
“itdt” — 2008/5/19 — 14:15 — page 1 — #1i
i

i
i

i
i

i
i

Introduction to Data Technologies

WORKING DRAFT

Paul Murrell

May 19, 2008

“itdt” — 2008/5/19 — 14:15 — page 2 — #2i
i

i
i

i
i

i
i

2

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 New Zealand License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/nz/

or send a letter to:
Creative Commons,
171 Second Street,
Suite 300,
San Francisco,
California, 94105,
USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/nz/

“itdt” — 2008/5/19 — 14:15 — page i — #3i
i

i
i

i
i

i
i

Preface

The basic premise of this book is that scientists are required to perform
many tasks with data other than statistical analyses. A lot of time and effort
is usually invested in getting data ready for analysis: collecting the data,
storing the data, transforming and subsetting the data, and transferring the
data between different operating systems and applications.

Many scientists acquire data management skills in an ad hoc manner, as
problems arise in practice. In most cases, skills are self-taught or passed
down, guild-like, from master to apprentice. This book aims to provide a
more structured and more complete introduction to the skills required for
managing data.

The focus of this book is on computational tools that make the management
of data faster, more accurate, and more efficient. The intention is to improve
the awareness of what sorts of tasks can be achieved and to describe the
correct approach to performing these tasks and there is an emphasis on
working with data technologies via written computer languages.

This book will not turn the reader into a web designer, or a database admin-
istrator, or a software engineer. However, this book contains information
on how to collect and publish information via the world wide web, how
to access information stored in different formats, and how to write small
programs to automate simple, repetitive tasks.

This book is intended to improve the work habits of individual researchers.
It aims to provide a level of understanding that enables a scientist to access
and interact with data sets no matter where or how they are stored.

This book is designed to be accessible and practical, with an emphasis on
useful, applicable information. Each topic is covered in three different ways:
initially, basic ideas are introduced, in an appropriate order, and using trivial
examples, to give a quick, easy to read overview of the topic; this is followed
by case studies which combine ideas and techniques together and provide
demonstrations of more sophisticated and real-life use; finally, there are
separate reference chapters, which contain almost no examples, just the
bare information for easy look-up.

This book is written primarily for statisticians and this is reflected in the
broad range of data sets used in the examples. However, the content should
be relevant for anyone whose work involves the collection, preparation, or

i

“itdt” — 2008/5/19 — 14:15 — page ii — #4i
i

i
i

i
i

i
i

ii

analysis of data.

Writing code

The icon below was captured from the desktop of a computer running Mi-
crosoft Windows XP.

Is this document a Microsoft Office Excel spreadsheet?

Many computer users would say that it is. After all, it has got the little
Excel image on it and it even says Microsoft Office Excel right below the
name of the file. And if we double-clicked on this file, Excel would start up
and open the file.

However, this file is not an Excel spreadsheet. It is a plain text file in a
Comma-Separated Values (CSV) format. In fact the name of the file is not
final, but final.csv. Excel can open this file, but so can thousands of other
computer programs.

The computer protects us from this gritty detail by not showing the .csv
suffix on the file name and it provides the convenience of automatically using
Excel to open the file, rather than asking us what program to use.

Is this somehow a bad thing?

Yes, it is.

A computer user who only works with this sort of interface learns that this
sort of file is only for use with Excel. The user becomes accustomed to the
computer dictating what the user is able to do with a file.

It is important that users understand that they are able to dictate to the
computer what should be done with a file. A CSV file can be viewed and
modified using software as simple as Microsoft Notepad, but this does not
occur to a user who is used to being told to use Excel.

For the majority of computer users, interaction with a computer is limited to
clicking on web page hyperlinks, selecting menus, and filling in dialog boxes.
The problem with this approach to computing is that it gives the impression
that the user is controlled by the computer. The computer interface places
limits on what the user can do.

“itdt” — 2008/5/19 — 14:15 — page iii — #5i
i

i
i

i
i

i
i

iii

The truth is of course exactly the opposite. It is the computer user who has
control and can tell the computer exactly what to do. Learning to interact
with a computer by writing computer code places users in their rightful
position of power.

Computer code also has the huge advantage of providing an accurate record
of the tasks that were performed. This serves both as a reminder of what
was done and a recipe that allows others to replicate what was done.

For these reasons, this book focuses on computer languages as tools for data
management.

Open standards and open source

This book almost exclusively describes technologies that are described by
open standards or that are implemented in open source software, or both.1

For a technology to be an open standard, it must be described by a pub-
lic document that provides enough information so that anyone can write
software to work with technology. In addition, the description must not
be subject to patents or other restrictions of use. Ideally, the document is
published and maintained by an international, non-profit organisation. In
practice, the important consequence is that the technology is not bound to
a single software product.

This is in contrast to proprietary technologies, where the definitive descrip-
tion of the technology is not made available and is only supported by a
single software product.

Open source software is software for which the source code is publicly avail-
able. This makes it possible, through scrutiny of the source code if neces-
sary, to understand how a software product works. It also means that, if
necessary, the behaviour of the software can be modified. In practice, the
important consequence is that the software is not bound to a single software
developer.

This is in contrast to proprietary software, where the software is only avail-
able from a single developer, the software is a “black-box”, and changes,
including corrections of errors, can only be made by the software developer.

The obvious advantage of using open standards and open source software
is that the reader need not purchase any expensive proprietary software
in order to benefit from the information in this book, but that is not the

1With one exception; see Section 7.6.

“itdt” — 2008/5/19 — 14:15 — page iv — #6i
i

i
i

i
i

i
i

iv

primary reason for this choice.

The main reason for selecting open standards and open source software is
that this is the only way to ensure that we know where our data are on
the computer and what happens to our data when we manipulate it with
software, and it is the only way to guarantee that we can have free access
to our data now and in the future.

The significance of these points is demonstrated by the growing list of gov-
ernments and public institutions that are switching to open standards and
open source software for storing and working with information.2 In partic-
ular, for the storage of public records, it does not make sense to lock the
information up in a format that cannot be accessed except by proprietary
software. Similarly, for the dissemination and reproducibility of scientific
research, it makes sense to fully disclose a complete description of how an
analysis was conducted in addition to publishing the research results.

How to read this book

This book was developed from a set of lecture notes for a second-year course
for statistics students. As a consequence, it is written to tell a story. There
is an ordering of topics from data collection, through data storage and re-
trieval, to data processing. There is also a development from writing simple
computer code with straightforward computer languages through to more
complex tasks with more sophisticated languages. Furthermore, examples
and case studies are carried over between different chapters in an attempt
to illustrate how the different technologies need to be combined over the
lifetime of a data set. In this way, the book is set up to be read in order
from start to finish.

However, every effort has been made to ensure that individual chapters
can be read on their own. Where necessary, figures are reproduced and
descriptions are repeated so that it is not necessary to jump back and forth
within the book in order to acquire a complete understanding of a particular
section.

The addition of separate reference chapters is designed to allow the reader to
quickly dip back into the book in order to refresh knowledge of a particular
technology.

2High profile cases include: ...

“itdt” — 2008/5/19 — 14:15 — page v — #7i
i

i
i

i
i

i
i

v

Notation

“itdt” — 2008/5/19 — 14:15 — page vi — #8i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page vii — #9i
i

i
i

i
i

i
i

Brief Contents

1 Introduction 1
1.1 Case Study: Point Nemo . 1

2 Writing computer code 9
2.1 Case study: Point Nemo . 9
2.2 Syntax . 10
2.3 Semantics . 21
2.4 Writing for an audience . 28
2.5 The DRY principle . 33
2.6 Text editors . 44
2.7 Further reading . 46

3 HTML Reference 47
3.1 HTML syntax . 47
3.2 HTML semantics . 49
3.3 Further reading . 53

4 CSS Reference 55
4.1 CSS syntax . 55
4.2 CSS selectors . 55
4.3 CSS properties . 57
4.4 Linking CSS to HTML . 60
4.5 CSS tips and tricks . 61
4.6 Further reading . 61

5 Data Entry 63
5.1 Case study: I-94W . 64
5.2 Electronic forms . 64
5.3 Electronic form components 69
5.4 Validating input . 77
5.5 Submitting input . 86

6 HTML Forms Reference 91
6.1 HTML form syntax . 91
6.2 HTML form semantics . 91
6.3 HTML form submission . 95
6.4 HTML form scripts . 96
6.5 Further reading . 99

vii

“itdt” — 2008/5/19 — 14:15 — page viii — #10i
i

i
i

i
i

i
i

viii BRIEF CONTENTS

7 Data Storage 101
7.1 Case study: YBC 7289 . 102
7.2 Computer Memory . 107
7.3 Plain text files . 118
7.4 XML . 126
7.5 Binary files . 140
7.6 Spreadsheets . 147
7.7 Databases . 153
7.8 Further reading . 174

8 XML Reference 177
8.1 XML syntax . 177
8.2 Document Type Definitions 178
8.3 Further reading . 181

9 Data Queries 183
9.1 Case study: The Human Genome 184
9.2 SQL . 191
9.3 Other query languages . 211
9.4 Further reading . 214

10 SQL Reference 217
10.1 SQL syntax . 217
10.2 SQL queries . 218
10.3 Other SQL commands . 223
10.4 Further reading . 226

11 Data Crunching 227
11.1 Case study: The Population Clock 227
11.2 The R language . 237
11.3 Basic Data types and data structures 245
11.4 Subsetting . 256
11.5 More on Data Types . 261
11.6 Data import/export . 268
11.7 Data manipulation . 286
11.8 Text processing . 315
11.9 Writing Functions . 333
11.10Debugging . 340
11.11Other software . 340
11.12Flashback: HTML forms and R 345
11.13Literate data analysis . 345

12 R Reference 347
12.1 Using R . 347

“itdt” — 2008/5/19 — 14:15 — page ix — #11i
i

i
i

i
i

i
i

BRIEF CONTENTS ix

12.2 R syntax . 349
12.3 Data types and data structures 351
12.4 Functions . 353
12.5 Further reading . 362

13 Regular Expressions Reference 363
13.1 Metacharacters . 363
13.2 Replacement text . 365
13.3 Further reading . 365

14 Glossary 367

“itdt” — 2008/5/19 — 14:15 — page x — #12i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page xi — #13i
i

i
i

i
i

i
i

Full Contents

1 Introduction 1
1.1 Case Study: Point Nemo . 1

2 Writing computer code 9
2.1 Case study: Point Nemo . 9
2.2 Syntax . 10

2.2.1 HTML syntax . 13
2.2.2 Escape sequences . 15
2.2.3 Checking syntax . 16
2.2.4 Checking HTML code 16
2.2.5 Reading error information 17
2.2.6 Reading documentation 18

2.3 Semantics . 21
2.3.1 HTML semantics . 22
2.3.2 Running code . 25
2.3.3 Running HTML code 26
2.3.4 Debugging code . 27

2.4 Writing for an audience . 28
2.4.1 Layout of code . 29
2.4.2 Indenting code . 29
2.4.3 Long lines of code . 30
2.4.4 White space . 31
2.4.5 Documenting code . 32
2.4.6 HTML comments . 32

2.5 The DRY principle . 33
2.5.1 Cascading Style Sheets 34

2.6 Text editors . 44
2.6.1 Text editors are not word processors 44
2.6.2 Important features of a text editor 44
2.6.3 Text editor software 45

2.7 Further reading . 46

3 HTML Reference 47
3.1 HTML syntax . 47

3.1.1 HTML comments . 48
3.1.2 HTML entities . 48

3.2 HTML semantics . 49
3.2.1 Common HTML elements 49

xi

“itdt” — 2008/5/19 — 14:15 — page xii — #14i
i

i
i

i
i

i
i

xii FULL CONTENTS

3.2.2 Common HTML attributes 53
3.3 Further reading . 53

4 CSS Reference 55
4.1 CSS syntax . 55
4.2 CSS selectors . 55
4.3 CSS properties . 57
4.4 Linking CSS to HTML . 60
4.5 CSS tips and tricks . 61
4.6 Further reading . 61

5 Data Entry 63
5.1 Case study: I-94W . 64
5.2 Electronic forms . 64

5.2.1 HTML forms . 67
5.2.2 Other uses of electronic forms 69

5.3 Electronic form components 69
5.3.1 HTML form elements 69
5.3.2 Radio buttons . 70
5.3.3 Check boxes . 71
5.3.4 Text fields . 72
5.3.5 Menus . 74
5.3.6 Sliders . 75
5.3.7 Buttons . 75
5.3.8 Labels . 76

5.4 Validating input . 77
5.4.1 JavaScript . 78
5.4.2 Other electronic forms technologies 83

5.5 Submitting input . 86
5.5.1 HTML form submission 86
5.5.2 Local HTML form submission 86

6 HTML Forms Reference 91
6.1 HTML form syntax . 91
6.2 HTML form semantics . 91

6.2.1 Common attributes 91
6.2.2 HTML form elements 91

6.3 HTML form submission . 95
6.4 HTML form scripts . 96

6.4.1 Validation scripts . 96
6.4.2 Submission scripts . 97

6.5 Further reading . 99

7 Data Storage 101

“itdt” — 2008/5/19 — 14:15 — page xiii — #15i
i

i
i

i
i

i
i

FULL CONTENTS xiii

7.1 Case study: YBC 7289 . 102
7.2 Computer Memory . 107

7.2.1 Bits, bytes, and words 107
7.2.2 Binary, Octal, and Hexadecimal 108
7.2.3 Numbers . 110
7.2.4 Case study: Network traffic 114
7.2.5 Text . 115
7.2.6 Data with units or labels 117

7.3 Plain text files . 118
7.3.1 Case study: Point Nemo 119
7.3.2 Flat files . 119
7.3.3 Advantages of plain text 121
7.3.4 Disadvantages of plain text 121
7.3.5 CSV files . 123
7.3.6 Case Study: The Data Expo 123

7.4 XML . 126
7.4.1 XML syntax . 126
7.4.2 Advantages and disadvantages 128
7.4.3 More XML syntax . 131
7.4.4 XML design . 132
7.4.5 XML Schema . 136
7.4.6 Case study: Point Nemo 136
7.4.7 XML design for complex relationships 139

7.5 Binary files . 140
7.5.1 Case study: Point Nemo 142
7.5.2 NetCDF . 142

7.6 Spreadsheets . 147
7.6.1 The structure of spreadsheets 148
7.6.2 Case study: Over the limit 148
7.6.3 Flashback: Spreadsheets and data entry 152

7.7 Databases . 153
7.7.1 Some terminology . 153
7.7.2 The structure of a database 154
7.7.3 Data integrity . 155
7.7.4 Advantages and disadvantages 156
7.7.5 Database notation . 157
7.7.6 Database design . 157
7.7.7 Flashback: The DRY Principle 163
7.7.8 Case Study: The Data Expo 163
7.7.9 Case study: Cod stomachs 168
7.7.10 Flashback: Database design and XML design 172
7.7.11 Case study: The Data Expo 173
7.7.12 Database software . 174

“itdt” — 2008/5/19 — 14:15 — page xiv — #16i
i

i
i

i
i

i
i

xiv FULL CONTENTS

7.8 Further reading . 174

8 XML Reference 177
8.1 XML syntax . 177
8.2 Document Type Definitions 178

8.2.1 Element declarations 178
8.2.2 Attribute declarations 179
8.2.3 Including a DTD . 180

8.3 Further reading . 181

9 Data Queries 183
9.1 Case study: The Human Genome 184
9.2 SQL . 191

9.2.1 The SELECT statement 192
9.2.2 Case study: The Data Expo 192
9.2.3 Querying several tables: Joins 199
9.2.4 Case study: Commonwealth swimming 200
9.2.5 Cross joins . 201
9.2.6 Inner joins . 203
9.2.7 Case study: The Data Expo 203
9.2.8 Sub-queries . 205
9.2.9 Outer Joins . 207
9.2.10 Case study: Commonwealth swimming 207
9.2.11 Self joins . 210
9.2.12 Case study: The Data Expo 210

9.3 Other query languages . 211
9.3.1 XPath . 212
9.3.2 Case study: Point Nemo 212

9.4 Further reading . 214

10 SQL Reference 217
10.1 SQL syntax . 217
10.2 SQL queries . 218

10.2.1 Selecting columns . 218
10.2.2 Specifying tables: the FROM clause 219
10.2.3 Selecting rows: the WHERE clause 220
10.2.4 Sorting results: the ORDER BY clause 222
10.2.5 Aggregating results: the GROUP BY clause 222
10.2.6 Sub-queries . 223

10.3 Other SQL commands . 223
10.3.1 Defining tables . 223
10.3.2 Populating tables . 225
10.3.3 Modifying data . 226
10.3.4 Deleting data . 226

“itdt” — 2008/5/19 — 14:15 — page xv — #17i
i

i
i

i
i

i
i

FULL CONTENTS xv

10.4 Further reading . 226

11 Data Crunching 227
11.1 Case study: The Population Clock 227

11.1.1 Estimating population growth 228
11.2 The R language . 237

11.2.1 Constant values . 238
11.2.2 Arithmetic . 238
11.2.3 Function calls . 238
11.2.4 Symbols and assignment 240
11.2.5 Control flow . 241
11.2.6 Flashback: Writing for an audience 243
11.2.7 Naming variables . 243

11.3 Basic Data types and data structures 245
11.3.1 Case study: Counting candy 245
11.3.2 Vectors . 247
11.3.3 The recycling rule . 248
11.3.4 Factors . 249
11.3.5 Data Frames . 249
11.3.6 Accessing variables in a data frame 252
11.3.7 Lists . 253
11.3.8 Matrices and arrays 255

11.4 Subsetting . 256
11.4.1 Accessor functions . 260
11.4.2 Assigning to a subset 260

11.5 More on Data Types . 261
11.5.1 Type coercion . 261
11.5.2 Attributes . 262
11.5.3 Classes . 263
11.5.4 Generic functions . 263
11.5.5 Exploring objects . 264
11.5.6 Flashback: Numbers in computer memory 265
11.5.7 Case study: Network packets 265
11.5.8 Case study: The greatest equation ever 267

11.6 Data import/export . 268
11.6.1 Specifying files . 268
11.6.2 Text files . 269
11.6.3 Case Study: Point Nemo 269
11.6.4 XML . 273
11.6.5 Binary files . 277
11.6.6 Spreadsheets . 279
11.6.7 Large data sets . 281
11.6.8 Case Study: The Data Expo 282

“itdt” — 2008/5/19 — 14:15 — page xvi — #18i
i

i
i

i
i

i
i

xvi FULL CONTENTS

11.6.9 Basic file manipulations 283
11.6.10Case study: Digital photography 283

11.7 Data manipulation . 286
11.7.1 Sorting . 286
11.7.2 Case study: Counting Candy 287
11.7.3 The “apply” functions 288
11.7.4 Tables of Counts . 293
11.7.5 Aggregation . 296
11.7.6 Merging data sets . 296
11.7.7 Reshaping . 299
11.7.8 Case study: Rothamsted moths 301
11.7.9 Case study: Utilities 305

11.8 Text processing . 315
11.8.1 Case study: The longest placename 315
11.8.2 Regular expressions 320
11.8.3 Case study: Rusty wheat 321
11.8.4 Case study: Crohn’s disease 328
11.8.5 Flashback: Regular expressions in HTML Forms . . . 333
11.8.6 Flashback: Regular expressions in SQL 333

11.9 Writing Functions . 333
11.9.1 Case Study: The Data Expo 333
11.9.2 Flashback: Writing functions and the DRY Principle . 338

11.10Debugging . 340
11.11Other software . 340

11.11.1Perl . 340
11.11.2Calling other software from R 340
11.11.3Case Study: The Data Expo 341

11.12Flashback: HTML forms and R 345
11.13Literate data analysis . 345

12 R Reference 347
12.1 Using R . 347

12.1.1 The command line . 347
12.1.2 Managing R Code . 348
12.1.3 The working directory 348
12.1.4 Finding the exit . 349

12.2 R syntax . 349
12.2.1 Mathematical operators 349
12.2.2 Logical operators . 349
12.2.3 Symbols and assignment 350
12.2.4 Loops . 350
12.2.5 Conditional statements 351

12.3 Data types and data structures 351

“itdt” — 2008/5/19 — 14:15 — page xvii — #19i
i

i
i

i
i

i
i

FULL CONTENTS xvii

12.3.1 The workspace . 352
12.4 Functions . 353

12.4.1 Generating vectors . 353
12.4.2 Numeric functions . 354
12.4.3 Comparisons . 354
12.4.4 Subsetting . 355
12.4.5 Merging . 355
12.4.6 Summarizing and collapsing 356
12.4.7 The “apply” functions 356
12.4.8 Reshaping . 357
12.4.9 Sorting . 357
12.4.10Data import/export 358
12.4.11Text processing . 359
12.4.12Getting help . 360
12.4.13Packages . 361
12.4.14Searching for functions 362

12.5 Further reading . 362

13 Regular Expressions Reference 363
13.1 Metacharacters . 363

13.1.1 Ranges . 364
13.1.2 Modifiers . 364

13.2 Replacement text . 365
13.3 Further reading . 365

14 Glossary 367

“itdt” — 2008/5/19 — 14:15 — page xviii — #20i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page xix — #21i
i

i
i

i
i

i
i

List of Figures

1.1 The NASA Live Access Server web site 2
1.2 Output from the NASA Live Access Server 4

2.1 A simple web page . 11
2.2 HTML code for a simple web page 12
2.3 A minimal HTML document. 15
2.4 HTML Tidy output . 16
2.5 W3C table element documentation 19
2.6 WDG table element documentation 20
2.7 WDG summary attribute documentation 21
2.8 A simple web page . 23
2.9 HTML code for a simple web page 24
2.10 HTML code with CSS link . 36
2.11 CSS code for a simple web page 37
2.12 A simple CSS web page . 40
2.13 A alternative CSS web page 42
2.14 Alternative CSS code for a simple web page 43

3.1 A minimal HTML document. 48

5.1 USCIS form I-94W . 65
5.2 Electronic version of I-94W 66
5.3 HTML code for I-94W electronic form 68
5.4 Examples of radio buttons and check boxes 70
5.5 Examples of text fields . 73
5.6 Example of a menu . 74
5.7 An example of a slider . 75
5.8 A minimal JavaScript. 78
5.9 A minimal web page containing JavaScript 79
5.10 A text field in the I-94W form 80
5.11 Invalid text field input . 82
5.12 XHTML and XForms code for a slider form component. . . . 84
5.13 HTML and Web Forms 2 code for a slider form component. . 85
5.14 A Web Forms 2 slider . 85
5.15 Submitting form data locally 88
5.16 Exporting locally submitted form data 89

6.1 An HTML form . 92

xix

“itdt” — 2008/5/19 — 14:15 — page xx — #22i
i

i
i

i
i

i
i

xx LIST OF FIGURES

6.2 HTML form code . 93

7.1 YBC 7289 . 103
7.2 Network packets data as plain text 114
7.3 Point Nemo surface temperatures as plain text 119
7.4 Hierarchical data example . 122
7.5 Geographic locations of the Data Expo data 124
7.6 Data Expo surface temperatures as plain text 125
7.7 Point Nemo surface temperature as plain text and XML . . . 127
7.8 Point Nemo surface temperature in two XML formats 134
7.9 Point Nemo surface temperature as XML 137
7.10 A DTD for the Point Nemo XML document 138
7.11 Point Nemo temperatures in netCDF format 143
7.12 The header of the Point Nemo netCDF format 145
7.13 The temperature variable in the Point Nemo netCDF format 146
7.14 A spreadsheet of car speed data 149
7.15 Three spreadsheets of vehicle speed data 150
7.16 Data Expo surface temperatures as plain text 164
7.17 Cod data as plain text . 169

9.1 Clones, contigs, and chromosomes 187
9.2 The human genome . 191
9.3 Data Expo air pressure measurements 194
9.4 Data Expo surface temperatures for one location 196
9.5 Data Expo surface temperatures for two locations 197
9.6 Data Expo surface temperatures per month 199
9.7 Data Expo surface temperatures on land per year 206
9.8 Point Nemo surface temperature as XML 212

10.1 SQL CREATE code for the Data Expo 225

11.1 The population of the world 229
11.2 The World Population Clock 230
11.3 HTML code for the World Population Clock 232
11.4 R code for world population growth 235
11.5 Ten world population growth estimates 236
11.6 Counting candy puzzle . 246
11.7 Point Nemo surface temperatures as plain text 270
11.8 Point Nemo surface temperatures in simplified CSV 273
11.9 Point Nemo surface temperatures as plain text and XML . . 274
11.10Point Nemo surface temperatures in NetCDF format 278
11.11Point Nemo surface temperatures as an Excel spreadsheet . . 280
11.12Candy data in case-per-candy format 292
11.13Case-per-candy data in wide and long formats 300

“itdt” — 2008/5/19 — 14:15 — page xxi — #23i
i

i
i

i
i

i
i

LIST OF FIGURES xxi

11.14Utilities data as plain text . 306
11.15Utilities energy usage and cost 314
11.16The amount of rust on wheat plants 322
11.17Data Expo near-surface air temperature as plain text 333
11.18Data Expo surface temperature as plain text 341

12.1 The help page for Sys.sleep() 360

“itdt” — 2008/5/19 — 14:15 — page xxii — #24i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page xxiii — #25i
i

i
i

i
i

i
i

List of Tables

3.1 Some common HTML entities. 49

10.1 Common SQL data types. 224

13.1 Some of the POSIX regular expression character classes. . . . 364

xxiii

“itdt” — 2008/5/19 — 14:15 — page xxiv — #26i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 1 — #27i
i

i
i

i
i

i
i

1
Introduction

1.1 Case Study: Point Nemo

The Pacific Ocean is the largest
body of water on Earth.1

The Live Access Server is one of many services provided by the National
Aeronautics and Space Administration (NASA) for gaining access to their
enormous repositories of atmospheric and astronomical data. The Live
Access Server2 provides access to atmospheric data from NASA’s fleet of
Earth-observing satellites, data that consists of coarsely gridded measure-
ments of major atmospheric variables, such as ozone, cloud cover, pressure,
and temperature. NASA provides a web site that allows researchers to se-
lect variables of interest, and geographic and temporal ranges, and then to
download or view the relevant data (see Figure 1.1). Using this service, we
can attempt to answer questions about atmospheric and weather conditions
in different parts of the world.

