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SUMMARY

State-space modeling and Bayesian analysis are both active areas of applied research in

fisheries stock assessment. Combining these two methodologies facilitates the fitting of

state-space models that may be nonlinear and have non-normal errors, and hence it is

particularly useful for the modeling of fisheries dynamics. Here, this approach is demon-

strated by fitting a non-linear surplus production model to data on South Atlantic albacore

tuna (Thunnus alalunga), The state-space approach allows for random variability in both

the data (measurement of relative biomass) and in annual biomass dynamics of the tuna

stock. Sampling from the joint posterior distribution of the unobservables was achieved

using Metropolis-Hastings within Gibbs sampling.
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1 Introduction

Bayesian methodology and state-space modeling have both been prominent in the

recent fisheries literature (e.g., Sullivan, 1992; Pella, 1993; Hilborn et al., 1994; McAl-

lister et al., 1994; Schnute, 1994; Walters and Ludwig, 1994; Reed and Simons, 1996;

Kinas, 1996; Punt and Hilborn, 1997) and these two approaches are regarded by some

as the future for stock assessment methodology (e.g., Hilborn, 1992; Kimura et al.,

1996).

The Bayesian approach to fisheries stock assessment is promoted as a natural way

to portray uncertainty about key population parameters, and to express the risks asso-

ciated with alternative management decisions (e.g., Hilborn, 1992). Moreover, it also

permits knowledge about other populations of the same (or similar) species to be incor-

porated as prior knowledge. This is viewed by many fisheries scientists as a coherent

way to utilize the vast amount of existing information that is held in fisheries databases

throughout the world (e.g., Liermann and Hilborn, 1997; Hilborn and Liermann, 1998;

Myers et al., in press).

In the context of fisheries population dynamics, the state-space paradigm explicitly

models the randomness in both the dynamics of the population and in the observations

made on the population. Depending on the type of data collected, the relevant state of

the population will typically be the total biomass of all fish above the minimum legal

size, or the biomass (or numbers) of fish at a range of age- or length-classes. In the

former case, the state equation might specify the biomass in the following year as a

function of the current biomass, additions due to fish growth and recruitment of new
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individuals to the minimum legal size, and removals from fishing or natural mortality.

The observed variable would often be a relative measure of biomass obtained from

catch rates of commercial and/or research fishing.

The majority of fisheries population models in current use are observation-error

models (Hilborn and Walters, 1992; Polacheck et al., 1993), that is, they model only

random error in the observations and assume that the state equation is deterministic.

With this assumption, the entire history of the states of the fishery are found determin-

istically from specification of the parameters of the state equation and of the state of

the population at the onset of fishing. It is then straightforward to specify a likelihood

for the observed data. Some fisheries modelers have also considered process-error mod-

els (e.g., Breen, 1991) in which random error in the state equation is modeled, but the

observations are assumed to be deterministic given the states. The general consensus

appears to be that if only one of these sources of randomness can be modeled then

observation-error models are preferable (Hilborn and Walters, 1992; Polacheck et al.,

1993).

The Kalman filter (Kalman, 1960) has recently been used to incorporate both obser-

vation and process error in likelihood-based models of catch-at-length (Sullivan, 1992),

catch-at-age (Schnute, 1994), delay-difference biomass (Kimura et al., 1996), and spe-

cial cases where linear biomass dynamics could be posed (Freeman and Kirkwood,

1995; Reed and Simons, 1996). A number of these authors have acknowledged that

use of the Kalman filter sacrifices some realism by requiring the state and observation

equations to be linear and the errors to be normally distributed. The extended Kalman

filter uses linear approximation to fit nonlinear state-space models, and has been used
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by Pella (1993) to model total biomass, and by Gudmundsson (1994, 1995) to model

catch-at-age and catch-at-length data. A common conclusion of these authors is that

it is difficult to obtain reliable maximum likelihood estimates of the process error and

observation error variances, and it is usual to include additional information into the

model by taking the ratio of these variances to be known.

