#State-space surplus production model for albacore tuna with lognormal errors ############################################################################# model StateSpaceTuna; { ######distribution of I's##### for (i in 1:N) { Imean[i] <- log(Q*P[i]); I[i] ~ dlnorm(Imean[i],itau2);} ######distribution of P's###### Pmean[1] <- 0; P[1] ~ dlnorm(Pmean[1],isigma2)I(0.5,2.0) B[1] <- P[1]*K for (i in 2:(N+M)) { Pmean[i] <- log(max(P[i-1] + r*P[i-1]*(1-P[i-1]) - k*C[i-1],0.01)); P[i] ~ dlnorm(Pmean[i],isigma2); B[i] <- P[i]*K } #####Prior on r###### #Lognormal prior corresponding to 10% and 90% of r at 0.13 and 0.48 r~dlnorm(-1.38,3.845); #####Prior on k###### #Lognormal prior corresponding to 10% and 90% of k at 1/300 and 1/80 k ~ dlnorm(-5.042905,3.7603664); K <- 1/k; #####Prior on Q##### iq ~ dgamma(0.001,0.001); q <- 1/iq; Q <- q*K; #######Priors on isigma2 and itau2##### a0<-3.785518; b0<-0.010223; c0<-1.708603; d0<-0.008613854; isigma2 ~ dgamma(a0,b0); itau2 ~ dgamma(c0,d0); Sigma2<-1/isigma2; Tau2<-1/itau2; MSP <- r*K/4 #Parameters to monitor Pars[1]<-K; Pars[2]<-r; Pars[3]<-Sigma2; Pars[4]<-q; Pars[5]<-Tau2; Pars[6]<-MSP } list(N=23, M=10, C=c(15.9, 25.7, 28.5, 23.7, 25.0, 33.3, 28.2, 19.7, 17.5, 19.3, 21.6, 23.1, 22.5, 22.5, 23.6, 29.1, 14.4, 13.2, 28.4, 34.6, 37.5, 25.9, 25.3, 19,19,19,19,19,19,19,19,19,19), I=c(61.89, 78.98, 55.59, 44.61, 56.89, 38.27, 33.84, 36.13, 41.95, 36.63, 36.33, 38.82, 34.32, 37.64, 34.01, 32.16, 26.88, 36.61, 30.07, 30.75, 23.36, 22.36, 21.91)) list(P=c(0.99,0.98,0.96,0.94,0.92,0.90,0.88,0.86,0.84,0.82,0.80,0.78,0.76,0.74, 0.72,0.70,0.68,0.66,0.64,0.62,0.60,0.58,0.56,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), r=0.8, k=0.005, iq=5, isigma2=100, itau2=100) list(r=0.2, k=0.01, iq=3, isigma2=1000, itau2=1000)