied to the path ‘"c:/myFolder™.

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].

If the arguments are left at their defaults the whole sample for all chains will be used for output.

Value

Prints ‘CODA files written’.

30 samplesCorrel

Note

If the MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

See Also

BRugs, help.WinBUGS

samplesCorrel Correlation

Description

This function calculates the correlation matrix between two vectors of variables.

Usage
samplesCorrel (node0, nodel, beg = samplesGetBeg(),
end = samplesGetEnd (), firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain (), thin = samplesGetThin())

Arguments

node0, nodel Character vectors of length 1, name of variables in the model.

beg, end Arguments to select a slice of monitored values corresponding to iterations
beg:end.

firstChain, lastChain
Arguments to select a sub group of chains to calculate correlation(s) for.

thin to only use every thin-th value of the stored sample for statistics.

Details

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Value

Correlation matrix.

Note

If the MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

See Also

BRugs, help.WinBUGS

samplesDensity 31

samplesDensity Plot density estimate or histogram

Description

This function plots a smoothed kernel density estimate for a variable if it is continuous or a his-
togram if it is discrete.

Usage

samplesDensity (node, beg = samplesGetBeg (), end = samplesGetEnd(),
firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain(), thin = samplesGetThin(),

mfrow = c(3, 2), ask = NULL, ann TRUE, ...)
Arguments
node Character vector of length 1, name of a variable in the model.
beg, end Arguments to select a slice of monitored values corresponding to iterations

beg:end.
firstChain, lastChain

Arguments to select a sub group of chains to plot density estimate or histogram
for.

thin to only use every thin-th value of the stored sample for statistics.

mfrow, ask, ann
Graphical parameters, see par for details. ask defaults to TRUE unless it is
plotting into an already opened non-interactive device.

Further graphical parameters as in par may also be passed as arguments to
plotDensity.

Details

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].Astar ‘x’ canbe entered as shorthand for all the stored samples.

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Note

If the MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

See Also

BRugs, help.WinBUGS

32 samplesHistory

samplesGet Get settings used for calculations

Description

These low level functions can be used to get information on settings of begin, end, and thinning of
chains, as well as the number of the first/last chain of the stored sample.

Usage

samplesGetBeqg ()
samplesGetEnd ()
samplesGetThin ()
samplesGetFirstChain ()
samplesGetLastChain ()

Value

samplesGetBeg returns the first iteration of the stored sample used for calculating statistics.

samplesGetEnd returns the last iteration of the stored sample used for calculating statistics to
end.

samplesGetThin returns the thin parameter, see samplesSetThin.

samplesGetFirstChain returns the number of the first chain of the stored sample used for
calculating statistics.

samplesGetLastChain returns the number of the last chain of the stored sample used for
calculating statistics.

See Also

samplesSetBeg, BRugs, help.WinBUGS

samplesHistory Trace of a variable

Description

This function returns and plots a complete trace for a variable.

Usage

samplesHistory (node, beg = samplesGetBeg (), end = samplesGetEnd(),
firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain(), thin = samplesGetThin(),
plot = TRUE, mfrow = c(3, 1), ask = NULL, ann = TRUE, ...)

samplesMonitors 33

Arguments
node Character vector of length 1, name of a variable in the model.
beg, end Arguments to select a slice of monitored values corresponding to iterations

beg:end.
firstChain, lastChain
Arguments to select a sub group of chains to plot the trace for.

thin to only use every thin-th value of the stored sample for statistics.

plot Logical, whether to plot the trace or only return the values. If TRUE, values are
returned invisibly.

mfrow, ask, ann
Graphical parameters, see par for details. ask defaults to TRUE unless it is
plotting into an already opened non-interactive device.

Further graphical parameters as in par may also be passed as arguments to
plotHistory.

Details

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0: upper0
lowerl:upperl, ...].Astar ‘+’ can be entered as shorthand for all the stored samples.

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Value
A list containing matrices - one for each scalar variable contained in argument node. Each row of
a matrix corresponds to one chain.

See Also

plotHistory, BRugs, help.WinBUGS

samplesMonitors Names of monitored scalar variables

Description

This function returns names of monitored scalar variables.