Penalized likelihood has been used (e.g., Ludwig et al., 1988; Schnute, 1994; Richards

and Schnute, 1998) as an alternative to the Kalman filter. This approach treats process

errors as fixed parameters to be estimated, and hence fitting of the model reduces to a

conceptually simple maximization problem because the likelihood for the observables

is easily determined for any specified values of the model parameters and process er-

rors. This methodology has the advantage of being very generally applicable, but the

disadvantage of undesirable properties under common circumstances. For example, in

the context of using penalized likelihood to fit generalized linear mixed models, the

estimates of fixed effects are not consistent when there are limited data per random

effect (which is typically the case), and asymptotic bias correction formula have been

provided by Lin and Breslow (1996)

This paper combines the Bayesian and state-space techniques for purposes of stock

assessment and demonstrates that nonlinear equations and non-normal errors are easily

accommodated. It generalizes the approach of Carlin et al. (1992) by using Metropolis-

Hastings within Gibbs sampling (Gilks, 1996) to sample from arbitrary full conditional

densities. The example uses a Schaefer surplus production model (Schaefer, 1954;

Ricker, 1975). This model is conceptually simple and has a state equation that is

nonlinear with respect to two biologically interpretable parameters. Moreover, it is
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very commonly used in fisheries stock assessment worldwide.

2 Surplus Production Model

In the surplus production model, the (deterministic) state equation for total biomass

is

By = By−1 + g(By−1)− Cy−1 , (1)

where By is biomass at the start of year y, Cy is catch during year y, and the surplus

production function, g(B), quantifies the overall change in biomass due to growth,

recruitment, and natural mortality (Ricker, 1975). If year 1 is the year in which fishing

commenced then it is usual to assume B1 = K, where B1 is virgin biomass and K is

the carrying capacity of the stock habitat.

Carrying capacity is assumed to be the level at which additions due to growth and

recruitment are balanced by removals due to natural mortality, that is, g(K) = 0.

Surplus production is assumed to be positive at stock levels below K because this

enables the biomass to rebuild (in the absence of fishing) toward its carrying capacity.

The (deterministic) observation equation is typically

Iy = qBy , (2)

where Iy is a relative biomass index, and q is the “catchability coefficient”. In practice,

this index is often catch-per-unit-effort (CPUE) calculated as the total catch divided

by total fishing effort. It may be calculated from commercial fishing data or from

research surveys.

In a recent critique, Polacheck et al. (1993) compared three popular methods for
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fitting the model defined by equations (??) and (??). None of these methods allowed

for random error in both equations, but they did include the process-error model (er-

ror in equation (??) only) and observation-error model (error in equation (??) only).

Polacheck et al. (1993) used the simple quadratic form of surplus production proposed

by Schaefer (1954),

g(By) = rBy

(
1− By

K

)
. (3)

The unknowns, r (intrinsic growth rate of population) and K (carrying capacity),

are of immediate relevance to fisheries managers. For example, the maximum surplus

production (MSP) of rK/4 occurs when B = K/2. When the biomass indices are

CPUE’s from commercial fishing then the Schaefer surplus production model can be

used to determine optimal effort (Eopt), defined to be the level of commercial fishing

effort (e.g. number of hooks to be deployed) required to harvest MSP when B = K/2.

From equation (??), MSP/Eopt = qK/2, giving Eopt = r/2q.

Surplus production models require only time series of catches and relative biomass

indices and hence are widely used in fisheries assessment. When additional knowledge

about the stock dynamics (e.g., growth of individuals, mortalities, fecundity, recruit-

ment) is available, or when more complete data are obtained (e.g. catch-at-age), then

a more complex model could be considered.

State-space version

Suggested error structures for the state and observation equations include additive

normal with fixed variance, additive normal with fixed coefficient of variation (CV),

and multiplicative lognormal error (Polacheck et al., 1993). When such analyses are
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not restricted by computational considerations, fisheries modelers tend to choose mul-

tiplicative lognormal errors. (For example, Kimura et al. (1996) used lognormal errors

in an observation-error analysis, but switched to normal errors to implement a Kalman

filter analysis of the same data.) Multiplicative lognormal error is assumed here. Us-

ing the Schaefer surplus production model (equation (??)), the stochastic form of the

process equations (??) can be written

log(B1)|K, σ2 = log(K) + u1

log(By)|By−1, K, r, σ
2 = log(By−1 + rBy−1(1−By−1/K)− Cy−1) + uy , (4)

y = 2, 3, ...

and the stochastic form of the observation equations (??) is

log(Iy)|By, q, τ
2 = log(q) + log(By) + vy , y = 1, 2, ... (5)

where the uy’s and vy’s are iid N(0, σ2) and iid N(0, τ2) random variables, respectively.

3 Application to South Atlantic Albacore Tuna

The above model was applied to the South Atlantic albacore tuna (Thunnus alalunga)

data (Table 1) analysed in Polacheck et al. (1993). The biomass index is catch-per-

unit-effort measured as kg of tuna caught per 100 hooks deployed.