The Pacific Pole of Inaccessibility is a location in the Southern Pacific Ocean
that is recognised as one of the most remote locations on Earth. Also known
as Point Nemo, it is the point on the ocean that is farthest from any land
mass.3 Its counterpart, the Eurasian Pole of Inaccessibility, in northern
China, is the location on land that is farthest from any ocean.4

1Image source: Particle Dynamics Group, Department of Oceanography, Texas A&M
University http://www-ocean.tamu.edu/~pdgroup/jpegs/waves.jpg

Used and distributed with permission.
2http://mynasadata.larc.nasa.gov/LASintro.html
3Longitude 123.4 west and latitude 48.9 south.
4Longitude 86.7 west and latitude 46.3 north.

http://www-ocean.tamu.edu/~pdgroup/jpegs/waves.jpg
http://mynasadata.larc.nasa.gov/LASintro.html

“itdt” — 2008/5/19 — 14:15 — page 2 — #28i
i

i
i

i
i

i
i

2 Introduction to Data Technologies

Figure 1.1: NASA’s Live Access Server web site. On the map, the Pacific Pole of

Inaccessibility is marked by a white plus sign.

“itdt” — 2008/5/19 — 14:15 — page 3 — #29i
i

i
i

i
i

i
i

Introduction 3

These two geographical extremes—one in the southern hemisphere, over
2,500 km from the nearest land, and one in the northern hemisphere, over
2,500 km from the nearest ocean—are usually only of interest either to in-
trepid explorers or conspiracy theorists (a remote location is the perfect
place to hide an important secret!). However, our interest will be to in-
vestigate the differences in weather conditions between these interesting
geographical extremes by using NASA’s Live Access Server.

To make our task a little more manageable, for now we will restrict our
attention to a comparison of the surface temperatures at each of the Poles of
Inaccessibility. To be precise, we will look at monthly average temperatures
at these locations from January 1994 to December 1997.

In a book on data analysis, we would assume that the data are already in
a form that can be conveniently loaded into statistical software, and the
emphasis would be on how to analyse these data. However, that is not the
focus of this book. Here, we are interested in all of the steps that must be
taken before the data can be conveniently loaded into statistical software.

As anyone who has worked with data knows, it often takes more time and
effort to get the data ready than it takes to perform the data analysis. And
yet there are many more books on how to analyse data than there are on
how to prepare data for analysis. This book aims to redress that balance.

In our example, the main data collection has already occurred; the data are
measurements made by instruments on NASA satellites. However, we still
need to collect the data from NASA’s Live Access Server. We will do this
initially by entering the appropriate parameters on the Live Access Server
web site. Figure 1.2 shows the first few lines of data that the Live Access
Server returns for the surface temperature at Point Nemo.

The first thing we should always do with a new data set is take a look at
the raw data. Viewing the raw data is an important first step in becoming
familiar with the data set. We should never automatically assume that the
data are reliable or correct. We should always check with our own eyes. In
this case, we are already in for a bit of a shock.

As an antipodean, I expect temperatures to be in degrees Celsius, so values
like 278.9 make me break into a sweat. Even if we expect temperatures on
the Fahrenheit scale, 278.9 is hotter than the average summer’s day.

The problem of course is that these are scientific measurements, so the scale
being used is Kelvin; the temperature scale where zero really means zero.
278.9 K is 5.8◦C or 42◦F, which is a cool, but entirely believable surface
temperature value. When planning a visit to Point Nemo, it would be a
good idea to pack a sweater.

“itdt” — 2008/5/19 — 14:15 — page 4 — #30i
i

i
i

i
i

i
i

4 Introduction to Data Technologies

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 1.2: The first few lines of output from the Live Access Server for the

surface temperature at Point Nemo.

Looking at the raw data, we also see a lot of other information besides the
surface temperatures. There are longitude and latitude values, dates, and
a description of the variable that has been measured, including the units of
measurement. This metadata is very important because it provides us with
a proper understanding of the data set. For example, the metadata makes
it clear that the temperature values are on the Kelvin scale. The metadata
also tells us that the longitude and latitude values, 123.8 W and 48.8 S are
not exactly what we asked for. It turns out that the values provided by
NASA in this data set have been averaged over a large area so this is as
good as we are going to get.

We have established that the data seem credible, but do we have any reason
to believe that the data are accurate or error-free? This comes down to how
the data were recorded. In this case, the data were recorded by machines
(satellites) and only ever existed in an electronic format. In particular,
no humans got in the way, and there was no need for a data entry step.
This increases our level of trust in the data.5

We should also notice that information does not just flow from the Live
Access Server to us. Information is also sent from us to the Live Access
Server to specify the exact data that we require. This is done via a web-
based electronic form, which has several advantages: we can only ask for

5The fact that the data are provided by NASA also provides us with a certain level
of confidence, although see Section 9.2.2 for an example of why we should always check
the data no matter how much we trust the original source.

itdt -- 2008/5/19 -- 14:15 -- page 5 -- #31i
i

i
i

i
i

i
i

Introduction 5

data that the Live Access Server is able to supply because there are only
links for the available data; we can only ask for data that makes sense, for
example the form does not allow us to enter latitudes beyond 90 north or 90
south; and we can get the data immediately—we do not have to wait for the
postal service to deliver a paper form to NASA. These issues of how best
to record data, and in particular how to get information into an electronic
format are discussed in Chapter 5.

Before we go forward, we should take a step back and acknowledge the fact
that we are able to read the data at all. This is a benefit of the storage
format that the data are in; in this case, it is a plain text format. If
the data had been in a more sophisticated binary format, we would need
something more specialised than a common web browser to be able to view
our data. In Chapter 7 we will spend a lot of time looking at the advantages
and disadvantages of different data storage formats.

Having had a look at the raw data, the next step in familiarising ourselves
with the data set should be to look at some numerical summaries and plots.
The Live Access Server does not provide numerical summaries and, although
it will produce some basic plots, we will need a bit more flexibility. So we
will save the data to our own computer and load it into a statistical software
package.

The first step is to save the data. The Live Access Server will provide
an ASCII file for us, or we can just copy-and-paste the data into a text
editor and save it from there. Again, we should appreciate the fact that
this step is quite straightforward and is likely to work no matter what sort
of computer or operating system we are using. This is another feature of
having data in a plain text format.

Now we need to get the data into our statistical software. At this point,
we encounter one of the disadvantages of a plain text format. Although we,
as human readers, can see that the surface temperature values start on the
ninth line and are the last value on each row (see Figure 1.2), there is no
way that statistical software can figure this out on its own. We will have to
describe the format of the data set to our statistical software.

In order to read the data into statistical software, we need to be able to
express the following information: “skip the first 8 lines”; and “on each row,
the values are separated by whitespace (one or more spaces or tabs)”; and
“on each row, the date is the first value and the temperature is the last value
(ignore the other three values)”. Here is one way to do this for the statistical
software package R (Chapter 11 has much more to say about working with
data in R):

“itdt” — 2008/5/19 — 14:15 — page 6 — #32i
i

i
i

i
i

i
i

6 Introduction to Data Technologies

read.table("PointNemo.txt", skip=8,
colClasses=c("character",

"NULL", "NULL", "NULL",
"numeric"),

col.names=c("date", "", "", "", "temp"))

This solution may appear complex, especially for anyone not experienced in
writing computer code. Partly that is because this is complex information
that we need to communicate to the computer and writing code is the best
or even the only way to express that sort of information. However, the
complexity of writing computer code gains us many benefits. For example,
having written this piece of code to load in the data for the Pacific Pole of
Inaccessibility, we can use it again, with only a change in the name of the
file, to read in the data for the Eurasian Pole of Inaccessibility. That would
look like this:

read.table("Eurasia.txt", skip=8,
colClasses=c("character",

"NULL", "NULL", "NULL",
"numeric"),

col.names=c("date", "", "", "", "temp"))

Imagine if we wanted to load in temperature data in this format from several
hundred other locations around the world. Loading in such volumes of data
would now be trivial and fast using code like this; performing such a task
by selecting menus and filling in dialog boxes hundreds of times does not
bear thinking about.

Going back a step, if we wanted to download the data for hundreds of
locations around the world, would we want to fill in the Live Access Server
web form hundreds of times? I most certainly would not. Here again, we
can write code to make the task faster, more accurate, and more bearable.

As well as the web interface to the Live Access Server, it is also possible
to make requests by writing code to communicate with the Live Access
Server. Here is the code to ask for the temperature data from the Pacific
Pole of Inaccessibility:

lasget.pl -x -123.4 -y -48.9 -t 1994-Jan-1:2001-Sep-30 \
-f txt \
http://mynasadata.larc.nasa.gov/las-bin/LASserver.pl \
ISCCPMonthly_avg_nc ts

“itdt” — 2008/5/19 — 14:15 — page 7 — #33i
i

i
i

i
i

i
i

Introduction 7

Again, that may appear complex, and there is a “start up” cost involved in
learning how to write such code. However, this is the only sane method to
obtain large amounts of data from the Live Access Server. Chapters 9 and
11 look at extracting data sets from complex systems and automating tasks
that would otherwise be tedious or impossible if performed by hand.

Writing code, as we have seen above, is the only accurate method of commu-
nicating even mildly complex ideas to a computer; and even for very simple
ideas, writing code is the most efficient method of communication. In this
book, we will always communicate with the computer by writing code. In
Chapter 2 we will discuss the basic ideas of how to write computer code
properly and we will encounter a number of different computer languages
throughout the remainder of the book.

At this point, we have the tools to access the Point Nemo data in a form
that is convenient for conducting the data analysis, but, because this is not
a book on data analysis, this is where we stop. The important points for
our purposes are how the data are recorded, stored, accessed, and processed.
These are the topics that will be expanded upon and discussed at length
throughout the remainder of this book.

Summary

This book is concerned with the issues and technologies involved with the col-
lection, storage, and handling of data sets.

We will focus on the ways in which these technologies can help us to perform
tasks more efficiently and more accurately.

We will emphasise the appropriate use of these technologies; in particular, the
importance of performing tasks by writing computer code.

“itdt” — 2008/5/19 — 14:15 — page 8 — #34i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 9 — #35i
i

i
i

i
i

i
i

2
Writing computer code

There are two aims for this chapter.

First, we need to learn how to write computer code. Most of the com-
puter technologies that we encounter will consist of some sort of computer
language, so it is essential that we learn from the start how to produce
computer code in the right way.

Learning how to write code would be very dull if we only discussed code
writing in abstract concepts, so the second aim of this chapter is to learn a
computer language, with which to demonstrate good code writing.

The language that we will learn in this chapter is the Hypertext Markup
Language, HTML. This language was chosen because it is a simple language,
so it is a nice easy way to start writing computer code, and because it is a
very useful language to know. Documents produced in HTML can be viewed
on virtually any computer in the world because it is an open standard and
all that is needed to view an HTML document is a web browser. For these
reasons, HTML is an excellent format for disseminating scientific reports.
It also makes sense to introduce HTML now, because we will make further
use of it in Chapter 5 when discussing electronic forms.

2.1 Case study: Point Nemo (continued)

Figure 2.1 shows a simple web page that contains a very brief statistical
report on the Poles of Inaccessibility data from Chapter 1. The report
consists of text and an image (a plot), with different formatting applied to
various parts of the text. The report heading is bold and larger than the
other text, the table of numerical summaries is displayed with a monospace
font,1 and supplementary material is displayed in an italic font at the bottom
of the page. In addition, the table of numerical summaries has a grey
background and a border, while the image is horizontally-centred within
the page. Part of the supplementary material at the bottom of the page
also acts as a hyperlink; a mouse click on the underlined text will navigate

1In a monospace font, all characters have the same width.

“itdt” — 2008/5/19 — 14:15 — page 10 — #36i
i

i
i

i
i

i
i

10 Introduction to Data Technologies

to NASA’s Live Access Server home page.

The entire web page in Figure 2.1 is described using HTML.

The HTML code that describes this web page is shown in Figure 2.2. We do
not need to worry about the details of this code yet. What is important is to
notice that all of this code is just text. Some of it is the text that makes up
the content of the report, and other parts are special HTML keywords that
describe how the content should be arranged and displayed; the latter can
be distinguished as the parts surrounded by angled brackets <like this>.
For example, the heading at the top of the page consists of two keywords,
<h3> and </h3> surrounding the actual text of the heading (see lines 7 to
10).

There is also a clear structure to the code in Figure 2.2. For example, for
every“opening tag”<likeThis>, there is a “closing tag”</likeThis>. This
rigid structure is an important feature of computer languages. It is vital
that we observe this structure, but the discipline required will help us to
be accurate, clear, and logical in how we think about tasks and in how we
communicate our instructions to the computer. As we will see later in this
chapter, it is also important that we reflect this structure in the layout of
our code (as has been done in Figure 2.2).

In this chapter we will learn the basics of HTML, with a focus on how the
code itself is written and with an emphasis on the correct way to write
computer code.

2.2 Syntax

The first thing we need to learn about a computer language is the correct
syntax for the language. What is syntax? Consider the following sentence
in the human language called English:

The chicken iz to hot too eat!

This sentence has some technical problems. First of all it contains a spelling
mistake—“iz” should be “is”—but even if we fix that, there are grammatical
errors because the words are not in a valid order. The sentence still does
not make sense:

The chicken is to hot too eat!

“itdt” — 2008/5/19 — 14:15 — page 11 — #37i
i

i
i

i
i

i
i

Writing computer code 11

Figure 2.1: A simple web page as displayed by the Iceweasel browser on Debian

Linux.

“itdt” — 2008/5/19 — 14:15 — page 12 — #38i
i

i
i

i
i

i
i

12 Introduction to Data Technologies

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Poles of Inaccessibility</title>

5 </head>

6 <body>

7 <h3>

8 Temperatures at the Pacific and Eurasian Poles of

9 Inaccessibility

10 </h3>

11

12 <center>

13 <table border="1" bgcolor="#CCCCCC">

14 <tr>

15 <td>

16 <pre>

17

18 pacific eurasian

19 min 276 258

20 max 283 293

21 </pre>

22 </td>

23 </tr>

24 </table>

25 </center>

26

27 <p>

28 Temperatures depend on the time of the year, which

29 hemisphere the pole is located in, and on the fact

30 that large bodies of water tend to absorb and release

31 less heat compared to large land masses.

32 </p>

33

34 <center></center>

35

36 <hr>

37 <p>

38 <i>

39 Source: NASA’s

40

41 Live Access Server.

42 </i>

43 </p>

44 </body>

45 </html>

Figure 2.2: The HTML code behind the web page in Figure 2.1. The line numbers

(in grey) are just for reference.

“itdt” — 2008/5/19 — 14:15 — page 13 — #39i
i

i
i

i
i

i
i

Writing computer code 13

The sentence is only a valid English sentence once both the spelling and
grammar are correct:

The chicken is too hot to eat!

When we write code in a computer language, we call these spelling or gram-
matical rules the syntax of the language.

It is very important to note that computers tend to be far less flexible
than humans when it comes to comprehending language expressions. It
is possible for a human to easily understand the original English sentence,
even with spelling and grammatical errors. Computers are much more fussy
and we will need to get the language syntax perfect before the computer
will understand any code that we write.

The next section describes the basic syntax rules for the HTML language.
This information will allow us to write HTML code that is correct in terms
of spelling and grammar.

2.2.1 HTML syntax

HTML is nice because it is defined by a standard, so there is a single,
public specification of HTML syntax. Unfortunately, as is often the case, it
is actually defined by several standards. Put another way, there are several
different versions of HTML, each with its own standard. We will focus on
HTML 4.01 in this book.

HTML has a very simple syntax. HTML code consists of two basic compo-
nents: elements, which are special HTML keywords, and content, which
is just normal everyday text.

An element consists of a start tag, an end tag and some content in be-
tween. For example, the title element from Figure 2.2 is shown below:

<title>
Poles of Inaccessibility

</title>

There is a start tag <title>, an end tag </title>, and plain text content.

The title element in a web page is usually displayed in the title bar of the
web browser, as can be seen in Figure 2.1.

Some HTML elements may be “empty”, which means that they only consist

“itdt” — 2008/5/19 — 14:15 — page 14 — #40i
i

i
i

i
i

i
i

14 Introduction to Data Technologies

of a start tag (no end tag and no content). An example is the img (short for
“image”) element from Figure 2.2, which inserts the plot in the web page.

The entire img element consists of this single tag.

There is a fixed set of valid HTML elements and only those elements can
be used within HTML code. We will encounter several important elements
in this chapter and a more comprehensive list is provided in Chapter 3.

HTML elements can have one or more attributes, which provide more
information about the element. An attribute consists of the attribute name,
an equals sign, and the attribute value, which is surrounded by quote marks.
We have just seen an example in the img element above. The img element
has an attribute called src that describes the location of a file containing the
picture to be drawn on the web page. In the example above, the attribute
is src="poleplot.png".

Many attributes are optional and if they are not specified a default value is
provided.

HTML tags must be ordered properly. All elements must nest cleanly and
some elements are only allowed inside specific other elements. For example,
a title element can only be used inside a head element, and the title
element must start and end within the head element. The following HTML
code is invalid because the title element does not finish within the head
element:

<head>
<title>
Poles of Inaccessibility

</head>
</title>

Finally, there are a few elements that must occur in an HTML document:
there must be a DOCTYPE declaration, which states what computer language
we are using; there must be a single html element, with a single head element
and a single body element inside; and the head element must contain a single
title element. Figure 2.3 shows a minimal HTML document.

“itdt” — 2008/5/19 — 14:15 — page 15 — #41i
i

i
i

i
i

i
i

Writing computer code 15

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>A Minimal HTML Document</title>

</head>

<body>

Your content goes here!

</body>

</html>

Figure 2.3: A minimal HTML document.

2.2.2 Escape sequences

In all computer languages, certain words or characters have a special mean-
ing within the language. These are sometimes called reserved words to
indicate that they are reserved by the language for special use and cannot
be used for their normal human-language purpose. This means that some
words can never be used when writing in a computer language or, in other
cases, a special code must be used instead. We will see reserved words
and characters in all of the computer languages that we meet. This section
describes some examples for HTML.

The content of an HTML element (whatever is written between the start
and end tags) is mostly up to the author of the web page, but there are some
characters that have a special meaning in the HTML language so these must
be avoided. For example, the < character marks the start of an HTML tag,
so this cannot be used for its normal meaning of “less than”.

If we need to have a less-than sign within the content of an HTML element,
we have to type < instead. This is an example of what is called an
escape sequence.

Another special character in HTML is the greater-than sign, >. To produce
one of these in the content of an HTML element, we must type >.

All HTML escape sequences are of this form: they start with an ampersand,
&. This means of course that the ampersand is itself a special character,
with its own escape sequence, &. A larger list of special characters and
escape sequences in HTML is given in Section 3.1.2.

“itdt” — 2008/5/19 — 14:15 — page 16 — #42i
i

i
i

i
i

i
i

16 Introduction to Data Technologies

line 13 column 9 - Warning: <table> lacks "summary" attribute

line 34 column 17 - Warning: lacks "alt" attribute

Info: Doctype given is "-//W3C//DTD HTML 4.01 Transitional//EN"

Info: Document content looks like HTML 4.01 Transitional

2 warnings, 0 errors were found!

Figure 2.4: Part of the output from running HTML Tidy on the HTML code in

Figure 2.2.

2.2.3 Checking syntax

Knowing how to write the correct syntax for a computer language is not
a guarantee that we will write the correct syntax for a particular piece of
code. One way to check whether we have our syntax correct is to stare at
it and try to see any errors. However, in this book, such a tedious, manual
approach is discouraged; the computer is much better at this sort of task.

In general, we will enlist the help of computer software to check that the
syntax of our code is correct. In the case of HTML code, there is a piece of
software called HTML Tidy that can do the syntax checking.

2.2.4 Checking HTML code

HTML Tidy is a program for checking the syntax of HTML code. It can be
downloaded from Source Forge2 to run on your own computer and an online
service is provided by the World Wide Web Consortium (W3C) at http://
cgi.w3.org/cgi-bin/tidy or by Site Valet at http://valet.htmlhelp.
com/tidy/.

HTML Tidy checks the syntax of HTML code, reports any problems that
it finds, and produces a suggestion of what the correct code should look
like. Figure 2.4 shows part of the output from running HTML Tidy on the
simple HTML code in Figure 2.2.

An important skill to develop for writing computer code is the ability to
decipher warning and error messages that the computer displays. In this
case, there are no errors in the HTML code, which means that the syntax is
correct. However, HTML Tidy has some warnings that include suggestions
to make the code better.

2http://tidy.sourceforge.net/

http://cgi.w3.org/cgi-bin/tidy
http://cgi.w3.org/cgi-bin/tidy
http://valet.htmlhelp.com/tidy/
http://valet.htmlhelp.com/tidy/
http://tidy.sourceforge.net/

“itdt” — 2008/5/19 — 14:15 — page 17 — #43i
i

i
i

i
i

i
i

Writing computer code 17

2.2.5 Reading error information

The error (or warning) information provided by computer software is often
very terse and technical. Reading error messages is a skill that improves with
experience and it is important to seek out any piece of useful information
in a message. Even if the message as a whole does not make sense, if the
message can only point us to the correct area within the code, our mistake
may become obvious.