Usage

samplesMonitors (node)

Arguments
node Character vector of length 1, name of a variable in the model, or simply ‘x’.
node can be a vector quantity with sub ranges given to indices (e.g. samplesMonitors ("node [
Value

A list of names that are monitored. If sampling a vector of parameters of node, all elements are
printed, e.g.: "node [beg]", ..., "nodel[end]".

34 samplesSet

See Also

BRugs, help.WinBUGS

samplesSample Stored values

Description

This function returns an array of stored values.

Usage

samplesSample (node)

Arguments

node Character vector of length 1, name of a variable in the model.

Value

Values of the stored sample.

Note

If sampling a vector of parameters, the function must be called for each parameter separately such
as samplesSample (node[1]).

See Also

BRugs, help.WinBUGS

samplesSet Start recording

Description

This function is used to start recording a chain of values for particular variables.

Usage

samplesSet (node)

Arguments

node Character vector of names of variables in the model.

Details

WinBUGS generally automatically sets up a logical node to measure a quantity known as deviance;
this may be accessed, in the same way as any other variable of interest, by typing its name, i.e.
“deviance”

samplesSetting 35

See Also

BRugs, help.WinBUGS

samplesSetting Change settings used for calculations

Description

These low level functions can be used to set begin, end, and thinning of chains as well as the first/last
chain of the stored sample.

Usage

samplesSetBeg (beglt)
samplesSetEnd (endIt)
samplesSetThin (thin)
samplesSetFirstChain (first)
samplesSetLastChain (last)

Arguments
begIt First iteration of the stored sample used for calculating statistics.
endIt Last iteration of the stored sample used for calculating statistics.
thin Every thin-th iteration of each chain is used to contribute to the statistics being

calculated.

first, last First/last chain of the stored sample used for calculating statistics.

Details

samplesSetBeg sets the first iteration of the stored sample used for calculating statistics to
beglIt.

samplesSetEnd sets the last iteration of the stored sample used for calculating statistics to
endIt.

samplesSetThin sets the numerical field used to select every thin-th iteration of each chain
to contribute to the statistics being calculated.

samplesSetFirstChain is used to set the first chain of the stored sample used for calculating
statistics to be first.

samplesSetLastChain is used to set the last chain of the stored sample used for calculating
statistics to be last.

Note

Note the difference between this and the thinning facility of the update function: when thinning via
the update function we are permanently discarding samples as the MCMC simulation runs, whereas
here we have already generated (and stored) a suitable number of (posterior) samples and may wish
to discard some of them only temporarily. Thus, setting thin > 1 here will not have any impact
on the storage (memory) requirements; if you wish to reduce the number of samples actually stored
(to free-up memory) you should thin via the update function.

36 samplesStats

See Also

BRugs, help.WinBUGS

samplesSize Size of the stored sample

Description

This function returns the size of the stored sample.

Usage

samplesSize (node)

Arguments

node Character vector of length 1, name of a variable in the model.

Value

Size of the stored sample. If no samples exist, -1 will be returned.

Note

If sampling a vector of parameters, the function must be called for each parameter separately such
as samplesSize (node[1]).

See Also

BRugs, help.WinBUGS

samplesStats Calculate summary statistics

Description

This function produces summary statistics for a variable, pooling over the chains selected.

Usage

samplesStats (node, beg = samplesGetBeg (), end = samplesGetEnd(),
firstChain = samplesGetFirstChain(),
lastChain = samplesGetLastChain (), thin = samplesGetThin())

samplesStats 37

Arguments
node Character vector containing names of variables in the model.
beg, end Arguments to select a slice of monitored values corresponding to iterations

beg:end.
firstChain, lastChain
Arguments to select a sub group of chains to calculate summary statistics for.

thin to only use every thin-th value of the stored sample for statistics.

Details

If the variable of interest is an array, slices of the array can be selected using the notation variable [lower0:upper0
lowerl:upperl, ...].Astar ‘x’ can be entered as shorthand for all the stored samples.

If the arguments are left at their defaults the whole sample for all chains will be used for calculation.