Specification of priors

The unobservables are (K, r, σ2, q, τ2, B1967, ..., B1989). It is enough to specify the

prior on (K, r, σ2, q, τ2) because the joint prior for (K, r, σ2, q, τ2, B1967, ..., B1989) is then

determined using the specification of the conditional distributions in equation (??) (see

Appendix).
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With regard to specification of priors for Bayesian stock assessment, the prevailing

recommendation (e.g., Walters and Ludwig, 1994; Punt and Hilborn, 1997; Hilborn

and Liermann, 1998) is to use non-informative priors except when informative priors

can be obtained by formal means. Indeed, considerable effort is now focused on using

hierarchical models to obtain formal prior distributions for certain key population pa-

rameters (e.g., Liermann and Hilborn, 1997; Myers et al., 1997; Myers et al., in press).

Not all parameters are equally amenable to this approach. For example, biologically

meaningful parameters such as r (intrinsic growth rate of the population) could be

assumed exchangeable over various stocks of the same species or family (Gelman et al.,

1995). However, quantities such as K (carrying capacity) will depend on stock-specific

covariates such as habitat range.

Here, a prior distribution for r was obtained from hierarchical modeling using twelve

other tuna stocks (see Myers et al.(in press) for details of this methodology). Work is

currently proposed to obtain formal prior distributions for other population parameters

such as K and σ2 (Ransom Myers, pers. comm.). In the meantime, the first model

herein uses weakly informative priors for K and σ2 that were informally derived from

existing information and are described below. The sensitivity to these two priors is

examined and reported in the Results section.

Prior for carrying capacity, K

Punt et al. (1995) applied a Bayesian analysis of an (observation error) age-structured

model to this stock, and specified a Uniform[80,300] prior on the carrying capacity K

(in 1000s t). However, this was not a good choice and indeed, Walters and Ludwig

(1994) warned against using uniform prior distributions on finite intervals if it assigns
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zero prior probability to feasible values of the unknown. Punt and Hilborn (1997) sub-

sequently supported this recommendation. For application here, the values of 80 and

300 were therefore taken to express an interval of (moderately) high prior probability

for K, and were taken to be the 10 and 90 percentile points (respectively) of a lognor-

mal distribution. These percentiles equate to a lognormal random variable with mean

and standard deviation of 5.04 and 0.516 (respectively) on the log scale.

Prior for intrinsic growth rate of population, r

The hierarchical analysis of Myers et al. (in press) induces a lognormal prior for r

with mean of -1.38 and standard deviation of 0.51. These correspond to 10 and 90

percentiles for r of 0.13 and 0.48, respectively.

Prior for process error variance, σ2

Much of the process variability will arise from recruitment variability. Examination of

recruitment data on South Pacific albacore for the years 1959 to 1990 (available from

http://www.mscs.dal.ca/∼myers/welcome.html) gave a CV of 0.34 on recruitment at age

3. These age-3 fish correspond to approximately 12% of the overall biomass (calculated

using the growth curve and natural mortality specified in Punt et al. (1995)), giving

a CV of 0.04 on total biomass due to recruitment variability alone. To allow for the

additional variability of natural mortality and growth rates, the upper bound on CV

was taken to be twice this, 0.08. The values 0.04 and 0.08 were taken to be the bounds

on an interval of (moderately) high prior probability for the coefficient of variation,

and an inverse gamma prior on σ2 was specified such that the 10 and 90 percentiles on

coefficient of variation were 0.04 and 0.08 respectively.

Prior for catchability, q
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A uniform prior was chosen for log(q). The quantity log(q) acts as an intercept term

in equation (??) and hence this can be considered a non-informative prior (Kass and

Wasserman, 1996). This prior for q has previously been used by McAllister et al.

(1994), Walters and Ludwig (1994), and Punt et al. (1995).

Prior for observation error variance, τ2

In practice, the observed CPUE will typically be obtained from analysing the log-books

of selected fishing vessels, and hence knowledge of the magnitude of sampling variabil-

ity can be deduced. These log-book data were not available for this analysis, and so

for purposes of this example a CV on CPUE of around 10% was used. Specifically,

an inverse gamma prior on τ2 was specified such that the 10 and 90 percentiles on

coefficient of variation were 0.05 and 0.15 respectively.

Joint prior for (K, r, σ2, q, τ2)

Punt and Hilborn (1997) use biological considerations to argue that the priors on K

and r can reasonably be assumed independent, and moreover, Walters and Ludwig

(1994) and Kinas (1996) use mutually independent priors on K, r, q and any variance

parameters. This practice is followed here, and using π(·) to denote prior densities, the

joint prior is taken to be π(K, r, σ2, q, τ2) = π(K)π(r)π(σ2)π(q)π(τ2).