In general, when the software checking our code encounters a series of errors,
it is possible for the software to become confused. This can lead to more
errors being reported than actually exist. It is always a good idea to tackle
the first error first and it is usually a good idea to recheck code after fixing
each error. Fixing the first error will sometimes eliminate or at least modify
subsequent error messages.

The first warning from HTML Tidy in Figure 2.4 is this:

line 13 column 9 - Warning: <table> lacks "summary" attribute

To an experienced eye, the problem is clear, but this sort of message can
be quite opaque for people who are new to writing computer code. A good
first step is to make use of the information that is supplied about where the
problem has occurred. In this case, we need to find the ninth character on
line 13 of our code.

The line of HTML code in question is this:

<table border="1" bgcolor="#CCCCCC">

Column 9 on this line is the < at the start of the HTML tag.

The warning message mentions <table>, so we might guess that we are
dealing with the opening tag of a table element (which in this case just
confirms that we are looking at the right place in our code). The message
is complaining that this tag does not have an attribute called summary.
Looking at the code, we see that there are two attributes, border and
bgcolor, but nothing called summary. The solution clearly involves adding
a summary attribute to this tag.

The second warning is similar. On line 34, there is an tag that has
a src attribute, but HTML Tidy would like us to add an alt attribute as
well.

So far so good—we have determined the problem. Now all we have to do is
find a solution. In both cases, we need to add an extra attribute, and we

“itdt” — 2008/5/19 — 14:15 — page 18 — #44i
i

i
i

i
i

i
i

18 Introduction to Data Technologies

even know the names of the attributes that we need to add. For example,
the attribute that we need to add to the <table> tag will be something of
the form: summary="some value". However, it is not yet clear what the
value of the attribute should be. This leads us to the next important skill
to acquire for writing computer code. It is important to be able to read the
documentation for a computer language (the manuals, help pages, online
forums, etc).

2.2.6 Reading documentation

There are two main problems associated with learning a human language:
the rules of grammar are usually totally inconsistent, with lots of exceptions
and special cases; and there is an enormous vocabulary of different words
to learn.

The nice thing about learning a computer language is that the rules of
grammar are usually quite simple, there are usually very few of them, and
they are usually very consistent.

Unfortunately, computer languages are similar to human languages in terms
of vocabulary. The time-consuming part of learning a computer language
involves learning all of the special words in the language and their meanings.

What makes this task worse is the fact that the reference material for com-
puter languages, much like the error messages, can be terse and technical.
As for reading error messages, practice and experience are the only known
cures.

To continue with our HTML example, we want to find out more about the
summary attribute of a table element. The source of definitive information
on HTML is the W3C, the standards body that publishes the official “rec-
ommendations” that define a number of web-related computer languages.

The HTML 4.01 Specification3 is an example of highly technical documen-
tation. For example, Figure 2.5 shows an extract from the definition of a
table element.

This is likely to appear quite intimidating for people who are new to writing
computer code, although the information that we need is in there (the first of
the “Attribute definitions” tells us about the summary attribute). However,
one of the advantages of using established and open standards is that a lot
of information for computer languages like HTML is available on the world-
wide web and it is often possible to discover information that is at a more

3http://www.w3.org/TR/html401

http://www.w3.org/TR/html401

“itdt” — 2008/5/19 — 14:15 — page 19 — #45i
i

i
i

i
i

i
i

Writing computer code 19

Figure 2.5: An extract from the W3C HTML 4.01 Specification for the table

element.

“itdt” — 2008/5/19 — 14:15 — page 20 — #46i
i

i
i

i
i

i
i

20 Introduction to Data Technologies

Figure 2.6: An extract from the WDG HTML 4.0 Reference for the table element.

introductory level. For HTML, a more accessible and discursive presentation
of the information about the HTML language is provided by the Web Design
Group4 (WDG). Figure 2.6 shows part of the page containing the WDG
description of the table element and Figure 2.7 shows the part of that page
that is devoted to the summary attribute.

From these documents, we can see that the summary attribute for a table
element is supposed to contain a description of the purpose and content of
the table and that this information is especially useful for use with browsers
that do not or cannot graphically display the table. For the HTML code
that we are working with (Figure 2.2), we could modify line 13 like this:

<table border="1" bgcolor="#CCCCCC"
summary="A simple border for numerical data">

4http://htmlhelp.com/reference/html40/

http://htmlhelp.com/reference/html40/

“itdt” — 2008/5/19 — 14:15 — page 21 — #47i
i

i
i

i
i

i
i

Writing computer code 21

Figure 2.7: An extract from the WDG HTML 4.0 Reference for the table element,

showing the discussion of the summary attribute.

2.3 Semantics

Consider the correct version of the english sentence we saw in Section 2.2:

The chicken is too hot to eat!

This now has correct syntax, which means that there are no spelling errors
or grammatical errors, which means that we should be able to successfully
extract the meaning from the sentence. When we write code in a computer
language, we call the meaning of the code—what the computer will do when
the code is run—the semantics of the code. Computer code has no defined
semantics until it has a correct syntax, so we should always check that our
code is free of errors before worrying about whether it does what we want.

Look again at the english sentence; what does the sentence mean? One
reading of the sentence suggests that a person has burnt his or her mouth
with a piece of cooked chicken. However, there is another possible meaning;
perhaps a chicken has lost its appetite because it has been out in the sun
too long! One problem with human languages is that they tend to be very
ambiguous.

Computer languages, by comparison, tend to be very precise, so as long as
we get the syntax right, there should be a clear semantics for the code. This
is important because it means that we can expect our code to produce the

“itdt” — 2008/5/19 — 14:15 — page 22 — #48i
i

i
i

i
i

i
i

22 Introduction to Data Technologies

same result on different computers and even with different software.

2.3.1 HTML semantics

The HTML 4.01 specification defines a fixed set of valid HTML elements
and describes the meaning of each of those elements in terms of how they
should be used to create a web page.

In this section, we will use the simple HTML page shown at the start of
this chapter to demonstrate some of the basic HTML elements. Chapter 3
provides a larger list. Figure 2.8 and Figure 2.9 are reproductions of Figures
2.1 (what the web page looks like) and 2.2 (the HTML code) for convenient
reference.

The main part of the HTML code in Figure 2.9 is contained within the body
element (lines 6 to 44). This is the content of the web page; the information
that will be displayed by the web browser.5

The first element we encounter within the body is an h3 element (lines 7
to 10). The contents of this element provide a title for the page, which is
indicated by drawing the relevant text bigger and bolder than normal text.
There are several such heading elements in HTML, from h1 to h6, where the
number indicates the heading“level”, with 1 being the top level (biggest and
boldest) and 6 the lowermost level. Note that this element does two things:
it describes the structure of the information in the web page and it controls
the appearance for the information—how the text should be displayed. The
structure of the document is what we should focus on; we will discuss the
appearance of the web page in more depth in Section 2.5.1.

The next element in our code is a center element (lines 12 to 25). This
only controls the appearance of its content, ensuring that the table within
this element is horizontally centred.

Next up is the table element (lines 13 to 24). Within a table element,
there must be a tr (table row) element for each row of the table, and within
each tr, there must be a td (table data) element for each column of the
table. In this case, the table consists of a single row (lines 14 to 23) and a
single column (lines 15 to 22). The border attribute of the table element
specifies that a border should be drawn around the outside of the table and
the bgcolor attribute specifies a light grey background for the table.

The content of the table is a pre (preformatted text) element (lines 16 to
21). This element is used to display text exactly as it is entered, using a

5We will see important uses for the head element later in Section 2.5.1.

“itdt” — 2008/5/19 — 14:15 — page 23 — #49i
i

i
i

i
i

i
i

Writing computer code 23

Figure 2.8: A simple web page as displayed by the Iceweasel browser on Debian

Linux. This is a reproduction of Figure 2.1.

“itdt” — 2008/5/19 — 14:15 — page 24 — #50i
i

i
i

i
i

i
i

24 Introduction to Data Technologies

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Poles of Inaccessibility</title>

5 </head>

6 <body>

7 <h3>

8 Temperatures at the Pacific and Eurasian Poles of

9 Inaccessibility

10 </h3>

11

12 <center>

13 <table border="1" bgcolor="#CCCCCC">

14 <tr>

15 <td>

16 <pre>

17

18 pacific eurasian

19 min 276 258

20 max 283 293

21 </pre>

22 </td>

23 </tr>

24 </table>

25 </center>

26

27 <p>

28 Temperatures depend on the time of the year, which

29 hemisphere the pole is located in, and on the fact

30 that large bodies of water tend to absorb and release

31 less heat compared to large land masses.

32 </p>

33

34 <center></center>

35

36 <hr>

37 <p>

38 <i>

39 Source: NASA’s

40

41 Live Access Server.

42 </i>

43 </p>

44 </body>

45 </html>

Figure 2.9: The HTML code behind the web page in Figure 2.8. This is a

reproduction of Figure 2.2.

“itdt” — 2008/5/19 — 14:15 — page 25 — #51i
i

i
i

i
i

i
i

Writing computer code 25

monospace font, with all spaces faithfully reproduced. The point of this will
become clear when we discuss the p element below.

The widths of the columns in an HTML table are automatically determined
by the web browser to allow enough space for the contents of the table.

The next element in our code is a p (paragraph) element (lines 27 to 32).
The important thing to notice about this element is that the contents are
not displayed as they appear in the code (compare the line breaks in the
HTML code within the p element in Figure 2.9 with the line breaks in the
corresponding paragraph of text in Figure 2.8). The p tags indicate that
the contents should be arranged as a paragraph of text.

After the paragraph, we have another center element which ensures the
horizontal centering of the plot. The plot is generated by the img (image)
element (line 34). The src attribute of the img element specifies the location
of the file for the image.

At the bottom of the page we have an hr (horizontal rule) element (line 36),
which produces a horizontal line across the page, followed by a final para-
graph (p element) of text (lines 37 to 43). The text within this paragraph
is italicized because it is contained within an i element (lines 38 to 42).

Part of the text in the final paragraph is also a hyperlink. The a (anchor)
element around the text “Live Access Server” (lines 40 and 41) means that
this text is highlighted and underlined. The href attribute specifies that
when the text is clicked, the browser will navigate to the home page of
NASA’s Live Access Server.

These are some of the simple HTML elements that can be used to create web
pages. There are many more elements that can be used to create a variety
of different effects (Chapter 3 describes a few more and we will meet some
special, interactive HTML elements in Chapter 5), but the basic pattern
is the same: the code consists of HTML tags surrounding the important
information that is to be displayed.

2.3.2 Running code

Having explained what the code in Figure 2.9 is supposed to do, how do
we actually make it produce a web page like the one in Figure 2.8? This
section looks at how to run computer code to get it to perform a task.

Just because there is a clear meaning for a piece of code does not mean
that a human reading the code, even the human who wrote the code, will
interpret the meaning of the code correctly. The only way to find out what

“itdt” — 2008/5/19 — 14:15 — page 26 — #52i
i

i
i

i
i

i
i

26 Introduction to Data Technologies

a piece of code really means is to run the code and see what it does.

As with syntax checking, we need to use software to run the code that we
have written.

In the case of HTML, there are many software programs that will run the
code, but the most common type is a web browser, such as Internet Explorer
or Firefox.

2.3.3 Running HTML code

All that we need to do to run our HTML code is to open the file contain-
ing our code with a web browser. We can then see whether the code has
produced the result that we want.

Web browsers tend to be very lenient with HTML syntax. If there is a
syntax error in HTML code, most web browsers try to figure out what the
code should do (rather than reporting an error). Unfortunately, this can
lead to problems where two different web browsers will produce different
results from exactly the same code.

Another problem arises because most web browsers do not completely im-
plement the HTML standards. This means that some HTML code will not
run correctly on some browsers.

The solution to these problems, for this book, has two parts: we will not
use a browser to check our HTML syntax (we will use HTML Tidy instead,
see Section 2.2.3); and we will use a single browser (Firefox) to define what
a piece of HTML code should do. We will only be using a simple subset of
the HTML language so the chance of encountering ambiguous behaviour is
small anyway.

If we run HTML code and the result is what we want, we are almost, but
not quite finished. In this case, we have code that has the correct syntax
and the correct semantics, but we must also worry about whether our code
has the correct aesthetics. It is important for code to be at least tidy and
this topic is addressed in Section 2.4.

The next section looks at the situation where we run our code and the result
is not what we want.

“itdt” — 2008/5/19 — 14:15 — page 27 — #53i
i

i
i

i
i

i
i

Writing computer code 27

2.3.4 Debugging code

When we have code that has correct syntax and runs, but does not behave
correctly, we say that there is a bug in our code. The process of fixing our
code so that it does what we want it to is called debugging the code.

It is often the case that debugging code takes much longer than writing the
code in the first place, so it is an important skill to acquire.

The source of common bugs varies enormously with different computer lan-
guages, but there are some common steps we should take when fixing any
sort of code:

Do not blame the computer.
There are two possible sources of problems: our code is wrong or the
computer (or software used to run our code) is wrong. It will almost
always be the case that our code is wrong. If we are completely con-
vinced that our code is correct and the computer is wrong, we should
go home, have a sleep and come back the next day. The problem in
our code will usually then become apparent.

Recheck the syntax.
Whenever a change is made to the code, check the syntax again before
trying to run the code again. If the syntax is wrong, there is no hope
that the code will run correctly.

Develop code incrementally.
Do not try to write an entire web page at once. Write a small piece
of code and get that to work, then add more code and get that to
work. When things stop working, it will be obvious which bit of code
is broken.

Apply the scientific method.
Do not make many changes to the code at once to try to fix it. Even
if the problem is cured, it will be difficult to determine which change
made the difference. A common problem is introducing new problems
as part of a fix for an old problem. Make one change to the code
and see if that corrects the behaviour, then revert that change before
trying something else.

Read the documentation.
For all of the computer languages that we will deal with in this book,
there are official documents plus many tutorials and online forums
that contain information and examples for writing code. Find them
and read them.

“itdt” — 2008/5/19 — 14:15 — page 28 — #54i
i

i
i

i
i

i
i

28 Introduction to Data Technologies

Ask for help.
In addition to the copious manuals and tutorials on the web, there
are many forums for asking questions about computer languages. The
friendliness of theses forums varies and it is important to read the
documentation before taking this step.

Chapter 3 provides some basic information about common HTML elements
and Section 3.3 provides some good starting points for detailed documenta-
tion about HTML.

We will discuss specific debugging tools for some languages as we meet them.

2.4 Writing for an audience

Up to this point, we have focused on making sure that the code we write
works correctly; that it has no syntax errors and that it does what we want
it to do.

However, having code that successfully performs a task is not the end of our
journey. It is also important that we make our code neat and tidy. Just like
owning a car, if we want our code to keep working tomorrow and the next
day and the day after that, it is important that we maintain our code and
keep it clean. This section discusses the proper way to write code so that it
will last.

There are two important audiences to consider when writing computer code.
The obvious one is the computer; it is vitally important that the computer
understands what we are trying to tell it to do. This is mostly a matter of
getting the syntax of our code right.

The other audience for code consists of humans. While it is important that
code works (that the computer understands it), it is also essential that the
code is comprehensible to people. And this does not just apply to code
that is shared with others, because the most important person who needs
to understand a piece of code is the original author of the code! It is very
easy to underestimate the probability of having to reuse a piece of code
weeks, months, or even years after it was initially written, and in such cases
it is common for the code to appear much less obvious on a second viewing,
even to the original author.

It is also easy to underestimate the likelihood that other people will get to
view a piece of code. For example, our scientific peers should want to see
our code so that they know what we did to our data. All code should be
treated as if it is for public consumption.

“itdt” — 2008/5/19 — 14:15 — page 29 — #55i
i

i
i

i
i

i
i

Writing computer code 29

2.4.1 Layout of code

One simple, but important way that code can be improved for a human
audience is to format the code so that it is easy to read and easy to navigate.

Consider the following two code chunks. They contain identical HTML
code, as far as the computer’s understanding is concerned, but they are
vastly different in terms of how easy it is for a human reader to comprehend
them. Try finding the “title” part of the code. Even without knowing
anything about HTML, this is a ridiculously easy task in the second layout,
and annoyingly difficult in the first.

<html><head><title>A Minimal HTML
Document</title></head><body>
Your content goes here!</body>

<html>
<head>

<title>A Minimal HTML Document</title>
</head>
<body>

Your content goes here!
</body>

This demonstrates the basic idea behind laying out code. The changes are
entirely cosmetic, but they are extremely effective. It also demonstrates one
important layout technique: indenting.

2.4.2 Indenting code

The idea of indenting code is to expose the structure of the code. What
“structure” means will vary between computer languages, but in most cases
the language will contain blocks of the form:

BEGIN
body line
body line

END

As demonstrated, a simple indenting rule is always to indent the “body” of
a block of code. This is very easy to demonstrate using HTML, where code
blocks are formed by start and end tags. Here is a simple example:

“itdt” — 2008/5/19 — 14:15 — page 30 — #56i
i

i
i

i
i

i
i

30 Introduction to Data Technologies

<head>
<title>A Minimal HTML Document</title>

</head>

The amount of indenting is a personal choice. The examples here have used
4 spaces, but 2 spaces or even 8 space are also common. Whatever indenta-
tion is chosen, it is essential that the indenting rule is applied consistently,
especially when more than one person might modify the same piece of code.

Exposing structure of code by indenting is important because it makes it
easy for someone reading the code to navigate within the code. It is easy
to identify different parts of the code, which makes it easier to see what the
code is doing.

Another useful result of indenting is that it provides a basic check on the
correctness of code. Look again at the simple HTML code example. Does
anything look wrong?

<html>
<head>

<title>A Minimal HTML Document</title>
</head>
<body>

Your content goes here!
</body>

Even without knowing anything about HTML, the lack of symmetry in the
layout suggests that there is something missing at the bottom of this piece
of code. In this case, indenting has alerted us to the fact that there is no
end </html> tag.

2.4.3 Long lines of code

Another situation where indenting should be applied is when a line of com-
puter code becomes very long. It is a bad idea to have a single line of code
that is wider than the screen on which the code is being viewed (so that we
have to scroll across the window to see all of the code). When this happens,
the code should be split across several lines (most computer languages do
not notice the difference). Here is an example of a line of HTML code that
is too long.

<table border="1" bgcolor="#CCCCCC" summary="A simple border for numerical data">

“itdt” — 2008/5/19 — 14:15 — page 31 — #57i
i

i
i

i
i

i
i

Writing computer code 31

Here is the code again, split across several lines. It is important that the
subsequent lines of code are indented so that they are visually grouped with
the first line.

<table border="1" bgcolor="#CCCCCC"
summary="A simple border for numerical data">

In the case of a long HTML element, a reasonable approach is to left-align
the start of all attributes within the same tag (as shown above).

2.4.4 White space

White space refers to empty gaps in code, which are important for making
code easy for humans to read. Wouldyouwriteinyournativelanguagewithout-
puttingspacesbetweenthewords?

Indenting is a form of white space that always appears at the start of a line,
but white space is effective within and between lines of code as well. For
example, the following code is too dense and therfore is difficult to read.

<table border="1"width="100%"bgcolor="#CCCCCC">

This modification of the code, with extra spaces, is much easier on the eye.

<table border="1" width="100%" bgcolor="#CCCCCC">

The two code chunks below demonstrate the usefulness of blank lines be-
tween code blocks to help expose the structure, particularly in large pieces
of code.

<html>
<head>

<title>
A Minimal HTML Document
</title>

</head>
<body>

Your content goes here!
</body>
</html>

<html>

<head>
<title>
A Minimal HTML Document
</title>

</head>

<body>
Your content goes here!

</body>

</html>

“itdt” — 2008/5/19 — 14:15 — page 32 — #58i
i

i
i

i
i

i
i

32 Introduction to Data Technologies

Again, exactly when to use spaces or blank lines depends on personal style.

2.4.5 Documenting code

In Section 2.2.6, we discussed the importance of being able to read docu-
mentation about a computer language. In this section, we consider the task
of writing documentation for our own code.

As with the layout of code, the purpose of documentation is to communicate.
The obvious target of this communication is other people, so that they know
what we did. A less obvious, but no less important, target is the code author.
It is essential that when we return to a task days, weeks, or even months
after we first performed the task, we are able to pick up the task again, and
pick it up quickly.

Most of what we will have to say about documentation will apply to writing
comments—messages written in plain language, embedded in the code,
and which the computer ignores.

2.4.6 HTML comments

Here is how to include a comment within HTML code.

<!-- This is a comment -->

Anything between the opening <!-- and closing -->, including HTML tags,
is completely ignored by the computer. It is only there to edify a human
reader.

R> htmlcss <- readLines(file.path("HTML", "htmlcss.html"))
R> commentstart <- grep("<!--", htmlcss)
R> commentend <- grep("-->", htmlcss)

There is an example of the use of a comment in HTML code on lines 6 and
7 in Figure 2.10 (see 36)).

How many comments?

Having no comments in code is generally a bad idea and it is usually the
case that people do not add enough comments to their code. However,

“itdt” — 2008/5/19 — 14:15 — page 33 — #59i
i

i
i

i
i

i
i

Writing computer code 33

it can also be a problem if there are too many comments.6 Comments
should not just be a repetition of the code. Good uses of comments include:
providing a conceptual summary of a block of code; explaining a particularly
complicated piece of code; and explaining arbitrary constant values.

2.5 The DRY principle

One of the purposes of this book is to introduce and explain various tech-
nologies for working with data. We have already met one such technology,
HTML, for producing reports on the world-wide web.

Another purpose of this book is to promote the correct approach, or “best
practice”, for using these technologies. An example of this is the emphasis
on writing code using computer languages rather than learning to use dialog
boxes and menus in a software application.

In this section, we will look at another example of best practice called the
DRY principle,7 which has important implications for how we manage
the code that we write.

DRY stands for Don’t Repeat Yourself and the principle is that there
should only ever be one copy of any important piece of information.

The reason for this principle is that one copy is much easier to maintain
than multiple copies; if the information needs to be changed, there is only
one place to change it. In this way the principle promotes efficiency. Fur-
thermore, if we lapse and allow several copies of a piece of information, then
it is possible for the copies to diverge or for one copy to get out of date.
From this perspective, having only one copy improves our accuracy.

To understand the DRY principle, consider what happens when we move
house to a new address. One of the many inconveniences of shifting house
involves letting everyone know our new address. We have to alert schools,
banks, insurance companies, doctors, friends, etc. The DRY principle sug-
gests that we should have only one copy of our address stored somewhere
(e.g., at the post office) and everyone else should refer to that address. That
way, if we shift house, we only have to tell the post office the new address
and everyone will see the change. In the current situation, where there are
multiple copies of our address, it is easy for us to forget to update one of
the copies when we change address. For example, we might forget to tell

6If there are too many comments, it can become a burden to ensure that the comments
are all correct if the code is ever modified. It can even be argued that too many comments
make it hard to see the actual code!

7Doff cap to Andy Hunt and Dave Thomas, the “Pragmatic Programmers”.

“itdt” — 2008/5/19 — 14:15 — page 34 — #60i
i

i
i

i
i

i
i

34 Introduction to Data Technologies

the bank, so all our bank correspondence will be sent to the wrong address!

The DRY principle will be very important when we discuss the storage of
data (Chapter 7), but it can also be applied to computer code that we
write. In the next section, we will look at one example of applying the DRY
principle to writing computer code.

