The NCAP package for \mathbf{R}

Initializing NCAP

The NCAP function definitions are contained in file NCAP. R. These definitions can be loaded into your R session using the code

```
source(file.choose())
```

and using the browser window to select NCAP.R.

NOTE: The NCAP package now includes an option to maximize a redundancy statistic (Legendre and Anderson, 1999) rather than the canonical correlation. The redundancy statistic provides a down-weighting of less important principal co-ordinates. The canonical correlation is more appropriate if the researcher is looking for any effect of the covariate, whereas the redundancy statistic is more appropriate if one is more concerned with the covariates ability to explain community pattern.

References

Legendre, P. and Anderson, M. J. 1999. Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecological Monographs 69: 1-24.

McArdle, B.H. and Anderson, M.J. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290-297.

Millar, R. B, M. J. Anderson, and G. Zunun. 2005. Fitting nonlinear environmental gradients to community data: A general distance-based approach. Ecology 86: 2245-2251.
distance Function for calculating a dissimilarity matrix from abundance data

Description

distance calculates a dissimilarity matrix from a matrix of species abundance data.

Usage
distance (N, measure="BC", trans="none")

Arguments

N
Matrix containing the abundance data with rows corresponding to sites and columns to species.
measure Distance measure to be use. Options include none, Bray-Curtis (BC), square-root Bray-Curtis (sqrtBC), Canberra (Can), square-root Canberra (sqrtCan), Horn-Morisita (HornM) and Euclidean (Eucl).
trans Transformation to be applied to abundance data before application of the distance measure. Options include none, square-root (sqrt), fourth-root (fourthroot), presence-absence (pa) and row proportions (rowpropns).

Value
Distance matrix.
gradient. choice Function for specifying the type of nonlinear gradient

Description

gradient. choice is used to specify the type of nonlinear gradient to be fitted.

Usage

```
gradient.choice(type="vonB")
```


Arguments

type Character value specifying the gradient type. Must be one of "vonB", "hyperbolic" or"logistic".

Value

A function corresponding to the desired gradient.

LinCCor Function to determine best fit of a linear gradient

Description

LinCCor returns the value of stat from the best linear gradient fit.

Usage

```
LinCCor=function(X,pcoD,m,stat="Rsquare")
```


Arguments

$\mathrm{X} \quad$ Design matrix.
pcoD List containing the principal co-ordinates and eigenvalues.
$m \quad$ The number of principal co-ordinates to use.
stat Character string specifying the statistic to be calculated. If the value is "Rsquare" then the nonlinear canonical correlation is returned. If the value is "RDA" then the redundancy statistic is returned. The RDA choice can be regarded as a weighted Rsquare whereby the principal co-ordinates are weighted proportional to their eigenvalue.
Value
Numeric, the maximized value of stat.
model
Function to create design matrix for specified covariates

Description

model is used to construct the design matrix, X , in the linear portion the NCAP model.

Usage

model(formula.spec,fixed.intercept=T)

Arguments

Formula.spec Formula.
Fixed.intercept Logical value. If True, then the intercept term is omitted from the model. If the intercept term corresponds to a scale parameter in the nonlinear gradient then it can not be used, due to parameter confounding.
Value
The design matrix, X .

Description

NLCCor is used to return the statistic to be maximized.

Usage

$$
\begin{array}{r}
\text { NLCCor (b, X, pcoD, gradient,m,stat="Rsquare", } \\
\text { blow=NULL, bhigh=NULL, pwgt=0.001) }
\end{array}
$$

Arguments

b Numeric value or vector, containing the value of the b parameter(s).
$\mathrm{X} \quad$ Design matrix.
pcoD List containing the principal co-ordinates and eigenvalues.
gradient The gradient function to use.
$m \quad$ The number of principal co-ordinates to use.
stat Character string specifying the statistic to be calculated. If the value is "Rsquare" then the nonlinear canonical correlation is returned. If the value is "RDA" then the redundancy statistic is returned. The RDA choice can be regarded as a weighted Rsquare whereby the principal co-ordinates are weighted proportional to their eigenvalue.
blow Numeric, of same dimension as b, specifying lower bounds.
Value
Numeric, the statistic to be maximized.

Description

NLCCorSeq calls function NLCCor to fit NCAP for increasing number of dimensions, to facilitate choice of the appropriate number of dimensions to use.

Usage

$$
\begin{gathered}
\text { NLCCorSeq (b0, X, pcoD, grad,m=NULL, stat="Rsquare", } \\
\text { plots=T, . .) }
\end{gathered}
$$

Arguments

bo Numeric value or vector, containing the starting value of the b parameter(s).
$\mathrm{X} \quad$ Design matrix.
pcoD List containing the principal co-ordinates and eigenvalues.
grad The gradient function to use.
$m \quad$ The maximum number of principal co-ordinates to use.
stat Character string specifying the statistic to be calculated. If the value is "Rsquare" then the nonlinear canonical correlation is returned. If the value is "RDA" then the redundancy statistic is returned. The RDA choice can be regarded as a weighted Rsquare whereby the principal co-ordinates are weighted proportional to their eigenvalue.
plots Logical. Setting to False suppresses the plots.
Additional arguments to be passed to NLCCor.

Value

Matrix, containing fitted statistics.
$\mathrm{pco} \quad$ Function to calculate principal co-ordinates and their eigenvalues

Description

pco performs an eigen-decomposition of the matrix obtained from centering $-0.5 \mathrm{D}^{2}$, where D is a dissimilarity matrix. It also plots variation explained against number principal co-ordinate dimensions. Variation explained is the cumulative sum of eigenvalues divided by the sum of all eigenvalues (McArdle and Anderson, 2001). Negative eigenvalues will occur for non-metric dissimilarity matrices, and the variation explained will then reach 100% for fewer dimensions then the total number of dimensions.

Usage

```
pco(D,varplot=T)
```


Arguments

D Dissimilarity matrix.
varplot Logical value. Set to F to suppress variation plot.

Value

A list with components values and vectors.

Additional functions (unsupported)

See function definitions for arguments required by these functions.

BootNLCor Function to calculate bootstrap confidence interval for b.
centre.matrix Function to centre a matrix to have row and column sums of zero.
lattice.plot Function to produce multi-figure plot of species abundance vs covariates.

LinCCor Function to calculate maximum value of stat for a linear gradient.
plot. NCAP Function to plot gradient, and residuals. Residuals are not produced when stat="RDA".
plot. pco Function to produce scatter plots of pco's and plot of pco's vs covariates.

PermNLCor Function to calculate permutation test statistics.

[^0]
[^0]: PermNLCor Function to calculate permutation test statistics.