Sampling from the posterior using Metropolis-Hastings within Gibbs sam-

pling

The Gibbs sampler (Gelfand and Smith, 1990) is a numerical technique for sampling

from the joint posterior distribution, f(θ1, θ2, ..., θn|x), where θ = (θ1, θ2, ..., θn) are the
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unknowns and x denotes the observables. Given a starting vector θ(0) = (θ
(0)
1 , . . . , θ(0)

n )

the Gibbs sampler proceeds by sampling from the univariate full-conditional posteriors

as follows

simulate θ(1)
1 ∼ f(θ1|θ(0)

2 , . . . , θ(0)
n ,x)

simulate θ
(1)
2 ∼ f(θ2|θ(1)

1 , θ
(0)
3 , . . . , θ(0)

n ,x)

...

simulate θ(1)
n ∼ f(θn|θ(1)

1 . . . , θ
(1)
n−1,x)

and yields θ(m) = (θ
(m)
1 , . . . , θ(m)

n ) after m such cycles. This defines a Markov chain with

transition kernel k(θ(m+1),θ(m)) =
∏n
i=1 f(θ

(m+1)
i |θ(m+1)

1 , . . . , θ
(m+1)
i−1 , θ

(m)
i+1 , . . . , θ

(m)
n ,x),

that, under mild conditions, converges to the joint posterior as its equilibrium distri-

bution (see Gilks et al., 1996). More generally, it is enough to just sample each full

conditional using a Metropolis-Hastings step (Gilks, 1996) which is convenient if the

full conditionals are of non-standard form. This technique is known as Metropolis-

Hastings within Gibbs (MH-Gibbs) sampling, or alternatively, as single-component

Metropolis-Hastings.

With the state-space implementation of the Schaefer surplus production model

defined in equations (??) and (??) the MH-Gibbs sampler exhibited extremely slow

mixing (see Gilks and Roberts, 1996). The performance of the Gibbs sampler is highly

dependent upon the parameterization of the model and there are known to be compu-

tational difficulties (see Results section) with the parameterization in (??) and (??).

After some experimenting with different parameterizations it was found that the prob-

lem of slow mixing was eliminated by using the states Py = By/K rather than By.
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These new states are the ratio of biomass to carrying capacity, and upon replacing By

by KPy the state equations become

log(P1967)|σ2 = u1967

log(Py)|Py−1, K, r, σ
2 = log(Py−1 + rPy−1(1− Py−1)− Cy−1/K) + uy , (6)

for y = 1968, ..., 1989, and the observation equations become

log(Iy)|Py, Q, τ2 = log(Q) + log(Py) + vy , y = 1967, ..., 1989, (7)

where Q = qK.

The full-conditional posterior distributions for this model are given in the Appendix.

Some of these distributions are not of standard form, and hence the need for the

Metropolis-Hastings step within Gibbs sampling. For this purpose we used adaptive

rejection Metropolis sampling, ARMS (Gilks et al., 1995; Gilks and Neal, 1997). A

subroutine written in the programming language C is available from Gilks et al. (1995).

Two main runs of 250 000 iterations of the MH-Gibbs sampler were performed, using

as starting values the observation-error model and process-error model fits of Polacheck

et al. (1993), respectively. Each run took approximately 75 min. on a 233MHz PC.

Output was produced at the rate of almost 1MB per minute and hence, to keep the

resulting computer files at a manageable size, a thinning of 25 was used. That is, only

every 25th sample was saved, resulting in 10 000 samples from each run being written

to disc.

For each of the two main runs, the CODA software of Best et al. (1995) was used to

produce convergence diagnostics for the eight unobservables K, r, σ2, Q, τ2, B1989, MSP,
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and Eopt. Fifteen of these 16 sequences passed the stationarity test of Heidelberger and

Welch (1983). The sole exception passed the second phase of the Heidelberger and

Welch test, that is, with the first 10% (1000) of the samples removed. In what follows,

the first 1000 thinned iterations of the MH-Gibbs sampler were considered as burn-in

and are subsequently ignored, reducing the sequences to a length of 9000. (Several

lesser runs were also used to note any problems with burn-in, none were observed.)

Two-sample Kolmogorov-Smirnov tests were applied to the eight pairs of sequences

to determine whether the two main runs were sampling the same distribution. (This

test is approximate due to lack of independence within each sequence, however, lag 1

autocorrelation did not exceed 0.08 in magnitude for any of the sixteen sequences.) All

had p-value>0.1, and consequently, the two main runs were considered to be equivalent

to one run of length 18000.