2.5.1 Cascading Style Sheets

Cascading Style Sheets (CSS) is a language that is used to describe how
to display information. It is commonly used with HTML to control the
appearance of a web page. In fact, the preferred way to produce a web page
is to use HTML to indicate the structure of the information and CSS to
specify the appearance. One of the reasons that this is preferred is due to
the DRY principle.

CSS syntax

CSS code consists of a series of rules and each rule comprises a selector
and a set of properties. The selector specifies what sort of HTML element
the rule applies to and the properties specify how that element should be
displayed. An example of a CSS rule is shown below.

table {
border-width: thin;
border-style: solid;

}

In this rule, the selector is table so this rule will apply to all HTML table
elements.

There are two properties in this rule, both relating to the border that is
drawn around the table. The properties specify that a thin, solid border
should be drawn around tables.

CSS is a completely separate language from HTML, but the rules in CSS
code can be combined with HTML to control the appearance of a web page.

CSS code can be associated with HTML code in several ways, but the best
way is to create a separate file for the CSS code. In this way, a web page
consists of two files: one file contains the main content with HTML code to
specify the structure and another file contains the CSS code to specify the
appearance. The HTML file is linked to the CSS file via a special element

“itdt” — 2008/5/19 — 14:15 — page 35 — #61i
i

i
i

i
i

i
i

Writing computer code 35

in the HTML code.

To demonstrate the combination of CSS and HTML code, and to describe
more about CSS rules, we will reproduce the web page from the start of this
chapter using CSS.

Figure 2.10 shows HTML code for a simple statistical report. This is very
similar code to that in Figure 2.2, but several attributes have been removed
and others have been added. For example, the table element used to have
attributes controlling its appearance (this code is from line 13 in Figure
2.2):

<table border="1" bgcolor="#CCCCCC">

Now, the table element has only a class attribute (this code is from line
18 in Figure 2.10):

<table class="figure">

We will see an explanation of the class attribute soon.

The most important difference in the HTML code is the addition of a link
element within the head element (lines 9 and 10 in Figure 2.10). The
relevant line is this:

<link rel="stylesheet" href="csscode.css" type="text/css">

This piece of HTML code specifies that there is a file called csscode.css
that contains CSS rules and that those rules should be applied to the HTML
elements in this (HTML) file. The contents of the file csscode.css are
shown in Figure 2.11.

There are several rules in the CSS code and they demonstrate several dif-
ferent ways of specifying CSS rule selectors as well as several different CSS
properties.

The first rule is this:

table {
background-color: #CCCCCC;
border-width: thin;
border-style: solid;
white-space: pre;
font-family: monospace;

}

“itdt” — 2008/5/19 — 14:15 — page 36 — #62i
i

i
i

i
i

i
i

36 Introduction to Data Technologies

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Poles of Inaccessibility</title>

5

6 <!-- The appearance of the web page is controlled by

7 CSS code rather than by HTML attributes -->

8

9 <link rel="stylesheet" href="csscode.css"

10 type="text/css">

11 </head>

12 <body>

13 <h3>

14 Temperatures at the Pacific and Eurasian Poles of

15 Inaccessibility

16 </h3>

17

18 <table class="figure">

19 <tr>

20 <td>

21 pacific eurasian

22 min 276 258

23 max 283 293

24 </td>

25 </tr>

26 </table>

27

28 <p>

29 Temperatures depend on the time of the year, which

30 hemisphere the pole is located in, and on the fact

31 that large bodies of water tend to absorb and release

32 less heat compared to large land masses.

33 </p>

34

35

36

37 <hr>

38 <p class="footer">

39 Source: NASA’s

40

41 Live Access Server.

42 </p>

43 </body>

44 </html>

Figure 2.10: The HTML code behind the web page in Figure 2.12. This is similar

to the code in Figure 2.2 except that it combines HTML and CSS code, rather

than using pure HTML.

“itdt” — 2008/5/19 — 14:15 — page 37 — #63i
i

i
i

i
i

i
i

Writing computer code 37

1 table {

2 background-color: #CCCCCC;

3 border-width: thin;

4 border-style: solid;

5 white-space: pre;

6 font-family: monospace;

7 }

8

9 .figure {

10 margin-left: auto;

11 margin-right: auto;

12 }

13

14 img {

15 display: block;

16 }

17

18 p.footer {

19 font-style: italic;

20 }

Figure 2.11: The CSS code behind the appearance of the web page in Figure 2.12.

The CSS rules in this code are applied to the HTML elements in Figure 2.10.

“itdt” — 2008/5/19 — 14:15 — page 38 — #64i
i

i
i

i
i

i
i

38 Introduction to Data Technologies

This rule has a simple selector, table, so it will apply to all table elements.
The first three properties specify that the background colour for the table
should be a light grey and that there should be a thin, solid border.8 The
last two properties control the appearance of the text within the table and
specify that a monospace font should be used and that the text should be
displayed exactly as it appears in the HTML code (in particular, all spaces
should be displayed).

The second rule demonstrates a different sort of CSS rule selector, called a
class selector:

.figure {
margin-left: auto;
margin-right: auto;

}

The . (full stop) at the start of the selector name is important. It indicates
that what follows is the name of a CSS class. This rule will be applied to
any HTML element that has a class attribute with the value "figure".
Looking at the HTML code in Figure 2.10, we can see that this rule will
apply to both the table element and the img element (both of these elements
have attributes class="figure"; see lines 18 and 35).

The properties in this second CSS rule are also a little more complicated.
These control the margins (empty space) to the left and right of the relevant
HTML element. By specifying auto margins we are letting these margins
grow to be as large as they can, but still leave enough room for the HTML
element. This is how we can centre an HTML element on the page using
CSS.

The third CSS rule again has a straightforward selector, img. This rule will
apply to all img elements. The CSS property display: block makes the
img element behave like a paragraph of its own,9 which is necessary to make
the previous rule centre the image.

img {
display: block;

}

The final rule controls the formatting of the source comment at the bottom

8This is the one aspect of the appearance that is not identical to the original HTML-
only appearance; unfortunately, it is not possible to replicate the default appearance of
a table border using CSS.

9Normally, img elements behave like a word in a sentence; in HTML terminology, img
elements are inline elements, rather than block-level elements.

“itdt” — 2008/5/19 — 14:15 — page 39 — #65i
i

i
i

i
i

i
i

Writing computer code 39

of the web page:

p.footer {
font-style: italic;

}

The selector in this case combines both an HTML element name and a CSS
class name. This rule will affect all p elements that have a class attribute
with the value "footer". The effect of this rule is to make the text italic,
but only in the p element at the bottom of the HTML code (lines 38 to 42).
This rule does not affect the other p element within the HTML code (lines
28 to 33).

The final result of this combination of HTML and CSS code is shown in
Figure 2.12.

The only difference in the appearance between Figure 2.12 and Figure 2.1
is the border around the numeric results, but the underlying code is quite
different.

The point of this example, other than to introduce another simple computer
language, CSS, that provides the “correct”way to control the appearance of
web pages, is to show the DRY principle in action.

There are two ways that the use of CSS demonstrates the DRY principle.
First of all, if we want to produce another HTML report and we want that
report to have the same appearance as the report we have just produced,
we can simply make use of the same CSS code to control the appearance of
the new report. In other words, with CSS, we can have a single copy of the
code that controls the web page appearance and this code can be reused for
different web page content.

The alternative would be to include HTML attributes in both the original
report and the new report to control the appearance. That would involve
typing more code and, more importantly, it would mean more than one copy
of the important information about the appearance of the web pages. If we
wanted to change the appearance of the reports, we would have to change
both reports. With a single CSS file, any changes in the appearance only
need to be made to the CSS file and that will update both reports.

Another advantage of using CSS code can be seen if we want to produce
the same report in two different styles. For example, we might produce one
version for people to view on a screen and a different version for people to
print out.

The wrong way to create two different versions of the web page would be to

“itdt” — 2008/5/19 — 14:15 — page 40 — #66i
i

i
i

i
i

i
i

40 Introduction to Data Technologies

Figure 2.12: A simple web page as displayed by the Iceweasel browser on Debian

Linux. This is very similar to Figure 2.1, but it has been produced using a

combination of HTML and CSS code, rather than pure HTML.

“itdt” — 2008/5/19 — 14:15 — page 41 — #67i
i

i
i

i
i

i
i

Writing computer code 41

have two copies of the HTML code, with different appearance information
in each one. That approach would violate the DRY principle. What we
want is to only have one copy of the HTML code.

This is possible using CSS. We can have two separate CSS files, each con-
taining different rules, and swap between them to produce different views
of the same HTML code. We will develop a new set of CSS rules in a file
called csscode2.css. Then all we have to do is change the link element
in the HTML code to refer to this new CSS code. The new line of HTML
code looks like this:

<link rel="stylesheet" href="csscode2.css" type="text/css">

Figure 2.13 shows the result we will end up with. This should be compared
with Figure 2.12, which is the same HTML code, just with different CSS
code controlling the appearance.

Figure 2.14 shows the file containing the new set of CSS rules (compare
these with the CSS rules in Figure 2.11).

In this new CSS code, there is a new rule for the body element to produce
margins around the whole page (lines 1 to 5). There is also a new rule for the
hr element that means that the horizontal line is not drawn at all (display:
none; lines 29 to 31) and one for the a element so that it is drawn in white
(lines 35 to 37). Another significant change is the new property for table
elements, so that the numeric results “float” to the right of the page, with
the text wrapped around it to the left (line 14).

The new CSS code also demonstrates another type of CSS selector:

h3, p.footer {
background-color: black;
color: white;
padding: 5px;

}

The selector for this rule specifies a group of elements. This rule is applied
to all h3 elements and to all p elements that have a class attribute with the
value "footer". This is the rule that displays the heading and the source
information in white text on a black background.

The code also demonstrates how to write comments in CSS. Lines 33 and
34 are a CSS comment:

“itdt” — 2008/5/19 — 14:15 — page 42 — #68i
i

i
i

i
i

i
i

42 Introduction to Data Technologies

Figure 2.13: A simple web page as displayed by the Iceweasel browser on Debian

Linux. This is an alternative presentation of the content of Figure 2.12 using

different CSS rules with the same HTML elements.

“itdt” — 2008/5/19 — 14:15 — page 43 — #69i
i

i
i

i
i

i
i

Writing computer code 43

1 body {

2 margin-top: 8%;

3 margin-left: 9%;

4 margin-right: 9%;

5 }

6

7 h3, p.footer {

8 background-color: black;

9 color: white;

10 padding: 5px;

11 }

12

13 table {

14 float: right;

15 margin: 2%;

16 background-color: #CCCCCC;

17 border-width: thin;

18 border-style: solid;

19 white-space: pre;

20 font-family: monospace;

21 }

22

23 img {

24 display: block;

25 margin-left: auto;

26 margin-right: auto;

27 }

28

29 hr {

30 display: none;

31 }

32

33 /* Anchors are blue by default which is not

34 very visible on a black background */

35 a {

36 color: white;

37 }

38

39 p.footer {

40 font-style: italic;

41 }

Figure 2.14: The CSS code behind the appearance of the web page in Figure 2.13.

The CSS rules in this code are applied to the HTML elements in Figure 2.10.

“itdt” — 2008/5/19 — 14:15 — page 44 — #70i
i

i
i

i
i

i
i

44 Introduction to Data Technologies

/* Anchors are blue by default which is not
very visible on a black background */

In CSS, a comment is anything enclosed between an opening /* and a closing
*/.

2.6 Text editors

The act of writing code is itself dependent on computer tools. We use
software to record and manage our keystrokes in an effective manner. This
section discusses what sort of tool should be used to write computer code
effectively.

An important feature of computer code is that it is just plain text. There
are many software packages that allow us to enter text, but some are more
appropriate than others.

2.6.1 Text editors are not word processors

For many people, the most obvious software program for entering text is
a word processor, such as Microsoft Word or Open Office Writer. These
programs are not a good choice for editing computer code. A word processor
is a good program for making text look pretty with lots of fancy formatting
and wonderful fonts. However, these are not things that we want to do with
our raw computer code.

The programs that we use to run our code expect to encounter only plain
text, so we must use software that creates only text documents, which means
we must use a text editor.10

2.6.2 Important features of a text editor

For many people, the most obvious program for entering just text is Mi-
crosoft Notepad. This program has the nice feature that it saves just text,
but its usefulness ends there.

When we write computer code, a good choice of text editor can make us
much more accurate and efficient.

10Software that is designed not just for writing text, but specifically for writing com-
puter code may also be called a code editor.

“itdt” — 2008/5/19 — 14:15 — page 45 — #71i
i

i
i

i
i

i
i

Writing computer code 45

The following facilities are particularly useful for writing computer code:

atomatic indenting
As we saw in Section 2.4.1, it is important to arrange code in a neat
fashion. A text editor that helps to indent code (place empty space
at the start of a line) makes this easier and faster.

parenthesis matching
Many computer languages use special symbols, e.g., { and }, to mark
the beginning and end of blocks of code. Some text editors provide
feedback on such matching pairs, which makes it easier to write code
correctly.

syntax highlighting
All computer languages have special keywords that have a special
meaning for the language (e.g., anything <likeThis> in HTML).
Many text editors automatically colour such keywords, which makes
it easier to read code and easier to spot simple mistakes.

line numbering
Some text editors automatically number each line of computer code
(and in some cases each column or character as well) and this makes
navigation within the code much easier. This is particularly important
when trying to find errors in the code (see Section 2.2.3).

2.6.3 Text editor software

In the absence of everything else, Notepad is better than using a word
processor. However, many useful (and free) text editors exist that do a much
better job. Some examples are Crimson Editor on Windows, and Kate on
Linux. The ultimate text editor is a cross-platform software package called
Emacs, which is extremely flexible and powerful, but it does have a steeper
learning curve.

Professional code writers will often use an integrated development en-
vironment (IDE). These provide even greater support for writing code,
but they tend to focus on a single computer language. An exception is the
Eclipse package, which can be customized for many different languages, but
again, the learning curve is steeper with this sort of software.

“itdt” — 2008/5/19 — 14:15 — page 46 — #72i
i

i
i

i
i

i
i

46 Introduction to Data Technologies

2.7 Further reading

“Code Complete”
by Steve McConnell]
2nd edition (2004) Microsoft Press.
Exhaustive discussion of ways of whys of writing good computer code.
Includes languages and advanced topics way beyond the scope of this
book.

Summary

Writing computer code should be performed with a text editor to produce a
plain text file.

Code should first be checked for correct syntax (spelling and grammar).

Code that has correct syntax can then be run to determine whether it performs
as intended.

Code should be written for human consumption as well as for correctness.

Comments should be included in code and the code should be arranged neatly
so that the structure of the code is obvious to human eyes.

HTML is a simple language for describing the structure of the content of web
pages. It is a useful cross-platform format for producing reports.

CSS is a language for controlling the appearance of the content of web pages.

The separation of code for a web page into HTML and CSS helps to avoid
duplication of code (an example of the DRY principle in action).

HTML and CSS code can be run in any web browser.

“itdt” — 2008/5/19 — 14:15 — page 47 — #73i
i

i
i

i
i

i
i

H
T

M
L

3
HTML Reference

HTML is a computer language used to create web pages. HTML code can
be run by opening the file containing the code with any web browser.

The information in this chapter describes HTML 4.01, which is a W3C
Recommendation.

3.1 HTML syntax

HTML code consists of HTML elements.

An element consists of an opening tag, followed by the element content,
followed by a closing tag. An opening tag is of the form <elementName> and
a closing tag is of the form </elementName>. The example code below shows
a title element; the opening tag is <title>, the closing tag is </title>
and the content is the text: Poles of Inaccessibility.

<title>
Poles of Inaccessibility

</title>

Some elements are empty, which means that they consist of only an opening
tag (no content and no closing tag). The following code shows an hr element,
which is an example of an empty element.

<hr>

An element may have one or more attributes, which are of the form
attributeName="attributeValue". Attributes appear in the opening tag.
The code below shows the opening tag for a table element, with an at-
tribute called border. The value of the attribute in this example is "1".

<table border="1">

There is a fixed set of valid HTML elements (Section 3.2.1 provides a list
of some common elements) and each element has its own set of possible

“itdt” — 2008/5/19 — 14:15 — page 48 — #74i
i

i
i

i
i

i
i

48 Introduction to Data Technologies

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>A Minimal HTML Document</title>

</head>

<body>

Your content goes here!

</body>

</html>

Figure 3.1: A minimal HTML document.

attributes.

Certain HTML elements are compulsory. An HTML document must include
a DOCTYPE declaration and a single html element. Within the html element
there must be a single head element and a single body element. Within the
head element there must be a title element. Figure 3.1 shows a minimal
piece of HTML code.

Section 3.2.1 describes each of the common elements in a little more de-
tail, including any important attributes, and which elements may be placed
inside which other elements.

3.1.1 HTML comments

Comments in HTML code are anything within an opening <!-- and a closing
-->. All characters, including HTML tags, lose their special meaning within
an HTML comment.

3.1.2 HTML entities

The less-than and greater-than characters used in HTML tags are special
characters and must be escaped to obtain their literal meaning. The escape
sequences are called entities. All entities start with an ampersand so the
ampersand is also special and must be escaped. Entities provide a way to
include some other special characters and symbols within HTML code as
well. Table 3.1 shows some common HTML entities.

“itdt” — 2008/5/19 — 14:15 — page 49 — #75i
i

i
i

i
i

i
i

HTML Reference 49

H
T

M
L

Table 3.1: Some common HTML entities.

Character Description Entity
< less-than sign <
> greater-than sign >
& ampersand &
π greek letter pi π
µ greek letter mu μ
e Euro symbol €
£ British pounds £
c© copyright symbol ©

3.2 HTML semantics

The primary purpose of HTML tags is to specify the structure of a web
page.

Elements are either block-level or inline. A block-level element is like a
paragraph; it is a container that can be filled with other elements. Most
block-level elements can contain any other sort of element. An inline element
is like a word within a paragraph; it is a small component that is arranged
with other components inside a container. An inline element usually only
contains text.

The content of an element may be other elements or plain text. There is a
limit on which elements may be nested within other elements (see Section
3.2.1).

3.2.1 Common HTML elements

This section briefly describes the important behaviour, attributes, and rules
for each of the common HTML elements.

<html>
Must have exactly one head element followed by exactly one body
element. No attributes of interest.1

<head>
Only allowed within the html element. Must have exactly one title.

1Except for some allowing internationalisation features such as language settings and
direction of flow of text.

“itdt” — 2008/5/19 — 14:15 — page 50 — #76i
i

i
i

i
i

i
i

50 Introduction to Data Technologies

May also contain link elements to refer to external CSS files and/or
style elements for inline CSS rules. No attributes of interest.

<title>
Must go in the head element and must only contain text. Informa-
tion for the computer to use to identify the web page rather than for
display, though it is often displayed in the title bar of the browser
window. No attributes.

<link>
An empty element that must go in the head element. Important at-
tributes are: rel, which should have the value "stylesheet"; href,
which specifies the location of a file containing CSS code (can be a
URL); type, which should have the value "text/css". The media
attribute may also be used to distinguish between a style sheet for
display on "screen" as opposed to display in "print".

An example of a link element is shown below.

<link rel="stylesheet" href="csscode.css"
type="text/css">

Other sorts of links are also possible, but are beyond the scope of this
book.

<body>
Only allowed within the html element. Should only contain one or
more block-level elements, but most browsers will also allow inline
elements. Various appearance-related attributes are possible, but CSS
should be used instead.

<p>
A block-level element that can appear within most other block-level
elements. Should only contain inline elements (words and images).
Automatically typesets the contents as a paragraph (i.e., automati-
cally decides where to break lines). May have the common attributes
class and style.

An empty, inline element (i.e., images are treated like words in a
sentence). Can be used within almost any other element. Important
attributes are src, to specify the file containing the image (this may
be a URL, i.e., an image anywhere on the web), and alt to specify
alternative text for non-graphical browsers.

<a>
Known as an anchor. An inline element that can go inside any other

“itdt” — 2008/5/19 — 14:15 — page 51 — #77i
i

i
i

i
i

i
i

HTML Reference 51

H
T

M
L

element. It can contain any other inline element (except another an-
chor). Important attributes are: href, which means that the anchor is
a hypertext link and the value of the attribute specifies a destination
(when the content of the anchor is clicked on, the browser navigates to
this destination); name, which means that the anchor is the destination
for a hyperlink.
The value of an href attribute can be: a URL, which specifies a sep-
arate web page to navigate to; something of the form #target, which
specifies an anchor within the same document that has an attribute
name="target"; or a combination, which specifies an anchor within a
separate document. For example,

http://www.w3.org/TR/html401/

specifies the top of the W3C page for HTML 4.01 and

http://www.w3.org/TR/html401/#minitoc

specifies the table of contents further down that web page.

<h1> ... <h6>
Block-level elements that denote that the contents are a section head-
ing. Can appear within almost any other block-level element, but can
only contain inline elements. No attributes of interest. These should
be used to indicate the section structure of a document, not for their
default display properties. CSS should be used to achieve the desired
weight and size of the text in headings.

<table>, <tr>, and <td>
A table element contains one or more tr elements, each of which con-
tains one or more td elements (so td elements can only appear within
tr elements, which can only appear within table elements). A table
element may appear within almost any other block-level element. In
particular, a table can be nested within the td element of another
table.
The table element has a summary attribute to describe the table for
non-graphical browsers. There are also attributes to control borders,
background colours, and widths of columns, but CSS is the preferred
way to control these features.
The tr element has attributes for the alignment of the contents of
columns, including aligning numeric values on decimal points. There
are no corresponding CSS properties.
The td element also has alignment attributes for the contents of a
column for one specific row, but these can be handled via CSS in-
stead. However, there are several attributes specific to td elements, in

“itdt” — 2008/5/19 — 14:15 — page 52 — #78i
i

i
i

i
i

i
i

52 Introduction to Data Technologies

particular, rowspan and colspan which allow a single cell to spread
across more than one row or column.

Unless explicit dimensions are given, the table rows and columns are
automatically sized to fit their contents.

It is tempting to use tables to arrange content on a web page, but it is
recommended to use CSS for this purpose instead. Unfortunately, the
support for CSS in web browsers tends to be worse for CSS than it is
for table elements, so it may not always be possible to use CSS for
arranging content. This warning also applies to controlling borders
and background colours via CSS.

An example of a table with three rows and three columns:

<table>
<tr>

<td></td> <td>pacific</td> <td>eurasian</td>
</tr>
<tr>

<td>min</td> <td>276</td> <td>258</td>
</tr>
<tr>

<td>max</td> <td>283</td> <td>293</td>
</tr>

</table>

It is also possible to construct more complex tables with separate
thead, tbody, and tfoot elements to group rows within the table
(i.e., these three elements can go inside a table element, with tr
elements inside them).

<hr>
An empty element that produces a horizontal line. It can appear
within almost any block-level element. No attributes of interest. This
entire element can be replaced by CSS control of borders.

An empty element that forces a new line or line-break. It can be put
anywhere. No attributes of interest. This element should be used
sparingly. In general, text should be broken into lines by the browser
to fit the available space.

, , and
A ul or ol element contains one or more li elements. Anything can
go inside an li element (i.e., you can make a list of text descriptions,
a list of tables, or even a list of lists). The former case produces

“itdt” — 2008/5/19 — 14:15 — page 53 — #79i
i

i
i

i
i

i
i

HTML Reference 53

H
T

M
L

a bullet-point list and the latter produces a numbered list. These
elements have no attributes of interest. CSS can be used to control
the style of the bullets or numbering and the spacing between items
in the list.

It is also possible to produce “definition” lists, where each item has a
heading. Use a dl element for the overall list with a dt element to
give the heading and a dd element to give the definition for each item.