Value

samples.stats returns a data frame with columns:

mean means

sd standard deviations

MC_error Estimate of s/ \ﬂN), the Monte Carlo standard error of the mean. The batch
means method outlined by Roberts (1996; p.50) is used to estimate s.

val2.5pc 0.025 quantiles

median medians

val97.5pc 0.975 quantiles

start beg+1
sample sample sizes
Note

If the MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.
References

Roberts, G.O. (1996): Markov Chain Concepts Related to Sampling Algorithms. In: W.R. Gilks, S.
Richardson and D.J. Spiegelhalter (Eds.): Markov Chain Monte Carlo in Practice. Chapman and
Hall, London, UK.

See Also

BRugs, help.WinBUGS

38 summary

setValues Setting current values

Description

This function sets current values for a variable for future iterations.

Usage

setValues (nodeLabel, values)

Arguments
nodelLabel Character vector of length 1, name of a variable in the model.
values The values to be set, generated, e.g., by currentValues.
Details

currentValues of a model can be stored in order to be used as initial values.

Value

The number of values set.

See Also

currentValues, BRugs, help.WinBUGS

summary Summary of MCMC simulation

Description

These functions are used to calculate running means, standard deviations and quantiles.

Usage

summarySet (node)
summaryStats (node)
summaryClear (node)

Arguments

node Character vector containing names of a variables in the model.

write.datafile 39

Details

summarySet creates monitor(s) that starts recording the running totals for node.

summaryStats displays the running means, standard deviations, and 2.5%, 50% (median) and
97.5% quantiles for node. Note that these running quantiles are calculated via an approximate
algorithm and should therefore be used with caution.

summaryClear removes the monitor(s) calculating running totals for node.

These functions are less powerful and general than the samples functions (e.g., see samplesSet),
but they also require much less storage (an important consideration when many variables and/or
long runs are of interest).

Value

summaryStats returns a data frame with columns:

mean means
sd standard deviations
val2.5pc 0.025 quantiles
median medians

val97.5pc 0.975 quantiles

sample sample sizes

Note
Users should ensure their simulation has converged before using these functions. Note that if the
MCMC simulation has an adaptive phase it will not be possible to make inference using values
sampled before the end of this phase.

See Also

BRugs, help.WinBUGS

write.datafile Write data for OpenBUGS - intended for internal use only

Description

Write data in files that can be read by OpenBUGS - intended for internal use only

Usage

write.datafile (datalist, towhere, fill = TRUE)
formatdata (datalist)

Arguments
datalist a list to be written into an appropriate structure
towhere the name of the file which the data are to be written to

fill see cat, defaults to TRUE

40 write.datafile

Value
datalist.tofile
A structure appropriate to be read in by OpenBUGS.
See Also

The main functions to be called by the user are bugsData and bugsInits.

Index

*Topic 10
samplesCoda, 28

*Topic datasets
rats, 25

xTopic documentation
BRugs, 1
help.WinBUGS, 11

+Topic file
bugsData, 5
bugsInits, 6
samplesCoda, 28

*Topic hplot
plotAutoC, 21
plotBgr, 21
plotDensity, 22
plotHistory, 23
samplesAutoC, 25
samplesBgr, 26
samplesDensity, 30
samplesHistory, 31

+Topic interface
BRugs, 1
BRugsFit, 3
buffer, 5
buildMCMC, 6
currentValues, 7
dic,7
dimensions, 9
getChain, 10
getNumChains, 10
get0bij, 9
loadModule, 11

modelAdaptivePhase, 12

modelCheck, 12
modelCompile, 13
modelData, 14
modelGenInits, 14
modelInits, 15
modelIteration, 16
modelModules, 17
modelNames, 17
modelPrecision, 18
modelSaveState, 18

41

modelSeed, 19
modelSetAP, 19
modelUpdate, 20
plotAutoC, 21
plotBgr, 21
plotDensity, 22
plotHistory, 23
ranks, 24
samplesAutoC, 25
samplesBgr, 26
samplesClear, 27
samplesCoda, 28
samplesCorrel, 29
samplesDensity, 30
samplesGet, 31
samplesHistory, 31
samplesMonitors, 32
samplesSample, 33
samplesSet, 33
samplesSetting, 34
samplesSize, 35
samplesStats, 35
setValues, 37
summary, 37

xTopic internal
bgrPoint, 4
buffer,5
dimensions, 9
getChain, 10
write.datafile, 38