Posterior predictive checks (Gelman et al., 1995) were conducted to assess whether

discrepancies between the observed CPUE and posterior model were accordant with

predicted discrepancies. This required sampling from the posterior predictive distribu-

tion for CPUE, which was easily accomplished by randomly generating a new sequence

of CPUE’s (equation (??)) for each of the 18000 values sampled from the joint posterior

distribution of θ = (K, r, σ2, Q, τ2,P1967, ..., P1989). Discrepancies, which may be func-

tions of both observables and unobservables, were then calculated using the observed

CPUE’s (Table 1) and using the randomly generated CPUE’s. Gelman et al. (1996)

recommend using several different discrepancies, which might be a mixture of problem

specific and omnibus measures of model discrepancy. The first three discrepancies be-

low can be considered specific to the example herein, and the fourth is the omnibus
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chi-square measure.

Denoting sample i from the posterior by θ(i), i = 1, . . . , 18000, the corresponding

generated CPUE sequence by I(i), and the actual observed CPUE sequence (Table 1)

by I, the following discrepancies were calculated:

1. Auto-correlation: T1(I,θ(i)) and T1(I(i),θ(i)) where

T1(I,θ) =
y=1989∑
y=1968

vy−1vy
21τ2

,

where vy = log(Iy)− log(QPy) is the observation error in equation (??).

2. Constant variance: T2(I,θ(i)) and T2(I(i),θ(i)) where T2(I,θ) is the Spearman

rank-order correlation coefficient to test for an association between the predicted

value, log(QPy) and the observation error, vy.

3. Normality: T3(I,θ(i)) and T3(I(i),θ(i)) where T3(I,θ) is the Kolmogorov-Smirnov

statistic for the test of normality

H0 : log(Iy) ∼ N(log(QPy), τ
2), y = 1967, . . . , 1989.

4. Chi-square goodness of fit: T4(I,θ(i)) and T4(I(i),θ(i)) where

T4(I,θ) =
y=1989∑
y=1967

v2
y

τ2
.

These quantities were calculated within Splus (Becker et al., 1988).

Scatterplots were used to make graphical comparisons between the realized discrep-

ancies Tj(I,θ
(i)) and the predicted values Tj(I

(i),θ(i)) (i = 1, ..., 18000, j = 1, 2, 3, 4).

If the model is reasonable then the points will be scattered symmetrically around the

45o line. The posterior predictive p-value (Gelman et al., 1996) for test j (j = 1, 2, 3, 4)

is calculated as the proportion of points for which Tj(I
(i),θ(i)) exceeds Tj(I,θ

(i)).
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4 Results and Sensitivity to Priors

The posterior predictive p-values for Tj , j = 1, 2, 3, 4, were 0.69, 0.27, 0.50, and 0.42,

respectively. These correspond to the proportion of points lying above the 45o line in

the plots of predicted versus realized discrepancies (Fig. 1). These p-values indicate

that the discrepancies between observed CPUE and posterior model are very typical

of those predicted.

A comparison between the observed CPUE’s (Table 1) and the posterior predic-

tive distribution of the CPUE’s was made by overlaying the 95% posterior predictive

intervals for log(CPUE)’s on to a plot of the observed log(CPUE)’s (Fig. 2). The ob-

served CPUE’s lie entirely within the predictive intervals. It should be noted that this

particular model check, and also the chi-square discrepancy, T4, will be insensitive to

basic model inadequacies because the observation variance is a function of the residuals

log(I) − log(QP ). (Hence, the importance of the three model-specific discrepancies.)

However, Figure 2 and T4 would be sensitive to a prior on τ2 that was incompatible

with the likelihood.

The posterior distribution of MSP (1000’s t) has mean of 19.4, and 2.5, 50, and

97.5 percentiles of 13.9, 19.6, and 24.1, respectively (Fig. 3). For optimal effort these

values are, in units of 106 hooks, 61.2, 44.8, 60.8, and 79.0, respectively. The catch and

fishing effort in the five most recent years of data (Table 1) are well in excess of the

97.5 percentile on MSP and optimal effort.

The posterior modes of K, r, q, MSP, and Eopt are similar to the maximum likeli-

hood estimates obtained by Polacheck et al. (1993) under the observation error model.
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This may hold in general when priors are diffuse and observation error variance is sub-

stantially larger than process error variance. Here, the posterior means of observation

error variance, τ2, and process error variance, σ2, were 0.012 and 0.0037, respectively.

It should be borne in mind that the similarity of the point estimates does not imply

that use of the observation error model and the present model would lead to similar

management decisions (Hilborn, 1997).