<pre>
Block-level element that displays any text content exactly as it appears
in the source code. Good for displaying computer code. It is possible
to have other elements within a pre element. No attributes of interest.
Like the hr element, this element can usually be replaced by CSS
styling.

<div> and
Generic block-level and inline elements (respectively). No attributes
of interest. These can be used as “blank” elements with no predefined
appearance properties. Their appearance can then be fully specified
via CSS. In theory, any other HTML element can be emulated using
one of these elements and appropriate CSS properties. In practice,
the standard HTML elements are more convenient for their default
behaviour and these elements are used for more exotic situations.

3.2.2 Common HTML attributes

Almost all elements may have a class attribute, so that a CSS style specified
in the head element can be associated with that element. Similarly, all
elements may have an id attribute, which can be used to associate a CSS
style. The value of all id attributes within a piece of HTML code must be
unique.

All elements may also have a style attribute, which allows “inline” CSS
rules to be specified within the element’s opening tag.

3.3 Further reading

The W3C HTML 4.01 Specification
http://www.w3.org/TR/html401/
The formal and official definition of HTML. Quite technical.

http://www.w3.org/TR/html401/

“itdt” — 2008/5/19 — 14:15 — page 54 — #80i
i

i
i

i
i

i
i

54 Introduction to Data Technologies

Getting started with HTML
by Dave Raggett
http://www.w3.org/MarkUp/Guide/
An introductory tutorial to HTML by one of the original designers of
the language. A bit dated, but still a good starting point.

The Web Design Group’s HTML 4 web site
http://htmlhelp.com/reference/html40/
A more friendly user-oriented description of HTML.

The w3schools HTML Tutorial
http://www.w3schools.com/html/
Quick, basic tutorial-based introduction to HTML.

http://www.w3.org/MarkUp/Guide/
http://htmlhelp.com/reference/html40/
http://www.w3schools.com/html/

“itdt” — 2008/5/19 — 14:15 — page 55 — #81i
i

i
i

i
i

i
i

C
S
S

4
CSS Reference

Cascading Style Sheets (CSS) is a language used to specify the appearance
of web pages—fonts, colours, and how the material is arranged on the page.

CSS is run when it is linked to some HTML code (see Section 4.4) and that
HTML code is run.

The information in this chapter describes CSS level 1, which is a W3C
Recommendation.

4.1 CSS syntax

CSS code consists of one or more rules.

Each CSS rule consists of a selector and, within brackets, one or more
properties.

The selector specifies which HTML elements the rule applies to and the
properties control the way that those HTML elements are displayed. An
example of a CSS rule is shown below:

table {
border-width: thin;
border-style: solid;

}

The code table is the selector and there are two properties, border-width
and border-style, with values thin and solid, respectively.

4.2 CSS selectors

Within a CSS rule, the selector specifies which HTML elements will be
affected by the rule. There are several ways to specify a CSS selector:

Element selectors:

“itdt” — 2008/5/19 — 14:15 — page 56 — #82i
i

i
i

i
i

i
i

56 Introduction to Data Technologies

The selector is just the name of an HTML element. All elements of
this type in the linked HTML code will be affected by the rule. An
example is show below:

a {
color: white;

}

This rule will apply to all anchor (a) elements within the linked HTML
code.

Class selectors:
The selector contains a full stop (.) and the part after the full stop
describes the name of a class. All elements that have a class at-
tribute with the appropriate value will be affected by the rule. An
example is shown below:

p.footer {
font-style: italic;

}

This rule will apply to any paragraph (p) element that has the at-
tribute class="footer". It will not apply to other p elements. It will
not apply to other HTML elements, even if they have the attribute
class="footer".

If no HTML element name is specified, the rule will apply to all HTML
elements with the appropriate class. An example is shown below:

.figure {
margin-left: auto;
margin-right: auto;

}

This rule will apply to any HTML element that has the attribute
class="figure".

ID selectors:
The selector contains a hash character (#). The rule will apply to all
elements that have an appropriate id attribute. This type of rule can
be used to control the appearance of exactly one element. An example
is shown below:

p#footer {
font-style: italic;

}

“itdt” — 2008/5/19 — 14:15 — page 57 — #83i
i

i
i

i
i

i
i

CSS Reference 57

C
S
S

This rule will apply to the paragraph (p) element that has the attribute
id="footer". There can only be one such element within a piece of
HTML code because the id attribute must be unique for all elements.
This means that the HTML element name is redundant and can be
left out. The rule below has the same effect as the previous rule:

#footer {
font-style: italic;

}

4.3 CSS properties

This section describes some of the common CSS properties, including the
values that each property can take.

font-family:
Controls the overall font family (the general style) for text within
an element. The value can be a generic font type, for example,
monospace or serif, or it can be a specific font family name, for
example, Courier or Times. If a specific font is specified, it is usually
a good idea to also include (after a comma) a generic font as well in
case the person viewing the result does not have the specific font on
their computer. An example is shown below:

font-family: Times, serif

This means that a Times font will be used if it is available, otherwise
the browser will choose a serif font that is available.

font-style:, font-weight:, and font-size:
Control the detailed appearance of text. The style can be normal or
italic, the weight can be normal or bold, and the size can be large
or small.

There are a number of relative values for size (they go down to xx-small
and xx-large), but it is also possible to specify an absolute size, such
as 24pt.

color: and background-color:
Control the foreground colour (e.g., for displaying text), and the back-
ground colour for an element.

For specifying the colour value, there are a few basic colour names,
e.g., black, white, red, green, and blue, but for anything else it is

“itdt” — 2008/5/19 — 14:15 — page 58 — #84i
i

i
i

i
i

i
i

58 Introduction to Data Technologies

necessary to specify a red-green-blue (RGB) triplet. This consists of
an amount of red, an amount of green, and an amount of blue. The
amounts can be specified as percentages so that, for example, rgb(0%,
0%, 0%) is black and rgb(100%, 100%, 100%) is white, and Ferrari
red is rgb(83%, 13%, 20%).1

text-align:
Controls the alignment of text within an element, with possible values
left, right, center, or justify. This property only makes sense for
block-level elements.

width: and height:
Allows explicit control of the width or height of an element. By de-
fault, these are the amount of space required for the element. For
example, a paragraph of text expands to fill the width of the page and
uses as many lines as necessary, while an image has an instrinsic size
(number of pixels in each direction).

Explicit widths or heights can be either percentages (of the parent
element) or an absolute value. Absolute values must include a unit,
e.g., in for inches, cm for centimetres, or px for pixels. For example,
within a web page that is 800 pixels wide on a screen that has a
resolution of 100 dots-per-inch (dpi), to make a paragraph of text half
the width of the page, the following three specifications are identical:

p { width: 50% }

p { width: 4in }

p { width: 400px }

border-width:, border-style:, and border-color:
Control the appearance of borders around an element. Borders are
only drawn if the border-width is greater than zero. Valid border
styles include solid, double, and inset (which produces a fake 3D
effect).

These properties affect all borders, but there are other properties that
affect only the top, left, right, or bottom border of an element. For
example it is possible to produce a horizontal line at the top of a
paragraph by using just the border-top-width property.

margin:
Controls the space around the outside of the element (between this

1According to the COLOURlovers web site http://www.colourlovers.com/color/

D32232/Ferrari_Red.

http://www.colourlovers.com/color/D32232/Ferrari_Red
http://www.colourlovers.com/color/D32232/Ferrari_Red

“itdt” — 2008/5/19 — 14:15 — page 59 — #85i
i

i
i

i
i

i
i

CSS Reference 59

C
S
S

element and neighbouring elements). The size of margins can be ex-
pressed using units, as for the width and height properties.

This property affects all margins (top, left, right, and bottom). There
are properties, e.g., margin-top, for controlling individual margins
instead.

padding:
Controls the space between the border of the element and the element’s
contents. Values are specified as they are for margins. There are also
specific properties, e.g., padding-top, for individual control of the
padding on each side of the element.

display:
Controls how the element is arranged relative to other elements. A
value of block means that the element is like a self-contained para-
graph (typically, with an empty line before it and an empty line after
it). A value of inline means that the element is just placed beside
whatever was the previous element (like words in a sentence). The
value none means that the element is not displayed at all.

Most HTML elements are either intrinsically block-level or inline, so
some uses of this property will not make sense.

whitespace:
Controls how whitespace in the content of an element is treated. By
default, any amount of whitespace in HTML code collapses down to
just a single space when displayed, and the browser decides when a new
line is required. A value of pre for this property forces all whitespace
within the content of an element to be displayed (especially all spaces
and all new lines).

float:
Can be used to allow text (or other inline elements) to wrap around
another element (such as an image). The value right means that the
element (e.g., image) “floats” to the right of the web page and other
content (e.g., text) will fill in the gap to the left. The value left
works analogously.

clear:
Controls whether floating elements are allowed beside an element. The
value both means that the element will be placed below any previous
floating elements. This can be used to have the effect of turning off
text wrapping.

“itdt” — 2008/5/19 — 14:15 — page 60 — #86i
i

i
i

i
i

i
i

60 Introduction to Data Technologies

4.4 Linking CSS to HTML

CSS code can be linked to HTML code in one of three ways:

External CSS:
The CSS code can be in a separate file and the HTML code can include
a link element within its head element that specifies the location of
the CSS code file. An example is shown below:

<link rel="stylesheet" href="csscode.css"
type="text/css">

This line would go within a file of HTML code and it refers to CSS
code within a file called csscode.css.

Embedded CSS:
It is also possible to include CSS code within a style element within
the head element of HTML code. An example of this is shown below:

<html>
<head>

<style>
p.footer {

font-style: italic;
}

</style>
...

This approach is not recommended because any reuse of the CSS code
with other HTML code requires copying the CSS code (which violates
the DRY principle).

Inline CSS:
It is also possible to include CSS code within the style attribute of
an HTML element. An example is shown below:

<p style="font-style: italic">

This approach is actively discouraged because it leads to many copies
of the same CSS code within a single piece of HTML code.

“itdt” — 2008/5/19 — 14:15 — page 61 — #87i
i

i
i

i
i

i
i

CSS Reference 61

C
S
S

4.5 CSS tips and tricks

4.6 Further reading

The W3C CSS level 1 Specification
http://www.w3.org/TR/CSS1
The formal and official definition of CSS (level 1). Quite technical.

Adding a touch of style
by Dave Raggett
http://www.w3.org/MarkUp/Guide/Style.html
An introductory tutorial to CSS by one of the original designers of
HTML. A bit dated, but still a good starting point.

The Web Design Group’s CSS web site
http://htmlhelp.com/reference/css/
A more friendly user-oriented description of CSS.

The w3schools CSS Tutorial
http://www.w3schools.com/css/
A tutorial-based introduction to CSS.

http://www.w3.org/TR/CSS1
http://www.w3.org/MarkUp/Guide/Style.html
http://htmlhelp.com/reference/css/
http://www.w3schools.com/css/

“itdt” — 2008/5/19 — 14:15 — page 62 — #88i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 63 — #89i
i

i
i

i
i

i
i

5
Data Entry

This chapter is concerned with how computer technologies can assist in the
task of recording information.

Many large data sets, such as bank transactions, computer network activity,
and satellite weather recordings are collected directly by machines. In those
cases, the data recording is about as good as it gets. The data are immedi-
ately electronic and the data that are recorded are a faithful representation
of what the recording mechanism “sees”.

However, a huge amount of data is still collected by humans via interview
or written surveys and this sort of data collection requires a data entry
step in order to get the information into an electronic format.

There are good reasons for using humans to collect data. For example,
humans are better than computers at interviewing other human subjects,
at explaining procedures and answering arbitrary questions. Humans are
also better at tasks like observing animal behaviour in the field, at judging
criteria such as “level of aggressiveness”, and assessing variables that are
hard to define or capture precisely in a mechanical manner. However, there
are serious disadvantages to having humans collect data.

When it comes to recording or copying information, humans are slow and
incaccurate, so there are efficiencies to be gained from ensuring that the data
are recorded only once and that the data are checked as they are entered.

In this chapter, we will look at electronic forms, a computer technology
for assisting data entry.

“itdt” — 2008/5/19 — 14:15 — page 64 — #90i
i

i
i

i
i

i
i

64 Introduction to Data Technologies

5.1 Case study: I-94W

Temporary entry to the United States of America
is very straightforward for citizens of countries that
are involved in the visa waiver program, unless you
have been involved in various undesirable activities
...

Temporary visitors to the United States of America may enter without a
valid visa if they carry the passport of a country involved in the US visa
waiver programme. Such visitors must fill out a form called I-94W.

This form requests standard demographic information followed by a series
of questions regarding engagement in various criminal activities. The latter
list of questions is shown in Figure 5.1.

Figure 5.2 shows an electronic form version of some of these questions.
More specifically, it shows an HTML form; a web page containing interactive
components that allow us to enter information.

One advantages of the electronic form should be immediately obvious: the
form only allows the user to select one of the countries currently participat-
ing in the visa waiver program. This improvement in the accuracy of data
collection is one of the prime reasons for using an electronic form.

In this chapter we will discuss the advantages and disadvantages of using
electronic forms for questionnaires like I-94W and for data entry in general.
We will also learn how to create an electronic form by writing HTML code.

5.2 Electronic forms

An electronic form is a graphical user interface (GUI) for entering data into
a computer. The main advantage of using such a form for data entry is
straightforward: information can be checked for accuracy and validity at
the time that it is entered.

An electronic form makes it easy to constrain the input to be one of a fixed
set of valid responses, which improves the accuracy with which data are
collected Section 5.3 describes the standard electronic form elements and
how they can be used to limit user input.

There are also ways to perform higher-level checks on the consistency of

“itdt” — 2008/5/19 — 14:15 — page 65 — #91i
i

i
i

i
i

i
i

Data Entry 65

Figure 5.1: The top half of the back side of USCIS form I-94W, an application

for a temporary VISA waiver for visitors to the United States.

“itdt” — 2008/5/19 — 14:15 — page 66 — #92i
i

i
i

i
i

i
i

66 Introduction to Data Technologies

Figure 5.2: An electronic form version of USCIS form I-94W (see Figure 5.1).

“itdt” — 2008/5/19 — 14:15 — page 67 — #93i
i

i
i

i
i

i
i

Data Entry 67

information that is entered, for example, to eliminate the possibility of in-
cluding in a data set male subjects who claim to have given birth. In Section
5.4, we will discuss various ways to validate user input.

In addition to the benefits of accuracy and validity-checking, electronic
forms provide a number of advantages for the collection of information,
when compared to a pen-and-paper format. For example, using electronic
forms can reduce the cost of administering a survey because there are no
printing or postage costs. On the other hand, problems such as nonresponse
bias can be worse with electronic forms because people are unable or simply
prefer not to interact with a computer.1

Although electronic forms are not perfect in all ways, they are clearly an
important additional tool in the process of data entry. In the rest of this
chapter, we will discuss the creation and use of electronic forms and we will
see how to create electronic forms in web pages using HTML.

5.2.1 HTML forms

There are many software systems for creating electronic forms. For example,
forms can be created within Microsoft Excel to validate data that is entered
into a spreadsheet. Many database management systems, such as Oracle
and Microsoft Access, also provide facilities for generating forms for data
entry.

HTML forms are a good platform for creating forms for several reasons.
First, HTML is an open standard and HTML forms should work with any
web browser. This makes it a very accessible technology for creating elec-
tronic forms and it is also an advantage for deploying electronic forms be-
cause it does not impose high expectations on the users of the form in terms
of their technical ability or in terms of their computing facilities.

Another advantage is that HTML forms are based on a text description
(HTML code) so we can create a form just by writing computer code. Last,
but not least, because we have already learnt a little about HTML, we are
in a good position to press on with creating forms using HTML.

Figure 5.3 shows an excerpt from the code behind the I-94W electronic form
in Figure 5.2.

The HTML code for the I-94W electronic form is larger and contains new
elements compared to the plain HTML examples in Chapter 2, but the basic
structure is the same: HTML tags surround text content.

1For further discussion of these issues see the Exploring Online Research Methods web

“itdt” — 2008/5/19 — 14:15 — page 68 — #94i
i

i
i

i
i

i
i

68 Introduction to Data Technologies

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>I-94W online</title>

5 <style>

6 body { background-color: #9CF2CA; padding-top: 20px;

7 padding-left: 5%; padding-right: 5%; }

8 </style>

9 </head>

10 <body>

11 <form action="http://www.formbuddy.com/cgi-bin/form.pl"

12 method="post">

13 <p>

14 Do any of the following apply to you?

15 </p>

16

17 <table>

18 <tr><td valign="top">A.</td>

19 <td valign="top"><input type="checkbox" name="ill"></td>

20 <td>Do you have a communicable disease; physical or

21 mental disorder; or are you a drug abuser or

22 addict?</td></tr>

23 <tr><td valign="top">F.</td>

24 <td valign="top"><input type="checkbox" name="visa"></td>

25 <td>Have you ever been denied a U.S. visa or entry into

26 the U.S or had a U.S. visa cancelled?</td></tr>

27 <tr><td></td>

28 <td></td>

29 <td>If yes,

30 when? <input type="text" name="when" size=10>

31 where? <input type="text" name="where" size=10></td>

32 </tr>

33 </table>

34

35 <p>

36 Country of Citizenship:

37 </p>

38 <table>

39 <tr><td width=25%>

40 <input type="radio" name="country" value="1">

41 Andorra</td>

42 <td width=25%>

43 <input type="radio" name="country" value="2">

44 Iceland</td>

Figure 5.3: An extract from the HTML code behind the electronic form version

of I-94W (see Figure 5.2). This code shows that an HTML Form consists of plain

HTML elements (as discussed in Chapter 1) and special form-related elements

such as form and input.

“itdt” — 2008/5/19 — 14:15 — page 69 — #95i
i

i
i

i
i

i
i

Data Entry 69

There are the standard html, head, title, and body elements (lines 1 to 10),
plus an example of embedded CSS rules (lines 5 to 8). The most important
new elements are a form element (starting on line 11) and several input
elements (lines 13 and 14), which create the radio buttons and the Submit
button on the web page.

This demonstrates that creating an HTML form is simply a matter of learn-
ing a few more HTML elements. We will look at these new elements in detail
in Section 5.3.

5.2.2 Other uses of electronic forms

In addition to their role in data entry, electronic forms are also useful in
a general sense as a graphical user interface. For example, a web page
containing interactive elements such as buttons and checkboxes is essentially
a dialog box. One application of this idea is to use an electronic form
as a user-friendly interface to a data analysis program. This idea will be
demonstrated later in the book in Section 11.12.

5.3 Electronic form components

The fundamental feature of electronic forms is that they contain interactive
components for entering data. Information is entered not just by typing
text, but also by selecting menu items, or checking boxes.

This section describes the standard set of electronic form components and
when they are typically used. We will also see how to create the components
using HTML.

5.3.1 HTML form elements

The primary HTML element used for creating forms is, appropriately, the
form element. An example can be seen on lines 11 and 12 in Figure 5.3. This
element does not display anything in a browser, but it provides a container
for all other form elements.

The form element dictates how and where the information that is entered
into the form gets submitted. The important attributes that control these
aspects of a form are discussed later in Section 5.5.

site http://www.geog.le.ac.uk/orm/site/home.htm.

http://www.geog.le.ac.uk/orm/site/home.htm

“itdt” — 2008/5/19 — 14:15 — page 70 — #96i
i

i
i

i
i

i
i

70 Introduction to Data Technologies

Figure 5.4: Examples of radio buttons (top) and check boxes (bottom) in an

electronic form.

All other form components are described by elements nested within the form
element and will be addressed in the appropriate section below.

5.3.2 Radio buttons

Radio buttons allow a single response to be chosen from a fixed set of valid
responses. The advantage of this sort of component is that it restricts the
input to only valid responses.

Radio buttons can be used to enter data for a categorical variable. A single
variable, e.g., gender, requires a group of radio buttons, with one radio
button for each possible value of the categorical variable, e.g., one button
for male and one button for female.

Radio buttons are not appropriate when the list of possible responses is
long, such as when selecting a year of birth. In cases like this, a menu or
drop-down list is more appropriate (see Section 5.3.5).

An example of the use of radio buttons in the I-94W form is shown in Figure
5.4. The typical display of a radio button is a small circle, with a dot drawn
within the circle to show that the radio button has been selected.

In HTML, radio buttons are generated by input elements. The code used
to produce one of the radio buttons in Figure 5.4 is shown below:

<input type="radio" name="country" value="1" />

The input element can be used to produce several different form compo-
nents via the type attribute. In this case, a radio button is produced by
specifying type="radio".

The other important attributes are name and value. The value specifies
what data value will be recorded if this radio button is selected (selecting

“itdt” — 2008/5/19 — 14:15 — page 71 — #97i
i

i
i

i
i

i
i

Data Entry 71

this radio button will record the value 1). The value can be any text so, for
example, an alternative would be to specify value="Andorra" because this
radio button correponds to the Andorra option on the form. That would
make it easier to know what this radio button is for, but would be less
efficient in terms of storing the information.

The name attribute provides a label for the information that is to be stored.
It corresponds to the name of a variable in a data set. The important thing
to remember when creating radio buttons in an HTML form is that all radio
buttons within the same set of answers must have the same name attribute.
This is necessary so that only one of the radio can be selected at once,
which is the characteristic behaviour of radio buttons. For example, the
code below shows the HTML behind another of the radio buttons from the
same question in Figure 5.4:

<input type="radio" name="country" value="2">

The value for this radio button is 2 (which corresponds to an answer of
Iceland), but the name is country, which is the same as for the other radio
button. This means that only one of these two radio buttons can be selected
at once.

Only one value will be stored from a group of radio buttons so it is important
that the value attributes are all different for all radio buttons with the same
name.

It is important to note that each input element only produces a little round
radio button on the web page. All of the text labels are produced by plain
text within the web page and it is up to the page designer to make sure that
the text for questions and the text for answers is appropriately arranged
relative to the form components. We will discuss this further in Section
5.3.8.

For radio buttons, the input element has a checked attribute that can be
used to make one of the radio buttons within a group selected by default
when the form is first displayed.

5.3.3 Check boxes

Check boxes allow zero or more responses to be chosen from a fixed set of
options. The difference between check boxes and radio buttons is that, with
check boxes, it is valid to select none of the options and it is valid to select
more than one option at the same time.

“itdt” — 2008/5/19 — 14:15 — page 72 — #98i
i

i
i

i
i

i
i

72 Introduction to Data Technologies

Check boxes can be used to enter data for yes/no questions. Each check
box corresponds to a different variable.

An example of the use of check boxes in the I-94W electronic form is shown
in Figure 5.4. The typical display of check boxes is a square, with a tick or
a cross within the square to indicate that the check box has been selected.

In HTML, check boxes are another variation of the input element, this time
with type="checkbox". The code below shows the HTML behind the two
check boxes in Figure 5.4:

<input type="checkbox" name="ill">

<input type="checkbox" name="visa">

The value attribute is less important with check box components because
there are only two possible values for a check box: selected or unselected.
What is more important is the component name, which corresponds to the
name of the variable that is being recorded. Every check box in an electronic
form should have a unique name.

Like for radio buttons, the input element for check boxes has a checked
attribute that can be used to make any checkbox selected by default when
the form is first displayed.

5.3.4 Text fields

Text fields allow open-ended responses. It is much harder to constrain text
input to valid values—for example, it may be hard to ensure that a tele-
phone number has the correct format—but if the set of possible answers is
unknown or infinite, for example, when asking for a person’s name, then this
sort of form component is the only option. Sophisticated validation of text
responses can still be done, but it requires knowledge of other technologies
(see Section 5.4 and Section 11.8.5).

A text field usually corresponds to data entry for a single variable.

