#State-space surplus production model for albacore tuna with lognormal errors #Process equation extended for prediction ############################################################################# model StateSpaceTuna; { ######distribution of I's##### for (i in 1:N) { Imean[i] <- log(Q*P[i]); I[i] ~ dlnorm(Imean[i],itau2);} ######distribution of P's###### Pmean[1] <- 0; P[1] ~ dlnorm(Pmean[1],isigma2)I(0.5,2.0) for(i in 2:N) { Pmean[i] <- log(max(P[i-1] + r*P[i-1]*(1-P[i-1]) - k*C[i-1],0.01)); P[i] ~ dlnorm(Pmean[i],isigma2); } #####Prediction: M-year extension to process equation##### for(i in (N+1):(N+M)) { Pmean[i] <- log(max(P[i-1] + r*P[i-1]*(1-P[i-1]) - k*TAC,0.01)); P[i] ~ dlnorm(Pmean[i],isigma2); } collapse <- 1-step(P[N+M]-0.1) #Here, collapse defined as less than 10% of virgin #####Prior on r###### #Lognormal prior corresponding to 10% and 90% of r at 0.13 and 0.48 r~dlnorm(-1.38,3.845); #####Prior on k###### #Lognormal prior corresponding to 10% and 90% of k at 1/300 and 1/80 k ~ dlnorm(-5.042905,3.7603664); K <- 1/k; #####Prior on Q##### iq ~ dgamma(0.001,0.001); q <- 1/iq; Q <- q*K; #######Priors on isigma2 and itau2##### a0<-3.785518; b0<-0.010223; c0<-1.708603; d0<-0.008613854; isigma2 ~ dgamma(a0,b0); itau2 ~ dgamma(c0,d0); Sigma2<-1/isigma2; Tau2<-1/itau2; #Parameters to monitor Pars[1]<-K; Pars[2]<-r; Pars[3]<-Sigma2; Pars[4]<-q; Pars[5]<-Tau2 }