Hilborn and Walters (1992) and Prager (1994) comment that the relative biomass

index data used in surplus production models typically contain only limited informa-

tion for inference about carrying capacity, K, because of high correlation with the other

parameters. In effect, K scales the biomass sequence and hence is highly confounded

with q (Fig. 4). It is also the case that K and r can be highly confounded because

large stocks having low productivity (high K, small r) can give similar expected rela-

tive biomass trajectories as obtained from small stocks having high productivity (low

K, high r). Furthermore, the sequence of biomasses By, y = 1967, ...1989 will be

highly autocorrelated (Fig. 4). Gilks and Roberts (1996) show that slow mixing of the

Gibbs sampler may result when high correlation is present in the joint posterior dis-

tribution. These considerations prompted the reparameterization obtained by dividing

the biomass states by K, leading to equations (??) and (??) and reducing correlation

in the posterior (Fig. 4).

Sensitivity to prior specification

For parameters r, q and τ2, the prior specifications have formal justification in

accordance with the published fisheries literature, and these justifications will be valid

for many other fisheries. The priors on carrying capacity, K, and process error, σ2, were
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vaguely informative and could have been derived in a variety of alternative manners.

Hence, it is particularly important to assess the sensitivity of the results to these two

priors.

The analysis was repeated with a uniform prior on log(K). The posterior on K now

puts more mass on larger values of K, and somewhat less mass on lower values of K

(Fig. 5). Larger values of K suggest that the CPUE data arise from the fishing down

of an unproductive (low r) stock. Hence, use of this alternative prior on K results in

more posterior mass on lower values of MSP and Eopt. In particular, the mean of the

posterior for MSP drops from 19.4 to 18.7. This is a small change in relation to the

posterior uncertainty about MSP.

The analysis was also repeated with a non-informative prior on σ2 (uniform on

log(σ2)). Only the posteriors for σ2 and τ2 show much change, with the posterior mean

for σ2 increasing to 0.0071 and that for τ2 decreasing to 0.011. The higher posterior

probability on larger values of σ2 corresponds to more variability in the population

dynamics and hence greater risk under a given harvesting scheme.

5 Discussion

A formal Bayesian stock assessment requires careful expert consideration of prior in-

formation. For some parameters, such as q, a standard non-informative prior (uniform

on log(q)) can be obtained. For other parameters there is some guidance in the exist-

ing fisheries literature, and the use of hierarchical modeling for development of formal

priors for certain key population parameters is well underway. It could also be useful

to inspect the prior induced on functions of the model parameters. For example, the

17



independent lognormal priors on K and r resulted in a diffuse lognormal prior on MSP

(Fig. 3). The prior on MSP is a reasonable choice in the sense that it shows little prior

preference over the range of MSP values supported by the likelihood (e.g., Spiegelhalter

et al., 1994; Gelman et al., 1995).

Applications of the Kalman filter or penalized likelihood to state-space stock as-

sessment models have required the modeler to specify the ratio between process and

observation error variances (e.g., Ludwig et al., 1988; Kimura et al., 1996; Richards

and Schnute, 1988). Not surprisingly, the sensitivity analysis performed above shows

that for the Bayesian implementation used here, inference about these variances is also

quite dependent on the priors placed on them. In contrast, the posteriors of other

quantities were little affected by this. Rather than simply assuming that the ratio of

these variances is known, the Bayesian approach permits a coherent expression of prior

knowledge of these variances. In practice this could come from assessment of observa-

tion error through calculation of the variability in fishing vessel log-books (say), and

from hierarchical analysis of process error variability.

The combination of the MH-Gibbs sampler and ARMS proved to be a quick and

reliable method for sampling from the posterior distribution. A C-program running on

a 233 MHz PC generated 3300 samples per minute and the generated sequence showed

quick burn-in and good mixing. The Metropolis algorithm could be employed to sample

directly from the joint posterior density, subject to specification of a good jumping rule

that takes into account the correlation structure of the parameters (typically assessed

by using the Hessian matrix of the posterior evaluated at the posterior mode.) A further

possibility is sampling-importance resampling (SIR). The prior distribution (Appendix)
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could be used as the initial choice of importance function, and be adapted if found to

be inefficient (West, 1993; Kinas, 1996). Sampling from the prior can proceed by

sampling sequentially from π(K, r, q, σ2, τ2), f(P1967|σ2), and f(Py|Py−1, K, r, σ
2), y =

1968, . . . , 1989.

The International Commission for the Conservation of Atlantic Tunas (ICCAT) has

subsequently made a slight revision of the data in Table 1, but more importantly, it

is now known that the stock had been fished quite heavily prior to the beginning of

this data series in 1967 (Punt et al., 1995), and it is suspected that the earlier CPUE

data may be unreliable. Hence, this application cannot be considered a formal stock

assessment of South Atlantic albacore.