Common uses of text fields are to allow the respondent to expand upon a
previous response to a question or to allow open-ended feedback at the end
of a survey. Examples of these uses of text fields are shown in Figure 5.5.

In HTML, there are two types of text form component, one for entering
small amounts of text (a single word or expression) and one for entering
large amounts of text. The code below shows the HTML behind the first
small text field in Figure 5.5. This is another variation on the input element.

“itdt” — 2008/5/19 — 14:15 — page 73 — #99i
i

i
i

i
i

i
i

Data Entry 73

Figure 5.5: Examples of text fields in an electronic form, with input restricted

(top) and open-ended (bottom).

<input type="text" name="when" size=10>

Again, the name attribute is the most important so that different text input
components within a form can be distinguished from each other. The infor-
mation that is recorded for this form component is whatever the user types
into the text field. The value attribute just provides default text (i.e., this
is what is shown when the form is first viewed).

This type of input element also allows a maxlength attribute, which can be
used to limit the number of characters that the user can type into the field.
There is also a size attribute to control how wide the text field appears on
screen (as a number of characters of text).

For entering large blocks of text, there is a separate, textarea, element.
The HTML code for the large text field in Figure 5.5 is shown below:

<textarea name="confession" rows="8" cols="40">
</textarea>

The rows and cols attributes of this element are used to control how many
rows and columns of text are displayed on screen (i.e., how big the text field
is on screen). The content of the element is used as default text when the
form is first displayed. Care should be taken with this content because all
white space is preserved, so any spaces or new lines show up in the default
text. In the example, the default is to show a blank text field.

“itdt” — 2008/5/19 — 14:15 — page 74 — #100i
i

i
i

i
i

i
i

74 Introduction to Data Technologies

Figure 5.6: An example of a menu form component. The bottom of the menu has

been cropped in this image, but the advantage of a menu component is that it

can include a large number of options without taking up too much space on the

screen when the user is not interacting with this component.

5.3.5 Menus

A menu or drop-down list allows a single response to be chosen from a
fixed set of options. This type of form component is very similar to a radio
button, but, because a menu generally takes up less space on screen, it is
more appropriate when the list of available options is large.

Menus can be used to record data for a single variable.

The I-94W question on country of citizenship (shown in Figure 5.2) could
be presented as a menu. A possible menu presentation for this question is
shown in Figure 5.6.

In HTML, a menu is created using a select element for the overall menu
with option elements inside to specify the individual menu options. The
HTML code for the menu in Figure 5.6 is shown below:

<select name="country">
<option>Andorra</option>
<option>Iceland</option>
<option>Norway</option>

...
<option>Germany</option>
<option>New Zealand</option>
<option>United Kingdom</option>

</select>

Some of the code has been left out, but the pattern should be clear.

The value that is recorded from the menu component is the value of the

“itdt” — 2008/5/19 — 14:15 — page 75 — #101i
i

i
i

i
i

i
i

Data Entry 75

Figure 5.7: An example of a question that asks the subject to provide a rating,

implemented as a slider.

option element that is selected by the user. By default, the value of an
option element is the content of the element, but there is a value attribute
to allow a different value to be specified. For example, in the following code,
the value of the element would be NZL not New Zealand:

<option value="NZL">New Zealand</option>

The option element also has a selected attribute that can be used to set
the default menu option when the form is first displayed.

5.3.6 Sliders

A slider allows a response along a continuous or fine-grained scale. The
response is constrained by minimum and maximum values, but remains free
within that range.

A slider is often used to enter data for a rating variable. Figure 5.7 shows
an example of a slider input element.

Unfortunately, HTML has no form element corresponding to a slider com-
ponent. Section 5.4.2 describes some alternative technologies that could be
considered if this type of form component is important to a survey.

5.3.7 Buttons

A very important component in any form is the button at the bottom that
lets the user submit the information that has been entered.

In HTML, a submit button can be produced either using a button element
or as yet another variation on the input element. The following code shows
the HTML behind the submit button on the I-94W form in Figure 5.2:

<input type="submit" value="submit">

“itdt” — 2008/5/19 — 14:15 — page 76 — #102i
i

i
i

i
i

i
i

76 Introduction to Data Technologies

The value attribute can be used to specify the text that is displayed on the
button. The next piece of code is equivalent, but uses a button element
instead:

<button value="submit" name="submit" type="submit">

What happens when the submit button is clicked will be discussed further
in Section 5.5.

5.3.8 Labels

As mentioned in Section 5.3.2, the arrangement of text labels relative to the
actual form components is entirely the responsibility of the designer of the
form. Care must be taken to make sure that the text label beside, say, a
radio button corresponds to the value that is recorded for the radio button.

For example, the following HTML code is perfectly valid syntax, but it is
semantically-challenged:

Select your gender:
male <input type="radio" name="gender" value="female">

female <input type="radio" name="gender" value="male">

It is possible to use a label element within an HTML form to explicitly
relate a piece of text to a form component, but even then the semantic
content of the text is still the responsibility of the form author.

One advantage of using the label element is that it can provide assis-
tance for using a form with non-graphical browsers and it can enhance the
behaviour of the components in on-screen interactions. For example, if a
label element is used to relate a text label with a check box or radio but-
ton, then a click on the text will select the corresponding check box or radio
button.

A label element is related to a form component either by placing the form
component within the label element, or by using the for attribute of the
label element. The code below shows a label element being used to relate
the text label to the first radio button in Figure 5.4:

“itdt” — 2008/5/19 — 14:15 — page 77 — #103i
i

i
i

i
i

i
i

Data Entry 77

<input type="radio" name="country" value="1"
id="COUNTRY01">

<label for="COUNTRY01">
Andorra

</label>

The value of the for attribute of the label element refers to the value of the
id attribute of the radio button element. The following code is equivalent,
but uses the approach of embedding the radio button element within the
label element:

<label>
<input type="radio" name="country" value="1" />
Andorra

</label>

The use of label elements is also an example of good documentation tech-
nique. Even if there is no effect in terms of the behaviour of the form, there
is a gain in terms of the clarity and maintainability of the underlying code.

5.4 Validating input

The previous section described how electronic form components such as ra-
dio buttons, check boxes, and menus ensure that only valid data can be
entered into a form. However, form components such as text fields allow
unconstrained input. Furthermore, there may be relationships between dif-
ferent form elements that need to be maintained. For example, if a person
has greater than zero grandchildren, that person should have at least one
child.

For these reasons, it is useful to be able to enforce rules or constraints on
the values that are entered into form components such as text fields.

There are two basic approaches to checking form data: client-side, where
the checking is done by the web browser before the form data is submitted;
and server-side, where the checking is done on a web server after the form
data has been submitted.

In this section, we will look at several approaches to client-side validation
of the form data. Section 5.5 contains a discussion of server-side validation.

“itdt” — 2008/5/19 — 14:15 — page 78 — #104i
i

i
i

i
i

i
i

78 Introduction to Data Technologies

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>A Minimal Script</title>

5 <script type="text/ecmascript">

6 alert("Welcome to my web page!")

7 </script>

8 </head>

9 <body>

10 </body>

11 </html>

Figure 5.8: A minimal JavaScript.

5.4.1 JavaScript

In addition to the HTML code that describes content and structure, and the
CSS code that describes layout and appearance, a web page may also contain
scripts—code in a scripting language, that describes dynamic behaviour for
the web page.

Within the head element of a web page, it is possible to include one or more
script elements, which either contain script code or provide a reference to
a separate file containing script code.

There are a number of scripting languages that can be used within web
pages, but the major, cross-platform, standardised language is JavaScript.2

Figure 5.8 shows a minimal web page with a tiny script that pops up an
annoying message when the web page is loaded. Figure 5.9 shows the result
when the web page is viewed in a browser.

The script element (lines 5 to 7) has a type attribute that is used to
specify which scripting language is being used. As with a style element
that contains CSS code, the content of a script element is scripting code,
not HTML, so the rules of syntax within a script element are completely
different to the rest of the document.

A complete discussion of JavaScript is beyond the scope of this book (though
we will discuss writing general-purpose scripts in a different language in
Chapter 11). However, it is possible to make use of scripts without having
to write them, so we will now describe some simple scripts that can be used
to perform basic checking of form input.

2The language standard is actually called ECMAScript. The standard is implemented
as JavaScript in Mozilla-based browsers (e.g., Firefox) and as JScript in Internet Explorer.

“itdt” — 2008/5/19 — 14:15 — page 79 — #105i
i

i
i

i
i

i
i

Data Entry 79

Figure 5.9: A minimal web page containing JavaScript as displayed by the

Iceweasel browser on Debian Linux.

“itdt” — 2008/5/19 — 14:15 — page 80 — #106i
i

i
i

i
i

i
i

80 Introduction to Data Technologies

Figure 5.10: An example of a text field in the I-94W form.

The code in a script is run when a web page is loaded. In the example shown
in Figure 5.8, the code does something immediately—it pops up a dialog
box. However, it is more common for script code to define functions, which
are parcels of code that will be run later, when the user interacts with the
web page.

HTML form components have attributes that can be used to specify that a
script function should be run when something happens to the form compo-
nent. For example, there is an onfocus attribute that is run when the user
interacts with a form component (e.g., when the user clicks in a text field
or clicks on a radio button). Similarly, there is an onblur attribute that is
run when a form control loses focus (i.e., when the user clicks somewhere
else).

As an example, consider again the text field in the I-94W form for record-
ing when access to the U.S. or a visa application had been denied. This
was originally shown in Figure 5.5, but it is reproduced in Figure 5.10 for
convenience and to show the form elements in their full context within the
survey.

Suppose that we would like to limit the response to the “when?” question
to be a valid year. That is, we would like the user only to be able to enter
a four-digit number between 1776 (just to be safe) and 2007.

The use of an input element with type="text" and maxlength="4" could
be used to restrict input to four characters. However, it would be much
better if we could force the user to enter exactly four characters (no fewer),
and if we could force the user to enter only digits (i.e., no letters or symbols).

We can use JavaScript to perform this additional checking via the following
steps:

1. Add a script element to the HTML code that loads a set of JavaScript
functions for checking form input. The script element must go within
the head element and should look like this:

<script type="text/javascript" src="validate.js">
</script>

“itdt” — 2008/5/19 — 14:15 — page 81 — #107i
i

i
i

i
i

i
i

Data Entry 81

The file containing the JavaScript code, validate.js, can be down-
loaded from the book website3 and should be placed in the same di-
rectory as the file containing the HTML code.4

2. Add an onblur attribute to the input element, so that when the user
enters data into the text field, a JavaScript function will be run to
check that the code is valid. In this example, we want to check that
the input is a four-digit number, so we use the hasIntegerLength
function. The input element for the text field should now look like
this:

<input type="text" name="when" size="4" maxlength="4"
onblur="hasIntegerLength(this, 4)">

If a non-number is entered, or a number with any number of digits
other than four is entered, or the field is left blank, an error message
will appear and the text field will be selected so that the value can be
corrected. Figure 5.11 shows the error message from an invalid data
entry.

This is just one example of the sort of check that we might make
on an electronic form component. The JavaScript code in the file
validate.js provides several other functions like this for checking
the input. The full list of functions is provided in Chapter 6.

3. Add an onsubmit attribute to the form element that calls a validateAll
script function. This attribute runs the script function before submit-
ting the form data. It will check that all of the fields that have onblur
attributes are checked again before the form is submitted.

This is an important step because a form can be submitted without
the user visiting all of the fields within a form. This step ensures that
all fields are validated when the user attempts to submit the form.

The form element in this example now looks like this:

<form action="http://www.formbuddy.com/cgi-bin/form.pl"
method="post" onsubmit="return(validateAll())">

If any of the validation checks fail, the form data is not submitted.

This series of steps can be used to add simple validation to an electronic
form. More complex validation requires knowledge of JavaScript and/or
server-side technologies (see Section 5.5 and Section 6.5).

3http://www.stat.auckland.ac.nz/~paul/ItDT/
4Alternatively, the src attribute of the script element can contain the full URL to

the JavaScript file so that the file of JavaScript code is downloaded whenever the HTML
form is loaded into a browser.

http://www.stat.auckland.ac.nz/~paul/ItDT/

“itdt” — 2008/5/19 — 14:15 — page 82 — #108i
i

i
i

i
i

i
i

82 Introduction to Data Technologies

Figure 5.11: An example of an error message resulting from invalid input to a

text field.

“itdt” — 2008/5/19 — 14:15 — page 83 — #109i
i

i
i

i
i

i
i

Data Entry 83

5.4.2 Other electronic forms technologies

The lack of facilities for validating input in pure HTML is one of the motiva-
tions behind more recent projects aimed at developing standard languages
for describing electronic forms.

XForms is a language that is much more complex than HTML forms, but
provides sophisticated facilities for constraining the input values for a form.
The slider in Figure 5.7 was produced using XForms and Figure 5.12 shows
the XForms code behind that web page.

Much of this code should be familiar; a lot of it is standard HTML elements.
The differences are the use of the range element (lines 26 to 29), which
generates the slider on screen, and the model element (lines 10 to 17),
which specifies how the form data is structured and what type of input each
form component can enter (in this case, the slider records a decimal value).

XForms is a very powerful language that allows for very precise control over
the data that is recorded by an electronic form, however, it quickly becomes
quite complex.

Another electronic form technology that is being developed is Web Forms
2. This is a less radical departure from HTML forms and mostly just
extends the standard with new elements to allow for other input components
(e.g., sliders, dates, ...) and new attributes to allow more constraints to be
applied to the input data (e.g., ranges of values).

Figure 5.13 shows Web Forms 2 code for a slider like that in Figure 5.7 and
the resulting web page is shown in Figure 5.14. The Web Forms 2 code is
much more like regular HTML code, with the slider generated by an input
element with type="range" (line 18).

The major problem with these newer technologies is that there is less soft-
ware available to support them. A number of programs implement XForms,
including an add-on for the Firefox browser, and the Opera web browser
has started an implementation of Web Forms 2, but these programs are
either incomplete or not widely available.

The most recent development is the start of work on HTML 5 by the W3C,
which is intended to incorporate many of the Web Forms 2 ideas (among
other things) into the official HTML specification. At the time of writing,
however, this work is at a very early stage.

“itdt” — 2008/5/19 — 14:15 — page 84 — #110i
i

i
i

i
i

i
i

84 Introduction to Data Technologies

1 <html xmlns="http://www.w3.org/1999/xhtml"

2 xmlns:xf="http://www.w3.org/2002/xforms"

3 xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <head>

5 <style>

6 body { background-color: #9CF2CA;

7 padding-top: 20px;

8 padding-left: 5%; padding-right: 5%; }

9 </style>

10 <xf:model>

11 <xf:instance>

12 <root xmlns="">

13 <role>4</role>

14 </root>

15 </xf:instance>

16 <xf:bind nodeset="role" type="xs:decimal"/>

17 </xf:model>

18 </head>

19 <body>

20 <p>

21 How would you describe your role in society?

22 </p>

23

24 <p>

25 career criminal

26 <xf:range ref="role"

27 start="1" end="7" step=".5">

28 <xf:label />

29 </xf:range>

30 model citizen

31 </p>

32 </body>

33 </html>

Figure 5.12: XHTML and XForms code for a slider form component.

“itdt” — 2008/5/19 — 14:15 — page 85 — #111i
i

i
i

i
i

i
i

Data Entry 85

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Web Forms 2 Slider</title>

5 <style>

6 body { background-color: #9CF2CA;

7 padding-top: 20px;

8 padding-left: 5%; padding-right: 5%; }

9 </style>

10 </head>

11 <body>

12 <p>

13 How would you describe your role in society?

14 </p>

15

16 <p>

17 career criminal

18 <input type="range" value="4" min="1" max="7" step=".5">

19 model citizen

20 </p>

21 </body>

22 </html>

Figure 5.13: HTML and Web Forms 2 code for a slider form component.

Figure 5.14: A slider form component described by Web Forms 2 code (see Figure

5.13) and viewed in the Opera web browser on Debian Linux.

“itdt” — 2008/5/19 — 14:15 — page 86 — #112i
i

i
i

i
i

i
i

86 Introduction to Data Technologies

5.5 Submitting input

To this point, we have only addressed how to create an electronic form and
how to check the data that is entered into the form. We will now look at
the final, very important, step of recording the information from the form.

5.5.1 HTML form submission

Most HTML forms have a submit button at the bottom of the form. Once
all of the fields in the form have been filled in, the user clicks on the submit
button to record the form data. The standard behaviour is to gather all of
the data that were entered into the form and send it to another program to
be processed.

The form element has two important attributes that together control what
happens when the submit button is pressed. The first is the action at-
tribute. This attribute specifies the program that the form data will be
send to. It is usually a URL, which means that the program to process the
data can reside anywhere on the world-wide web.

The method attribute of the form element controls how the information is
sent. The value of this attribute is either "get" or "post".

The code below shows the opening tag of the form element for the I-94W
form.

<form action="http://www.formbuddy.com/cgi-bin/form.pl"
method="post">

The data from the form is sent using the post method and the data is sent
to a program called form.pl. This form uses a remotely-hosted form pro-
cessing service called formbuddy.5 A number of similar services are provided
for free by various web site.6

5.5.2 Local HTML form submission

The problem with using action and method attributes is that the program
specified by the action needs to be on a web server. Setting up web servers
is beyond the scope of this book, so this section describes an alternative

5http://www.formbuddy.com/
6A list of services is maintained at

http://cgi.resourceindex.com/Remotely_Hosted/Form_Processing/

http://www.formbuddy.com/
http://cgi.resourceindex.com/Remotely_Hosted/Form_Processing/

“itdt” — 2008/5/19 — 14:15 — page 87 — #113i
i

i
i

i
i

i
i

Data Entry 87

set up that will allow us to at least demonstrate the recording of form data
using just a web browser.

The following steps can be used to set up a form so that the form data are
recorded locally within the web browser.

1. Add a script element to the head element of the form to load the file
echo.js containing JavaScript code.
The validate.js code from Section 5.4 should also be loaded, so the
head element of the HTML code should include the following lines:

<script type="text/javascript" src="validate.js">
</script>
<script type="text/javascript" src="echo.js">
</script>

The file echo.js is available from the same location as the file validate.js
(i.e., the web site for this book).

2. Add an onsubmit attribute to the form element that calls the saveform()
function (from the echo.js file):

<form onsubmit="return(saveform())">

With this local submission approach, there is no need for an action
attribute or a method attribute.
The call to saveForm() replaces the call to the validateAll() func-
tion from validate.js, but the saveform() function calls validateAll()
itself, so validation will still occur.
Each time the form is submitted, the saveform() function will save
the form data within the browser.

3. Add a new button at the bottom of the form using the following code:

<input type="button" value="display"
onclick="echoform()">

This creates a new button, labelled display, in addition to the submit
button that is already in the form.
When the new display button is clicked, all of the form data that has
been saved so far will be displayed at the bottom of the web form. This
data can then be copied and pasted to a file for permanent storage.

Figure 5.15 shows what the I-94W form from Figure 5.10 looks like with
these modifications (the only visible difference is the new display button at
the bottom).

“itdt” — 2008/5/19 — 14:15 — page 88 — #114i
i

i
i

i
i

i
i

88 Introduction to Data Technologies

Figure 5.15: The form in Figure 5.10 set up for local submission.

Figure 5.16 shows the result of clicking on the display button after entering
several sets of data.

Summary

“itdt” — 2008/5/19 — 14:15 — page 89 — #115i
i

i
i

i
i

i
i

Data Entry 89

Figure 5.16: Displayed data from the I-94W form following a click on the display

button.

“itdt” — 2008/5/19 — 14:15 — page 90 — #116i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 91 — #117i
i

i
i

i
i

i
i

H
T

M
L

F
or

m
s

6
HTML Forms Reference

HTML can be used to create electronic forms containing interactive ele-
ments, such as buttons and menus, for entering data. Figure 6.1 shows the
typical form components available within an HTML form.

6.1 HTML form syntax

HTML form elements are just normal HTML elements, so all of the normal
rules of HTML syntax apply (see Chapter 3).

All electronic form components must appear within a form element and the
form element must appear within the body of the HTML code. Figure 6.2
shows the HTML code behind the electronic form in Figure 6.1.

6.2 HTML form semantics

6.2.1 Common attributes

All form elements that create form components have a name attribute and
a value attribute. The value attribute specifies the data value that will be
recorded from the form element. The name is important as a label for the
data that is recorded from the form element; this corresponds to the name
of a variable.

6.2.2 HTML form elements

<input type="radio">
Creates a radio button. Radio buttons are used where there is a single
question with a fixed and finite set of possible answers and only one
answer can be selected. Usually, one radio button is provided for each
possible answer and only one of the radio buttons can be selected
at once. In order to achieve this behaviour, all of the radio buttons

“itdt” — 2008/5/19 — 14:15 — page 92 — #118i
i

i
i

i
i

i
i

92 Introduction to Data Technologies

Figure 6.1: A demonstration of an HTML form, showing buttons, a menu, text

fields, radio buttons, and check boxes.

for a single question must have the same name attribute. Conversely,
each radio button for a single question must have a different value
attribute.

An example of the use of radio buttons is shown on lines 18 and 19
of Figure 6.2 and in Figure 6.1.

<input type="checkbox">
Creates a check box. Each check box corresponds to a yes/no question,
so each check box should have a unique name attribute. When a form
is submitted, information is only sent for check boxes that have been
selected, so the program processing the data must know about all
check boxes in order to record a missing value or “off” value for check
boxes that were not selected.

An example of the use of check boxes is shown on lines 23 and 24 of
Figure 6.2 and in Figure 6.1.

<input type="text">
Creates a region for entering small amounts of text. A default value
can be supplied via the value attribute. The maximum number of
characters that can be entered can be controlled via the maxlength
attribute, but otherwise the value entered by the user is unconstrained.

“itdt” — 2008/5/19 — 14:15 — page 93 — #119i
i

i
i

i
i

i
i

HTML Forms Reference 93

H
T

M
L

F
or

m
s

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Electronic Form Demo</title>

5 <script type="text/ecmascript" src="validate.js"></script>

6 <script type="text/ecmascript" src="echo.js"></script>

7 </head>

8 <body>

9 <form onsubmit="return(saveform())">

10 <p>

11 Number of children:

12 <input type="text" name="numChildren" value="0"

13 size="2" maxlength="2"

14 onblur="isIntegerRange(this, 0, 15)">

15 </p>

16 <p>

17 Choose a gender:

18 <input type="radio" name="gender" value="male" checked> Male

19 <input type="radio" name="gender" value="female"> Female

20 </p>

21 <p>

22 Choose the colours you like:

23 <input type="checkbox" name="colourBlue" checked> Blue

24 <input type="checkbox" name="colourPink"> Pink

25 </p>

26 <p>

27 Choose a race:

28 <input type="radio" name="race" value="euro"> European

29 <input type="radio" name="race" value="kiwi" checked> Kiwi

30 <input type="radio" name="race" value="other"> Other

31 </p>

32 <p>

33 Choose an age group:

34 <select name="agegp">

35 <option>0-10</option>

36 <option>10-20</option>

37 <option>20-30</option>

38 <option selected>30-40</option>

39 <option>40-50</option>

40 <option>50-60</option>

41 </select>

42 </p>

43 <p>

44 <textarea name="openText">Comments ... ?</textarea>

45 </p>

46 <p>

47 <input type="submit" value="submit">

48 <input type="reset" value="reset">

49 <button onclick="echoform()">export</button>

50 </p>

51 <input type="hidden" id="echoFormFormat" value="html">

52 </form>

53 </body>

54 </html>

Figure 6.2: HTML code for example form components.

“itdt” — 2008/5/19 — 14:15 — page 94 — #120i
i

i
i

i
i

i
i

94 Introduction to Data Technologies

See Section 6.4.