*Topic univar
samplesCorrel, 29
samplesStats, 35

act, 21, 26

bgrGrid (bgrPoint), 4
bgrPoint, 4
BRugs, 1, 4-24, 26-38
BRugsFit, 2,3
buffer, 5
bugsData, 5, 39
bugsInits, 6,39
buildMCMC, 6

42

cat, 38
currentValues, 7,37

dic,7

dicClear (dic),7
dicSet (dic),7
dicStats, 4
dicStats (dic),7
dimensions, 9

formatC, 4-6
formatdata (write.datafile), 38

getChain, 10
getGraphObj (getObj), 9
getNumChains, 10
getObij, 9

getUpdaterObj (getObj), 9

help.BRugs, I/

help.BRugs (BRugs), 1

help.WinBUGS, 2,4, 5, 7-10, 11, 11-24,
26-38

loadModule, 11

mcme, 7

mcmc.list,”7
modelAdaptivePhase, 12
modelCheck, 12, 13, 14, 18
modelCompile, 13, 15
modelData, 14
modelGenInits, 14, 15, 16
modelGetSeed (modelSeed), 19
modelInits, 15
modelIteration, 16
modelModules, 11, 17
modelNames, 17
modelPrecision, 18
modelSaveState, 18
modelSeed, 19

modelSetAP, 19

modelSetIts (modelSetAP), 19
modelSetOR (modelSetAP), 19
modelSetSeed (modelSeed), 19
modelUpdate, 20

par, 21-23, 25, 26, 30, 32
plot.default, 21-23
plotAutocC, 21, 25, 26
plotBgr, 4, 21, 26, 27
plotDensity, 22, 30
plotHistory, 23, 32

INDEX

ranks, 24

ranksClear (ranks), 24
ranksSet (ranks), 24
ranksStats (ranks), 24
rats, 25

ratsdata (rats), 25
ratsinits (rats), 25

samplesAutocC, 21, 25
samplesBgr, 4, 22, 26
samplesClear, 27
samplesCoda, 28
samplesCorrel, 29
samplesDensity, 23, 30
samplesGet, 31
samplesGetBeg (samplesGet), 31
samplesGetEnd (samplesGet), 31
samplesGetFirstChain
(samplesGet), 31
samplesGetLastChain (samplesGet),
31
samplesGetThin (samplesGet), 31
samplesHistory, 23, 31
samplesMonitors, 32
samplesSample, 33
samplesSet, 33, 38
samplesSetBeg, 31
samplesSetBeqg (samplesSetting), 34
samplesSetEnd (samplesSetting), 34
samplesSetFirstChain
(samplesSetting), 34
samplesSetLastChain
(samplesSetting), 34
samplesSetThin, 3/
samplesSetThin (samplesSetting),
34
samplesSetting, 34
samplesSize, 35
samplesStats, 4, 35
setValues, 7, 37
summary, 37
summaryClear (summary), 37
summarySet (summary), 37
summaryStats (summary), 37

write.datafile, 38

	BRugs
	BRugsFit
	bgrPoint
	buffer
	bugsData
	bugsInits
	buildMCMC
	currentValues
	dic
	dimensions
	getObj
	getChain
	getNumChains
	help.WinBUGS
	loadModule
	modelAdaptivePhase
	modelCheck
	modelCompile
	modelData
	modelGenInits
	modelInits
	modelIteration
	modelModules
	modelNames
	modelPrecision
	modelSaveState
	modelSeed
	modelSetAP
	modelUpdate
	plotAutoC
	plotBgr
	plotDensity
	plotHistory
	ranks
	rats
	samplesAutoC
	samplesBgr
	samplesClear
	samplesCoda
	samplesCorrel
	samplesDensity
	samplesGet
	samplesHistory
	samplesMonitors
	samplesSample
	samplesSet
	samplesSetting
	samplesSize
	samplesStats
	setValues
	summary
	write.datafile
	Index