The quantity that we have called “maximum surplus production” (MSP) is more

commonly known as “maximum sustainable yield” (MSY) in the fisheries literature,

despite the fact that sustained fishing at this level will likely drive the stock to ex-

tinction due to the random variability in biomass dynamics (Hilborn and Walters,

1992). The state-space approach to fisheries dynamics will help to change perceptions

concerning “sustainable fishing”, and implemented within the Bayesian framework the

consequences of random stock dynamics and effects of alternative management deci-

sions can be assessed as risks to the well-being of the stock and to those fishing it.
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Appendix

The Metropolis-Hastings within Gibbs sampler was used here to sample from the joint

posterior distribution of the 28 unknowns (K, r, σ2, Q, τ2, P1967, ..., P1989), where Py =

By/K and Q = qK are parameters used in the reparameterized equations (??) and

(??). This requires each of the 28 univariate full-conditional posterior distributions

to be sampled in turn, and it is enough that this sample be obtained by a single

Metropolis-Hastings step. These full-conditional distributions are given below.

Prior and posterior densities

Prior

The joint prior density π(K, r, σ2, Q, τ2, P1967, ..., P1989) is obtained from the prior

π(K, r, σ2, Q, τ2) and the distribution of (P1967, ..., P1989|K, r, σ2) determined from the

state equations (??). That is,

π(K, r, σ2, Q, τ2, P1967, ..., P1989)

= π(K, r, σ2, Q, τ2)f(P1967, ..., P1989|K, r, σ2)

= π(K, r, σ2, Q, τ2)f(P1967|σ2)
y=1989∏
y=1968

f(Py|Py−1, K, r, σ
2) .

Note that the f(Py|Py−1, K, r, σ
2) terms in this prior are implicitly conditioning on

the catches, Cy. In surplus production models the data are the relative biomass indices

and the catch data are assumed to provide no additional information. Indeed, in many

fisheries the permitted catch will have been set in advance by the managers of that

fishery.

Posterior

The posterior distribution of (K, r, σ2, Q, τ2, P1967, ..., P1989) is proportional to the
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joint density of the data and unknowns. That is,

f(K, r, σ2, Q, τ2, P1967, ..., P1989|I1967, ..., I1989)

∝ π(K, r, σ2, Q, τ2, P1967, ..., P1989)
y=1989∏
y=1967

f(Iy|Py, Q, τ2)

= π(K, r, σ2, Q, τ2)f(P1967|σ2)
y=1989∏
y=1968

f(Py|Py−1, K, r, σ
2)

y=1989∏
y=1967

f(Iy|Py, Q, τ2) .

Full-conditional densities

The full-conditional density for an unobservable, θ (say), is determined by the terms

in the joint posterior that are functions of θ. The other terms in the posterior simply

contribute to the normalizing constant. Each of the full conditionals given below has

support RI +.

Full conditional of Py.

For 1968 ≤ y ≤ 1988,

f(Py|K, r, σ2, Q, τ2, P1967, ..., Py−1, Py+1, ..., P1989, I1967, ..., I1989)

∝ f(Py|Py−1, K, r, σ
2)f(Iy|Py, Q, τ2)f(Py+1|Py, K, r, σ2) (8)

∝ exp

{
− log(Py)−

(log(Py)− log(Py−1 + rPy−1(1− Py−1)− Cy−1/K))2

2σ2

−(log(Iy)− log(QPy))
2

2τ2
− (log(Py+1)− log(Py + rPy(1− Py)− Cy/K))2

2σ2

}
.

When y = 1967 the first factor in (??) is f(P1967|σ2). When y = 1989 the third

factor in (??) is omitted.
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Full conditionals of K and r.

f(K|r, σ2, Q, τ2, P1967, ..., P1989, I1967, ..., I1989)

∝ π(K, r, σ2, Q, τ2)
1989∏
y=1968

f(Py|Py−1, K, r, σ
2)

∝ π(K, r, σ2, Q, τ2) exp

−1

2σ2

1989∑
y=1968

(log(Py)− log(Py−1 + rPy−1(1− Py−1)− Cy−1/K))2

 .

The full conditional for r is given by the same formula (up to a constant of propor-

tionality) by fixing all other parameters.

Full conditional of σ2.

f(σ2|K, r, σ2, Q, τ2, P1967, ..., P1989, I1967, ..., I1989)

∝ π(K, r, σ2, Q, τ2)f(P1967|σ2)
1989∏

y=1968

f(Py|Py−1, K, r, σ
2)

∝ π(K, r, σ2, Q, τ2)

(σ2)
n
2

× exp

−1

2σ2

log(P1967) + log
1989∑
y=1968

(log(Py)− log(Py−1 + rPy−1(1− Py−1)− Cy−1/K))2

 ,

where n = 23 is the number of states, Py, y = 1967, ..., 1989.