An example of the use of a text component is shown on lines 12 to 14
of Figure 6.2 and in Figure 6.1.

<textarea>
Creates a region for entering large amounts of text. The size of the
region that is displayed on the web page is controlled via rows and
cols attributes. The values of these attributes are taken to be a num-
ber of lines of text and a number of characters of text, respectively. A
default value can be supplied as the contents of the textarea element
(white space is literal within this content).

An example of the use of a text region is shown on line 44 of Figure
6.2 and in Figure 6.1.

<input type="password">
Creates a region for entering a password; key strokes are echoed by
printing dots or stars so that the actual value being entered is not
visible on screen.

<select> and <option>
The select element creates a selection menu. The options on the
menu are created by option elements within the select element.
The content of the option element is displayed on the menu. The
data value that is recorded for each option element is also taken from
the content of the option element unless the option element has a
value attribute. The label for the data value comes from the name
attribute of the select element (the option elements have no name
attribute).

An example of the use of a selection menu is shown on lines 34 to 41
of Figure 6.2 and in Figure 6.1.

<input type="submit">
Creates a submit button. The label on the button can be controlled
via the value attribute. Clicking this button will send the form data
to a program for processing (see Section 6.3).

An example of the use of a submit button is shown on line 47 of Figure
6.2 and in Figure 6.1.

<input type="reset">
Creates a reset button. Clicking this button will reset the values of
all controls to their default values.

An example of the use of a reset button is shown on line 48 of Figure
6.2 and in Figure 6.1.

“itdt” — 2008/5/19 — 14:15 — page 95 — #121i
i

i
i

i
i

i
i

HTML Forms Reference 95

H
T

M
L

F
or

m
s

<button>
Creates a button. This can be used as an alternative way to create a
button for submitting the form, resetting the form, or, more generally,
for associating a mouse click with a script action (see Section 6.4). The
label on the button is taken from the contents of the button element
(so this allows for fancier button labels, including images).

An example of the use of a generic button is shown on line 49 of Figure
6.2 and in Figure 6.1.

<label>
Associates a text label with a form component. Useful for non-graphical
browsers and just as a discipline for documenting code. For radio but-
tons and check boxes this means that a click on the text will select
the corresponding radio button or check box.

<input type="hidden">
Generates an invisible form data value. This can be used to include
information with the form data, but have nothing displayed on the
web page.

An example of the use of a hidden element is shown on line 51 of
Figure 6.2. The purpose of this element is described in Section 6.4.2.

6.3 HTML form submission

In standard usage, HTML forms are a “client-server” technology. The
“client” is a web browser, like Firefox, which is responsible for displaying
the electronic form and allowing the user to enter data into the form. The
“server” is a web server (e.g., Apache), and it is responsible for checking the
data that was entered into the form and for storing the data somewhere (e.g.,
in a database). The web server is typically on a different computer from the
browser, either on a local network, or somewhere on the world-wide-web.

The action attribute of the form element is used to specify the program
to which the form data is sent. This can be just the name of a program
(commonly, the name of a script in a language such as Perl or Python or
PHP), in which case the program must reside in the same directory as the
file of HTML code that describes the form, or it can be a full URL that
provides a path to such a program (i.e., the HTML code and the processing
code can reside on separate computers).

The method attribute of the form element is used to specify what format the
form data are sent in. This attribute can have the value "get" or "post".

“itdt” — 2008/5/19 — 14:15 — page 96 — #122i
i

i
i

i
i

i
i

96 Introduction to Data Technologies

For online surveys or data entry, "post" is probably the more appropriate
option, though the action program may dictate which method to use.

The disadvantage of the standard usage of HTML forms is that it requires a
separate computer and it requires web server software. The set up of a web
server is beyond the scope of this book, but Section 6.4.2 describes one way
to achieve input checking and data storage without the need for external
programs (i.e., just with a browser).

The “local submission” described in Section 6.4.2 can be used for learning
how to create HTML forms and for testing an HTML form, but for serious
survey administration and data entry it will be necessary to set up a proper
web server and data processing program. These services are provided by
several online sites if the necessary expertise is not locally available.

6.4 HTML form scripts

It is possible to specify script code that should be run when the user inter-
acts with the electronic form. The most common language used for scripts
is JavaScript (officially ECMAScript, also known as JScript).

JavaScript code can be included as the content of a script element in the
head of the HTML code, or the JavaScript can be in a separate file and just
referred to via a script element.

This section does not provide a reference for the JavaScript language (see
Section 6.5); it is only a guide to the use of some predefined scripts that are
made available with this book.

The files containing JavaScript are called validate.js and echo.js and
are available from the book web site.

6.4.1 Validation scripts

The file validate.js contains JavaScript code for performing simple checks
on the values entered for text fields. These functions can be used by adding
an onblur attribute to the element to be checked, so that the code is run
whenever the user interacts with that element. Typically, these will only be
necessary with text elements or textarea elements.

In all cases, these functions will open a dialog containing an error message if
the check fails. The user must click on OK in the dialog in order to continue
and the content of the offending element will be highlighted when control

“itdt” — 2008/5/19 — 14:15 — page 97 — #123i
i

i
i

i
i

i
i

HTML Forms Reference 97

H
T

M
L

F
or

m
s

returns to the form (i.e., no other data can be entered until the element has
a valid value).

notEmpty(this)
An error message will appear if the value is left blank. The code below
shows an example of the use of this function to ensure that a name is
entered into a text component:

Surname <text onblur="notEmpty(this)">

isInteger(this)
The value must not be blank and the value must be a whole number.
It is valid to enter a value that starts with a number, but the value
will be truncated to just the number in that case.

isIntegerRange(this, min, max)
The value must not be blank, the value must be a whole number, and
the value must be between min and max .

isReal(this)
The value must not be blank and the value must be a number (can
include a decimal point). It is valid to enter a value that starts with
a number, but the value will be truncated to just the number in that
case.

isRealRange(this, min, max)
The value must not be blank, the value must be a number, and the
value must be between min and max .

hasLength(this, n)
The value must be n characters long.

hasIntegerLength(x, n)
The value must be a whole number and the value must have n digits.

matchesPattern(this, pattern)
The value is checked against the regular expression in pattern. See
Section 11.8.2 and Chapter 13 for information about regular expres-
sions. The regular expressions in JavaScript correspond to Perl-style
regular expressions.

6.4.2 Submission scripts

The file validate.js contains an JavaScript function called validateAll().
This script function can be used to check all form elements that have onblur

“itdt” — 2008/5/19 — 14:15 — page 98 — #124i
i

i
i

i
i

i
i

98 Introduction to Data Technologies

attributes just before the form is submitted. The effect is to force all valida-
tion checks to be performed when the form is submitted and submission will
not proceed if any of the checks fail. This should be added as the onsubmit
attribute of the form element as shown below:

<form onsubmit="return(validateAll())">

Local form submission

The file echo.js contains JavaScript functions for performing “local” sub-
mission of form data. This means that, when the submit button is clicked,
the data is not sent to an external program for processing, but is saved
within the browser instead.

In order to perform local submission, the saveform() function should be
added to the onsubmit attribute of the form element as shown below:

<form onsubmit="return(saveform())">

In addition, an extra button should be added to the form using the code
shown below (the echoform() function is provided within echo.js):

<button onclick="echoform()">display</button>

When this button is clicked, the data that has been entered so far will be
displayed at the bottom of the web page. The data can then be copied and
pasted elsewhere for permanent storage.

Navigation away from the form page (or closing the browser), without click-
ing the export button, will result in the loss of all of the submitted form data.

The saveform() function calls the validateAll() function from validate.js
to perform validation checks before saving the form data within the browser.

Local form submission parameters

The functions in echo.js behave differently, depending on the value of
certain parameters. For example, the format in which the form data is
stored is controlled by a parameter called echoFormFormat. The parameters
all have default values, but new values can be specified by including hidden
elements in the HTML form (see Section 6.2.2).

An example is shown on line 51 of Figure 6.2 (reproduced below):

“itdt” — 2008/5/19 — 14:15 — page 99 — #125i
i

i
i

i
i

i
i

HTML Forms Reference 99

H
T

M
L

F
or

m
s

<input type="hidden" id="echoFormFormat" value="html">

This code sets the echoFormFormat parameter to the value "html", which
means that the form data are stored as an HTML table. This parameter
can also take the value "text", in which case the data are stored in a plain
text format (see Section 7.3).

Other possible parameters and their values are:

echoFormHeaders
This can take the values true (the default) or false. If it is true then
variable names (taken from the name attributes of the form elements)
are stored with the form data.

echoFormFieldSep
If the format for saving data is plain text, this parameter controls
what sort of character is placed between fields. The default is to use
a comma.

echoFormQuote
This can take the values true (the default) or false. If the format
for saving data is plain text, and this parameter is true, then any
data values containing the echoFormFieldSep are quoted (a double-
quote character, ", is placed at either end of the data value). Any
double-quote characters are also replaced with a double double-quote.

echoFormReset
This can take the values true or false (the default). If it is true,
then all form components are reset to their default values after the
form is submitted.

The default values for these parameters mean that the default plain text
format is a CSV format (see Section 7.3.5).

6.5 Further reading

The Exploring Online Research Methods Technical Guide
http://www.geog.le.ac.uk/orm/technical/techcontents.htm
A comprehensive resource for creating electronic forms using HTML,
CSS, and Javascript.

The W3C HTML 4.01 Specification
http://www.w3.org/TR/html401/
The formal and official definition of HTML. Quite technical.

http://www.geog.le.ac.uk/orm/technical/techcontents.htm
http://www.w3.org/TR/html401/

“itdt” — 2008/5/19 — 14:15 — page 100 — #126i
i

i
i

i
i

i
i

100 Introduction to Data Technologies

The Web Design Group’s HTML 4 web site
http://htmlhelp.com/reference/html40/
A more friendly user-oriented description of HTML.

The w3schools HTML Tutorial
http://www.w3schools.com/html/html_forms.asp
The HTML forms section of the basic tutorial-based introduction to
HTML.

The w3schools JavaScript Tutorial
http://www.w3schools.com/js/
A tutorial-based introduction to JavaScript.

The ECMAScript Language Specification
http://www.ecma-international.org/publications/standards/Ecma-262.htm

The ECMA-262 Standard document. Very technical.

http://htmlhelp.com/reference/html40/
http://www.w3schools.com/html/html_forms.asp
http://www.w3schools.com/js/
http://www.ecma-international.org/publications/standards/Ecma-262.htm

“itdt” — 2008/5/19 — 14:15 — page 101 — #127i
i

i
i

i
i

i
i

7
Data Storage

The previous chapter focused on how to improve the process of recording
information at the interface between humans and computers. In this chap-
ter, we will look in depth at what form the information should take once it
resides on a computer.

There are several good reasons why researchers need to know about data
storage options. We may not have control over the format in which data
is given to us. For example, data from NASA’s Live Access Server is in a
format decided by NASA and we are unlikely to be able to convince them
to provide it in a different format. This says that we must know about
different formats in order to gain access to data.

Another common situation is that We may have to transfer data between
different applications or between different operating systems. This effec-
tively involves temporary data storage so it is useful to understand how to
select an appropriate storage format.

It is also possible to be involved in deciding the format for archiving a data
set.

In this chapter, we will see a number of different data storage options and
we will discuss the strengths and weaknesses of each.

“itdt” — 2008/5/19 — 14:15 — page 102 — #128i
i

i
i

i
i

i
i

102 Introduction to Data Technologies

7.1 Case study: YBC 7289

YBC 7289. Photo by Bill Cassel-
man.1

Some of the earliest known examples of recorded information come from
Mesopotamia, which roughly corresponds to modern-day Iraq, and date
from around the middle of the fourth millenium BC. The writing is called
cuneiform, which refers to the fact that marks were made in wet clay with
a wedge-shaped stylus.

A particularly famous mathematical example of cuneiform is the clay tablet
known as YBC 7289.

This tablet is inscribed with a set of numbers using the Babylonian sexa-
gesimal (base-60) system. In this system, a symbol resembling a less-than
sign (we will use <) represents the value 10 and a symbol resembling a tall
narrow triangle, with the tip pointing down, represents the value 1 (we will
use |). For example, the value 30 is written (roughly) like this: <<<. This
value can be seen along the top-left edge of YBC 7289 (see Figure 7.1).

The number along the central horizontal line on YBC 7289 has four digits:
|, which is 1; <<||||, which is 24; <<<<<|, which is 51; and <, which is 10.
Historians have determined that there is an unwritten “decimal place” after
the 1 and this means that the decimal value of this number is 1+ 24

60 + 51
3600 +

10
216000 = 1.41421296 (to 9 significant decmial digits). For around 1600 BC,
this value is ridiculously close to the true value of the length of the diagonal
of a unit square (

√
2 = 1.41421356).

The value at the bottom of the tablet has three digits—42, 25, and 35—and
corresponds to the value 42 + 25

60 + 35
3600 = 30 ×

√
2 (i.e., the length of the

1Source: Wikimedia Commons
http://upload.wikimedia.org/wikipedia/commons/0/0b/Ybc7289-bw.jpg

This image is available under a Creative Commons Attribution 2.5 licence.

http://upload.wikimedia.org/wikipedia/commons/0/0b/Ybc7289-bw.jpg

“itdt” — 2008/5/19 — 14:15 — page 103 — #129i
i

i
i

i
i

i
i

Data Storage 103

Figure 7.1: Clay tablet YBC 7289 showing cunieform inscriptions that demon-

strate the derivation of the square root of 2.

diagonal for a square with sides of length 30).

What we are going to do with this remarkable piece of mathematical history
is to treat it as information that needs to be stored electronically.

The choice of a clay tablet for recording the information on YBC 7289 was
obviously a good one in terms of the durability of the storage medium. Very
few electronic media today have an expected lifetime of several thousand
years. However, electronic media do have many other advantages.

The most obvious advantage of an electronic medium is that it is very easy
to make copies. The curators in charge of YBC 7289 would no doubt love
to be able to make identical copies of such a precious artifact, but truly
identical copies are only really possible for electronic information.

This leads us to the problem of how we produce an electronic record of the
tablet YBC 7289. We will consider a number of possibilities in order to
introduce some of the issues that will be important when discussing various
data storage alternatives throughout this chapter.

A straightforward approach to storing the information on this tablet would
be to write a simple textual description of the tablet.

“itdt” — 2008/5/19 — 14:15 — page 104 — #130i
i

i
i

i
i

i
i

104 Introduction to Data Technologies

YBC 7289 is a clay tablet with various cuneiform marks on it
that describe the relationship between the length of the
diagonal and the length of the sides of a square.

This approach has the advantages that it is easy to create and it is easy
for a human to access the information. However, when we store electronic
information, we should also be concerned about whether the information
is easily accessible for computer software. This essentially means that we
should supply clear labels so that individual pieces of information can be
retrieved easily. For example, the label of the tablet is something that might
be used to identify this tablet from all other cuneiform artifacts, so the label
information should be clearly identified.

label: YBC 7289
description: A clay tablet with various cuneiform marks on it
that describe the relationship between the length of the
diagonal and the length of the sides of a square.

Thinking about what sorts of questions will be asked of the data is a good
way to guide the design of data storage. Another sort of information that
people might go looking for is the set of cuneiform markings that occur on
the tablet.

The markings on the tablet are numbers, but they are also symbols, so it
would probably be best to record both numeric and textual representations.
There are three sets of markings, and three values to record for each set; a
common way to record this sort of information is with a row of information
per set of markings, with three columns of values on each row.

<<< 30 30
| <<|||| <<<<<| < 1 24 51 10 2.41421296

<<<<|| <<||||| <<<||||| 42 25 35 42.4263889

When storing the lines of symbols and numbers, we have spaced out the
information so that it is easy, for a human, to see where one sort of value
ends and another begins. Again, this information is even more important
for the computer. Another option is to use a special character, such as a
comma, to indicate the start/end of separate values.

“itdt” — 2008/5/19 — 14:15 — page 105 — #131i
i

i
i

i
i

i
i

Data Storage 105

values:
cuneiform,sexagesimal,decimal
<<<,30,30
| <<|||| <<<<<| <,1 24 51 10,2.41421296
<<<<|| <<||||| <<<|||||,42 25 35,42.4263889

Something else we should add is information about how the values relate to
each other. Someone who is unfamiliar with Babylonian history may have
difficulty realising how the three values on each line actually correspond
to each other. This sort of encoding information is essential metadata—
information about the data values.

encoding: In cuneiform, a ’<’ stands for 30 and
a ’|’ stands for 1. Sexagesimal values are base 60, with
a sexagesimal point after the first digit; the first digit
represents ones, the second digit is sixtieths, the third
is three-thousand six-hundredths, and the fourth is two
hundred and sixteen thousandths.

The position of the markings on the tablet, and the fact that there is also
a square, with its diagonals inscribed, are all important information that
contribute to a full understanding of the tablet. The best way to capture
this information is with a photograph.

In many fields, data consist not just of numbers, but also pictures, sounds,
and video. This sort of information creates additional files that are not easily
incorporated together with textual or numerical data. The problem becomes
not only how to store each individual representation of the information, but
also how to organise the information in a sensible way. Something that we
could do in this case in include a pointer to a file containing a photograph
of the tablet.

photo: ybc7289.png

Information about the source of the data may also be of interest. For exam-
ple, the tablet has been dated to sometime between 1800 BC and 1600 BC.
Little is known of its rediscovery, except that it was acquired in 1912 AD by
an agent of J. P. Morgan, who subsequntly bequeathed it to Yale University.
This sort of metadata is easy to record as a textual description.

medium: clay tablet
history: Created between 1800 BC and 1600 BC, purchased by
J.P. Morgan 1912, bequeathed to Yale University.

“itdt” — 2008/5/19 — 14:15 — page 106 — #132i
i

i
i

i
i

i
i

106 Introduction to Data Technologies

The YBC in the tablet’s label stands for the Yale Babylonian Collection.
This tablet is just one item within one of the largest collections of cuneiforms
in the world. In other words, there are a lot of other sources of data very
similar to this one.

This has several implications for how we should store information about
YBC 7298. First of all, we should store the same sort of information as is
stored for other tablets in the collection so that, for example, a researcher
can search for all tablets created in a certain time period. We should also
think about the fact that some of the information that we have stored for
YBC 7289 is very likely to be in common with all items in the collection.
For example, the explanation of the sexagesimal system will be the same for
other tablets from the same era. With this in mind, it does not make sense
to record the encoding information for every single tablet. It would make
sense to record the encoding information once, perhaps in a separate file,
and just refer to the appropriate encoding information within the record for
an individual tablet.

A complete version of the information that we have recorded so far might
look like this:

label: YBC 7289
description: A clay tablet with various cuneiform marks on it
that describe the relationship between the length of the
diagonal and the length of the sides of a square.
photo: ybc7289.png
medium: clay tablet
history: Created between 1800 BC and 1600 BC, purchased by
J.P. Morgan 1912, bequeathed to Yale University.
encoding: sexagesimal.txt
values:
cuneiform,sexagesimal,decimal
<<<,30,30
| <<|||| <<<<<| <,1 24 51 10,2.41421296
<<<<|| <<||||| <<<|||||,42 25 35,42.4263889

Is this the best possible way to store information about YBC 7289? Almost
certainly not. Some problems with this approach include the fact that
storing information as text is often not the most efficient approach and the
fact that it would be difficult and slow for a computer to extract individual
pieces of information from a free-form text format like this. However, the
choice of an appropriate format also depends on how the data will be used.

The options discussed so far have only considered a couple of the possible
text representations of the data. Another whole set of options to consider

“itdt” — 2008/5/19 — 14:15 — page 107 — #133i
i

i
i

i
i

i
i

Data Storage 107

are binary formats, for example, the photograph and the text and numeric
information could all be included in a single file. The most likely solution
in practice is that this information resides in a database of information that
describes the entire Yale Babylonian Collection.

This chapter will look at the decisions involved in choosing a format for
storing information, we will discuss a number of standard data storage for-
mats, and we will acquire the technical knowledge to be able to work with
the different formats.

7.2 Computer Memory

Given that we are always going to store our data on a computer, it makes
sense for us to first find out a little bit about how that information is stored.
How does a computer store the letter ‘A’ on a hard drive? What about the
value 1

3?

Knowledge of how information is stored digitally will allow us to reason
about the amount of space that will be required to store a data set, which
in turn will allow us to determine what software or hardware we will need
to be able to work with a data set, and to decide upon an appropriate
storage format. We will also look at some important limitations on how
well information can be stored on a computer.

7.2.1 Bits, bytes, and words

The surface of a CD magnified
many times to show the pits in the
surface that encode information.2

The most fundamental unit of computer memory is the bit. A bit can be

2Source: The University of Warwick, Department of Physics, Centre for Advanced
Materials, Image Gallery
http://physweb.spec.warwick.ac.uk/advmat/Imagegallery/CD1.htm

Used and redistributed with permission.

http://physweb.spec.warwick.ac.uk/advmat/Imagegallery/CD1.htm

“itdt” — 2008/5/19 — 14:15 — page 108 — #134i
i

i
i

i
i

i
i

108 Introduction to Data Technologies

a tiny magnetic region on a hard disk, a tiny dent in the reflective material
on a CD or DVD, or a tiny transistor on a memory stick. Whatever the
physical implementation, the important thing to know about a bit is that,
like a switch, it can only take one of two values: it is either “on” or “off”.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

byte bit

word

A collection of 8 bits is called a byte and (on the majority of computers
today) a collection of 4 bytes, or 32 bits, is called a word. Each individual
data value in a data set is usually stored using one or more bytes of mem-
ory, but at the lowest level, any data stored on a computer is just a large
collection of bits. For example, the first 256 bits (32 bytes) of the electronic
format of this book are shown below. At the lowest level, a data set is just
a series of zeroes and ones like this.

00100101 01010000 01000100 01000110 00101101 00110001
00101110 00110100 00001010 00110101 00100000 00110000
00100000 01101111 01100010 01101010 00001010 00111100
00111100 00100000 00101111 01010011 00100000 00101111
01000111 01101111 01010100 01101111 00100000 00101111
01000100 00100000

The number of bytes and words used for an individual data value will vary
depending on the storage format, the operating system, and even the com-
puter hardware, but in many cases, a single letter or character of text takes
up one byte and an integer, or whole number, takes up one word. A real or
decimal number takes up one or two words depending on how it is stored.

For example, the text “hello” would take up 5 bytes of storage, one per
character. The text“12345”would also require 5 bytes. The integer 12,345
would take up 4 bytes (1 word), as would the integers 1 and 12,345,678.
The real number 123.45 would take up 4 or 8 bytes, as would the values
0.00012345 and 12345000.0.

7.2.2 Binary, Octal, and Hexadecimal

A piece of computer memory can be represented by a series of 0’s and 1’s,
with one digit for each bit of memory; the value 1 represents an “on” bit

“itdt” — 2008/5/19 — 14:15 — page 109 — #135i
i

i
i

i
i

i
i

Data Storage 109

and a 0 represents an “off” bit. This notation is described as binary form.
For example, below is a single byte of memory that contains the letter ‘A’
(ASCII code 65; binary 1000001).

01000001

A single word of memory contains 32 bits, so it requires binary 32 digits
to represent a word in binary form. A more convenient notation is octal,
where each digit represents a value from 0 to 7. Each octal digit is the
equivalent of 3 binary digits, so a byte of memory can be represented using
only 3 octal digits.

Binary values are pretty easy to spot, but octal values are much harder to
distinguish from normal decimal values, so when writing octal values, it is
common to precede the digits by a special character, such as a leading ‘0’.