Full conditional of Q and τ2.

f(Q|K, r, σ2, τ2, P1967, ..., P1989, I1967, ..., I1989)

∝ π(K, r, σ2, Q, τ2)
1989∏

y=1967

f(Iy|Py, Q, τ2)

∝ π(K, r, σ2, Q, τ2)

(τ2)
n
2

exp

−1

2τ2

1989∑
y=1967

(log(Iy)− log(Q)− log(Py))
2

 ,

and this formula also gives the full conditional for τ2 (up to a constant of proportion-

ality).
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Table 1. Catch and effort data for South Atlantic albacore tuna.

Year Catch Effort CPUE
(1000’s t) (108 hooks) (kg/100

hooks)
1967 15.9 0.257 61.89
1968 25.7 0.325 78.98
1969 28.5 0.513 55.59
1970 23.7 0.531 44.61
1971 25.0 0.439 56.89
1972 33.3 0.870 38.27
1973 28.2 0.833 33.84
1974 19.7 0.545 36.13
1975 17.5 0.417 41.95
1976 19.3 0.527 36.63
1977 21.6 0.595 36.33
1978 23.1 0.595 38.82
1979 22.5 0.656 34.32
1980 22.5 0.598 37.64
1981 23.6 0.694 34.01
1982 29.1 0.905 32.16
1983 14.4 0.536 26.88
1984 13.2 0.361 36.61
1985 28.4 0.944 30.07
1986 34.6 1.125 30.75
1987 37.5 1.605 23.36
1988 25.9 1.158 22.36
1989 25.3 1.155 21.91
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Figure 1. Scatter plots of realized versus predicted discrepancies. The posterior

predictive p-value is given by the proportion of points lying above the 45o line.

Figure 2. Observed log(CPUE) (solid line) and the 2.5, 50, and 97.5 percentiles from

the posterior predictive distribution of log(CPUE) (dashed lines).

Figure 3. Posterior densities (solid lines) obtained using the priors specified in section

??. Proper prior densities are given by the dashed lines.

Figure 4. Scatter plots of samples from the posterior distribution of (K, q) and

(B1967, B1968) from the original parameterization (top row), and of (K,Q) and

(P1967, P1968) from the reparameterized model (bottom row).

Figure 5. Posterior densities (long-dash lines) obtained from using a uniform prior on

log(K). Proper prior densities are given by the short-dash lines and the posterior

densities of Fig. 3 are shown by solid lines.

Figure 6. Posterior densities (long-dash lines) obtained from using a uniform prior on

log(σ2). Proper prior densities are given by the short-dash lines and the posterior

densities of Fig. 3 are shown by solid lines.
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Fig. 3

K (1000’s t)

P
os

te
rio

r 
de

ns
ity

0 200 400 600 800 10000.
0

0.
00

2
0.

00
6

0.
01

0

r

P
os

te
rio

r 
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

q

P
os

te
rio

r 
de

ns
ity

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8

1990 biomass

P
os

te
rio

r 
de

ns
ity

50 100 150 200 2500.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

(1990 biomass)/K

P
os

te
rio

r 
de

ns
ity

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8

Maximum surplus production (1000’s t)

P
os

te
rio

r 
de

ns
ity

0 10 20 30 400.
0

0.
04

0.
08

0.
12

0.
16

Optimal effort (100 000 000’s hooks)

P
os

te
rio

r 
de

ns
ity

0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

Process error variance

P
os

te
rio

r 
de

ns
ity

0.0 0.005 0.010 0.015 0.020

0
10

0
20

0
30

0
40

0
50

0

Observation error variance

P
os

te
rio

r 
de

ns
ity

0.0 0.01 0.02 0.03 0.04

0
20

40
60

80
10

01
20

14
0

Fig. 4:

K (1000’s t)

q

100 200 300 400 500 600 700

0.
1

0.
2

0.
3

0.
4

0.
5

1967 biomass

19
68

 b
io

m
as

s

100 200 300 400 500 600 700

10
0

30
0

50
0

70
0

K (1000’s t)

Q

100 200 300 400 500 600 700

50
60

70
80

90

(1967 biomass)/K

(1
96

8 
bi

om
as

s)
/K

0.8 0.9 1.0 1.1 1.2 1.3

0.
8

1.
0

1.
2

1.
4

32



Fig. 5
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