As an example of octal form, the binary code for the character ‘A’ splits into
triplets of binary digits (from the right) like this: 01 000 001. So the octal
digits are 101, commonly written 0101 to emphasize the fact that these are
octal digits.

An even more efficient way to represent memory is hexadecimal form.
Here, each digit represents a value between 0 and 16, with values greater
than 9 replaced with the characters a to f. A single hexadecimal digit
corresponds to 4 bits, so each byte of memory requires only 2 hexadecimal
digits. As with octal, it is common to precede hexdecimal digits with a
special character, e.g., 0x or #. The binary form for the character ‘A’ splits
into two quadruplets: 0100 0001. The hexadecimal digits are 41, commonly
written 0x41 or #41.

Another standard practice is to write hexadecimal representations as pairs of
digits, corresponding to a single byte, separated by spaces. For example, the
memory storage for the text “just testing” (12 bytes) could be represented
as follows:

6a 75 73 74 20 74 65 73 74 69 6e 67

When displaying a block of computer memory, another standard practice
is to present three columns of information: the left column presents an
offset, a number indicating which byte is shown first on the row; the middle
column shows the actual memory contents, typically in hexadecimal form;
and the right column shows an interpretation of the memory contents (either
characters, or numeric values). For example, the test“just testing” is shown
below complete with offset and character display columns.

“itdt” — 2008/5/19 — 14:15 — page 110 — #136i
i

i
i

i
i

i
i

110 Introduction to Data Technologies

0 : 6a 75 73 74 20 74 65 73 74 69 6e 67 | just testing

We will use this format for displaying raw blocks of memory throughout
this section.

7.2.3 Numbers

Recall that the most basic unit of memory, the bit, has two possible states,
“on” or “off”. If we used one bit to store a number, we could use each
different state to represent a different number. For example, a bit could be
used to represent the numbers 0, when the bit is off, and 1, when the bit is
on.

We will need to store numbers much larger than 1—and to do that we need
more bits.

If we use two bits together to store a number, each bit has two possible
states, so there are four possible combined states: both bits off, first bit off
and second bit on, first bit on and second bit off, or both bits on. Again
using each state to represent a different number, we could store four numbers
using two bits: 0, 1, 2, and 3.

In general, if we use k bits, each bit has two possible states, and the bits
combined can represent 2k possible states, so with k bits, we could represent
the numbers 0, 1, 2 up to 2k − 1.

Integers

Integers are commonly stored using a word of memory, which is 4 bytes or
32 bits, so integers from 0 up to 4,294,967,295 (232−1) can be stored. Below
are the integers 1 to 5 stored as four-byte values (each row represents one
integer).

0 : 00000001 00000000 00000000 00000000 | 1
4 : 00000010 00000000 00000000 00000000 | 2
8 : 00000011 00000000 00000000 00000000 | 3
12 : 00000100 00000000 00000000 00000000 | 4
16 : 00000101 00000000 00000000 00000000 | 5

This may look a little strange; within each byte (each block of eight bits),
the bits are written from right to left like we are used to in normal decimal
notation, but the bytes themselves are written left to right! It turns out

“itdt” — 2008/5/19 — 14:15 — page 111 — #137i
i

i
i

i
i

i
i

Data Storage 111

that the computer does not mind which order the bytes are used (as long
as we tell the computer what the order is) and most software uses this left
to right order for bytes.3

Two problems should immediately be apparent: using all available bits for
positive integer values does not allow for any negative integer values; and
very large integers, 232 or greater, cannot be stored in a word of memory.

In practice, the first problem is solved by sacrificing one bit to indicate
whether the number is positive or negative, so the range becomes -2,147,483,647
to 2,147,483,647 (±231 − 1).

The second problem, that we cannot store very large integers, is an inherent
limit to storing information on a computer (in finite memory) and is worth
remembering when working with very large values. Solutions include: using
more memory to store integers, e.g., two words per integer, which uses up
more memory, so is less memory-efficient; storing integers as real numbers,
which can introduce inaccuracies (see below); or using arbitrary precision
arithmetic, which uses as much memory per integer as is needed, but makes
calculations with the values slower.

Depending on the computer language, it may also be possible to specify that
only positive (unsigned) integers are required (i.e., reclaim the sign bit), in
order to gain a greater upper limit. Conversely, if only very small integer
values are needed, it may be possible to use a smaller number of bytes or
even to work with only a couple of bits (less than a byte).

Real numbers

Real numbers (and rationals) are much harder to store digitally than inte-
gers.

Recall that k bits can represent 2k different states. For integers, the first
state can represent 0, the second state can represent 1, the third state can
represent 2, and so on. We can only go as high as the integer 2k − 1, but at
least we know that we can account for all of the integers up to that point.

Unfortunately, we cannot do the same thing for reals. We could say that
the first state represents 0, but what does the second state represent? 0.1?
0.01? 0.00000001? Suppose we chose 0.01, so the first state represents 0,
the second state represents 0.01, the third state represents 0.02, and so on.
We can now only go as high as 0.01 × (2k − 1), and we have missed all of

3The order of the bytes is called the endianness; left to right is little endian,
because the least significant byte, the byte representing the smallest part of the number,
comes first. Right-to-left ordering is called big endian.

“itdt” — 2008/5/19 — 14:15 — page 112 — #138i
i

i
i

i
i

i
i

112 Introduction to Data Technologies

the numbers between 0.01 and 0.02 (and all of the numbers between 0.02
and 0.03, and infinitely many others).

This is another important limitation of storing information on a computer:
there is a limit to the precision that we can achieve when we store real
numbers. Most real values cannot be stored exactly on a computer. Exam-
ples of this problem include not only exotic values such as transcendental
numbers (e.g., π and e), but also very simple everyday values such as 1

3 or
even 0.1. This is not as dreadful as it sounds, because even if the exact value
cannot be stored, a value very very close to the true value can be stored.
For example, if we use eight bytes to store a real number then we can store
the distance of the earth from the sun to the nearest millimetre.

The limitation on numerical accuracy rarely has an effect on stored values
because it is very hard to obtain a scientific measurement with this level of
precision. However, when performing many calculations, even tiny errors
in stored values can accumulate and result in significant problems. We will
revisit this issue in Chapter 11. Solutions to storing real values with full
precision include: using even more memory per value, especially in working,
(e.g., 80 bits instead of 64) and using arbitrary-precision arithmetic.

We will now look at the details of how real numbers are stored digitally.
What follows is some quite technical information. It is not important to
memorize this information, but a basic understanding of the approach is
useful to have.

A real number is stored as a floating-point number, which means that
it is stored as two values: a mantissa, m, and an exponent, e, in the
form m× 2e. When a single word is used to store a real number, a typical
arrangement4 uses 8 bits for the exponent and 23 bits for the mantissa (plus
1 bit to indicate the sign of the number).

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

sign bit exponent mantissa

The exponent mostly dictates the range of possible values. Eleven bits allows
for a range of integers from -127 to 127, which means that it is possible to
store numbers as small as 10−39 (2−127) and as large as 1038 (2127).5

4IEEE 754 standard for single-precision floating-point values.
5The limits in practice are a little narrower than this because of implementation details

such as the need to be able to code special values like ±∞.

“itdt” — 2008/5/19 — 14:15 — page 113 — #139i
i

i
i

i
i

i
i

Data Storage 113

The mantissa dictates the precision with which values can be represented.
The issue here is not the magnitude of a value (whether it is very large of
very small), but the amount of precision that can be represented. With 23
bits, it is possible to represent 223 different real values, which is a lot of
values, but still leaves a lot of gaps. For example, if we are dealing with
values in the range 0 to 1, we can take steps of 1

223 ≈ 0.0000001, which
means that we cannot represent any of the values between 0.0000001 and
0.0000002. In other words, we cannot distinguish between numbers that
differ from each other by less than 0.0000001. If we deal with values in the
range 0 to 10, 000, 000, we can only take steps of 10,000,000

223 ≈ 1, so we cannot
distinguish between values that differ from each other by less than 1.

Below are the real values 1.0 to 5.0 stored as four-byte values (each row
represents one real value). Remember that the bytes are ordered from left
to right so the most important byte (containing the sign bit and most of
the exponent) is the one on the right. The first bit of the byte second from
the right is the last bit of the mantissa.

0 : 00000000 00000000 10000000 00111111 | 1
4 : 00000000 00000000 00000000 01000000 | 2
8 : 00000000 00000000 01000000 01000000 | 3
12 : 00000000 00000000 10000000 01000000 | 4
16 : 00000000 00000000 10100000 01000000 | 5

For example, the exponent for the first value is 0111111 1, which is 127.
These exponents are“biased”by 127 so to get the final exponent we subtract
127 to get 0. The mantissa has an implicit value of 1 plus, for bit i, the
value 2−i. In this case, the entire mantissa is zero, so the mantissa is just
the (implicit) value 1. The final value is 20 × 1 = 1.

For the last value, the exponent is 1000000 1, which is 129, less 127 is
2. The mantissa is 01 followed by 21 zeroes, which represents a value of
(implicit) 1 + 2−2 = 1.25. The final value is 22 × 1.25 = 5.

When real numbers are stored using two words instead of one, the range of
possible values and the precision of stored values increases enormously, but
there are still limits.

“itdt” — 2008/5/19 — 14:15 — page 114 — #140i
i

i
i

i
i

i
i

114 Introduction to Data Technologies

1156748010.47817 60
1156748010.47865 1254
1156748010.47878 1514
1156748010.4789 1494
1156748010.47892 114
1156748010.47891 1514
1156748010.47903 1394
1156748010.47903 1514
1156748010.47905 60
1156748010.47929 60
...

Figure 7.2: Several lines of network packet data as a plain text file. The number

on the left is the number of seconds since January 1st 1970 and the number on

the right is the size of the packet (in bytes).

7.2.4 Case study: Network traffic

The Southern Cross Cable provides
the main internet connection be-
tween New Zealand, Australia, and
the USA. Some parts of the cable
lie over 7km beneath the ocean’s
surface.6

The central IT department of the University of Auckland has been collect-
ing network traffic data since 1970. Measurements have been made on each
packet of information that passed through a certain location on the net-
work. These measurements include the time at which the packet reached
the network location and the size of the packet.

The time measurements are the time elapsed, in seconds, since January 1st

1970 and the measurements are extremely accurate, being recorded to the
nearest 10,000th of a second. Over time, this has resulted in numbers that
are both very large (there are 31,536,000 seconds in a year) and very precise.
Figure 7.2 shows several lines of the data stored as plain text.

6Image source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Southern_Cross_Cable_cross_section.

svg

This image is in the public domain.

http://commons.wikimedia.org/wiki/Image:Southern_Cross_Cable_cross_section.svg
http://commons.wikimedia.org/wiki/Image:Southern_Cross_Cable_cross_section.svg

“itdt” — 2008/5/19 — 14:15 — page 115 — #141i
i

i
i

i
i

i
i

Data Storage 115

By the middle of 2007, the measurements were approaching the limits of
precision for floating point values.

The data were analysed in a system that used 8 bytes per floating point
number (i.e., 64-bit floating-point values). The IEEE standard for 64-bit or
“double-precision” floating-point values uses 52 bits for the mantissa. This
allows for approximately 252 different real values.7 In the range 0 to 1, this
allows for values that differ by as little as 1

252 ≈ 0.0000000000000002, but
when the numbers are very large, for example on the order of 1,000,000,000,
it is only possible to store values that differ by 1, 000, 000, 000 × 1

252 ≈
0.0000002. In other words, double-precision floating-point values can be
stored with up to only 16 significant digits.

The time measurements for the network packets differ by as little as 0.00001
seconds. Put another way, the measurements have 15 significant digits,
which means that it is possible to store them with full precision as 64-bit
floating-point values, but only just.

Furthermore, with values so close to the limits of precision, arithmetic per-
formed on these values can become inaccurate. This story is taken up again
in Section 11.5.7.

7.2.5 Text

Text is stored on a computer by first converting each character to an integer
and then storing the integer. For example, to store the letter ‘A’, we will
actually store the number 65; ‘B’ is 66, ‘C’ is 67, and so on.

A letter is usually stored using a single byte (8 bits). Each letter is assigned
an integer number and that number is stored. For example, the letter ‘A’ is
the number 65, which looks like this in binary format: 01000001. The text
“hello” (104, 101, 108, 108, 111) would look like this: 01101000 01100101
01101100 01101100 01101111

The conversion of letters to numbers is called an encoding. The encod-
ing used in the examples above is called ASCII8 and is great for storing
(American) English text. Other languages require other encodings in order
to allow non-English characters, such as ‘ö’.

ASCII only uses 7 of the 8 bits in a byte, so a number of other encodings are
just extensions of ASCII where any number of the form 0xxxxxxx matches

7The exact calculations require taking into account the fact that the mantissa is
encoded with an implicit leading one and that certain bit patterns are reserved for special
values such as infinity.

8American Standard Code for Information Interchange.

“itdt” — 2008/5/19 — 14:15 — page 116 — #142i
i

i
i

i
i

i
i

116 Introduction to Data Technologies

the ASCII encoding and the numbers of the form 1xxxxxxx specify different
characters for a specific set of languages. Some common encodings of this
form are the ISO 8859 family of encodings, such as ISO-8859-1 or Latin-1
for West European languages, and ISO-8859-2 or Latin-2 for East European
languages.

Even using all 8 bits of a byte, it is only possible to encode 256 (28) different
characters. Several Asian and middle-Eastern countries have written lan-
guages that use several thousand different characters (e.g., Japanese Kanji
ideographs). In order to store text in these languages, it is necessary to use
a multi-byte encoding scheme where more than one byte is used to store
each character.

UNICODE is an attempt to provide an encoding for all of the characters
in all of the languages of the World. Every character has its own number,
often written in the form U+xxxxxx. For example, the letter ‘A’ is U+0000419

and the letter ‘ö’ is U+0000F6. UNICODE encodes for many thousands of
characters, so requires more than one byte to store each character. On
Windows, UNICODE text will typically use two bytes per character; on
Linux, the number of bytes will vary depending on which characters are
stored (if the text is only ASCII it will only take one byte per character).

For example, the text ”just testing” is shown below saved via Microsoft’s
Notepad in three different encodings: ASCII, UNICODE, and UTF-8.

0 : 6a 75 73 74 20 74 65 73 74 69 6e 67 | just testing

The ASCII format contains exactly one byte per character. The fourth byte,
with the value 74, is hexadecimal code for the decimal value 116, which is
the ASCII code for the letter ‘t’. We can see this byte pattern several more
times, whereever there is a ‘t’ in the text.

0 : ff fe 6a 00 75 00 73 00 74 00 20 00 | ..j.u.s.t. .
12 : 74 00 65 00 73 00 74 00 69 00 6e 00 | t.e.s.t.i.n.
24 : 67 00 | g.

The UNICODE format differs from the ASCII format in two ways. For
every byte in the ASCII file, there are now two bytes, one containing the
binary code we saw before followed by a byte containing all zeroes. There
are also two additional bytes at the start. These are called a byte order
mark (BOM) and indicate the order (endianness) of the two bytes that
make up each letter in the text.

9The numbers are written in hexadecimal (base 16) format; the decimal number 65 is
41 in hexadecimal.

“itdt” — 2008/5/19 — 14:15 — page 117 — #143i
i

i
i

i
i

i
i

Data Storage 117

0 : ef bb bf 6a 75 73 74 20 74 65 73 74 | ...just test
12 : 69 6e 67 | ing

The UTF-8 format is mostly the same as the ASCII format; each letter has
only one byte, with the same binary code as before because these are all
common english letters. The difference is that there are three bytes at the
start to act as a BOM.10

7.2.6 Data with units or labels

When storing values with a known range, it can be useful to take advantage
of that knowledge. For example, suppose we want to store information on
gender. There are (usually) only two possible values: male and female. One
way to store this information would be as text: “male”and“female”. However,
that approach would take up at least 4 to 6 bytes per observation. We
could do better by storing the information as an integer, with 1 representing
male and 2 representing female, thereby only using as little as one byte
per observation. We could do even better by using just a single bit per
observation, with “on” representing male and “off” representing female.

On the other hand, storing “male” is much less likely to lead to confusion
than storing 1 or by setting a bit to “on”; it is much easier to remember or
intuit that “male” corresponds to male. This leads us to an ideal solution
where only a number is stored, but the encoding relating“male” to 1 is also
stored.

Dates

Dates are commonly stored as either text, such as Feb 1 2006, or as a num-
ber, for example, the number of days since 1970. A number of complications
arise due to a variety of factors:

language and cultural one problem with storing dates as text is that the
format can differ between different countries. For example, the second
month of the year is called February in English-speaking countries, but
something else in other countries. A more subtle and dangerous prob-
lem arises when dates are written in formats like this: 01/03/06. In
some countries, that is the first of March 2006, but in other countries
it is the third of January 2006.

10Notepad writes a BOM at the start of UTF-8 files, but not all software does this.

“itdt” — 2008/5/19 — 14:15 — page 118 — #144i
i

i
i

i
i

i
i

118 Introduction to Data Technologies

time zones Dates (a particular day) are usually distinguished from date-
times, which specify not only a particular day, but also the hour,
second, and even fractions of a second within that day. Datetimes are
more complicated to work with because they depend on location; mid-
day on the first of March 2006 happens at different times for different
countries (in different time zones). Daylight saving just makes things
worse.

changing calendars The current international standard for expressing the
date is the Gregorian Calendar. Issues can arise because events may
be recorded using a different calendar (e.g., the Islamic calendar or the
Chinese calendar) or events may have occurred prior to the existence
of the Gregorian (pre sixteenth century).

The important point is that we need to think about how we store dates, how
much accuracy we should retain, and we must ensure that we store dates
in an unambiguous way (for example, including a time zone or a locale).
We will return to this issue later when we discuss the merits of different
standard storage formats.

Money

There are two major issues with storing monetary values. The first is that
the currency should be recorded; NZ$1.00 is very different from US$1.00.
This issue applies of course to any value with a unit, such as temperature,
weight, distances, etc.

The second issue with storing monetary values is that values need to be
recorded exactly. Typically, we want to keep values to exactly two decimal
places at all times. This is sometimes solved by using fixed-point repre-
sentations of numbers rather than floating-point; the problems of lack of
precision do not disappear, but they become predictable so that they can
be dealt with in a rational fashion (e.g., rounding schemes).

In practice, most data values are recorded as numbers, which means that
metadata containing the units or meaning of the numbers is essential.

7.3 Plain text files

The previous section looked at how individual data values are recorded in
a digital format. We now turn our attention to how entire data sets are
stored, starting with a discussion of the different varieties of file formats.

“itdt” — 2008/5/19 — 14:15 — page 119 — #145i
i

i
i

i
i

i
i

Data Storage 119

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 7.3: The first few lines of the plain text output from the Live Access Server

for the surface temperature at Point Nemo. This is a reproduction of Figure 1.2.

The simplest way to store information is in a plain text file. In this format,
everything, including numeric values, is stored as a series of characters.

7.3.1 Case study: Point Nemo (continued)

A good example of this sort of plain text data is the surface temperature data
for the Pacific Pole of Inaccessibility (see Section 1.1; Figure 7.3 reproduces
Figure 1.2 for convenience).

Plain text files can be thought of as the lowest common denominator of stor-
age formats; they might not be the most efficient or sophisticated solution,
but we can be fairly certain that they will get the job done.

7.3.2 Flat files

A plain text file containing a data set may be referred to as a flat file. The
basic characteristics of a flat file are that the data are stored as plain text,
even the numbers are plain text, and that each line of the file contains one
record or case in the data set.

There may be a header at the start of the file containing general informa-
tion, such as names of varaibles. In Figure 7.3, the first 8 lines are header
information.

“itdt” — 2008/5/19 — 14:15 — page 120 — #146i
i

i
i

i
i

i
i

120 Introduction to Data Technologies

For each line in a flat file (each case in the data set), there are usually several
fields containing the values for the different variables in the data set. There
are two main approaches to differentiating fields within each line of the file:

Delimited format: Fields within a record are separated by a special char-
acter, or delimiter. For example, it is possible to view the file in Fig-
ure 7.3 as a delimited format, where each line after the header consists
of two fields separated by a colon (the character ‘:’ is the delimiter).
Alternatively, if we used “white space” (one or more spaces or tabs) as
the delimiter, there would be five fields, as shown below.

1 6 − J A N − 1 9 9 4 0 0 / 1 : 2 7 8 . 9
1 6 − F E B − 1 9 9 4 0 0 / 2 : 2 8 0 . 0
1 6 − M A R − 1 9 9 4 0 0 / 3 : 2 7 8 . 9

field 1 2 3 4 5

Using a delimited format can cause problems if it is possible for one of
the values in the data set to contain the delimiter. The typical solution
to this problem is to allow quoting of values or escape sequences.
A fairly complete delimited format that has rules to account for these
problems is the comma-separated values (CSV) format, which is
described in more detail in Section 7.3.5.

Fixed-width format: Each field is allocated a fixed number of characters.
For example, it is possible to view the file in Figure 7.3 as a fixed-
width format, where the first field uses the first 20 characters and the
second field uses the next 8 characters. Alternatively, there are five
fields using 11, 3, 2, 4, and 8 characters respectively.

1 6 − J A N − 1 9 9 4 0 0 / 1 : 2 7 8 . 9
1 6 − F E B − 1 9 9 4 0 0 / 2 : 2 8 0 . 0
1
1

6
2

−
3

M
4

A
5

R
6

−
7

1
8

9
9

9
10

4
11

12

0
13

0
14

15

/
16

17

18

3
19

:
20

21

22

2
23

7
24

8
25

.
26

9
27

field 1 2 3 4 5

With a fixed width format we can have any character as part of the
value of a field, but enforcing a fixed length for fields can be a problem
if we do not know the maximum possible length for all variables. Also,
if the values for a variable can have very different lengths, a fixed-width
format can be inefficient because we store lots of empty space for short
values.

“itdt” — 2008/5/19 — 14:15 — page 121 — #147i
i

i
i

i
i

i
i

Data Storage 121

All text file formats have the advantage that text is easy for humans
to read and it is easy to write software to read text, but fixed-width
formats are exceptional in that they are especially easy for humans to
read because of the regular arrangement of values.

7.3.3 Advantages of plain text

The main advantage of plain text formats is their simplicity: we do not
require complex software to create or view a text file and we do not need
esoteric skills beyond being able to type on a keyboard, which means that
it is easy for people to view and modify the data.

Virtually all software packages can read and write text files and plain text
files are portable across different computer platforms.

7.3.4 Disadvantages of plain text

The main disadvantage of plain text formats is their simplicity. The simple
one-row-per-case and one-column-per-variable format can be very inefficient
and inappropriate for data sets with any sort of complex structure.

Consider a data set collected on two families, as depicted in Figure 7.4.
What would this look like as a flat file, with one row for all of the information
about each person in the data set? One possible fixed-width format is shown
below:

John 33 male
Julia 32 female

John Julia Jack 6 male
John Julia Jill 4 female
John Julia John jnr 2 male

David 45 male
Debbie 42 female

David Debbie Donald 16 male
David Debbie Dianne 12 female

This format for storing these data is not ideal for two reasons. Firstly,
it is not efficient; the parent information is repeated over and over again.
This repetition is also undesirable because it creates opportunities for errors
and inconsistencies to creep in. Ideally, each individual piece of information
would be stored exactly once; if more than one copy exists then it is possible
for the copies to disagree. The DRY principle (Section 2.5) applies to data

“itdt” — 2008/5/19 — 14:15 — page 122 — #148i
i

i
i

i
i

i
i

122 Introduction to Data Technologies

John
33

male

Julia
32

female

Jack
6

male

Jill
4

female

John jnr
2

male

David
45

male

Debbie
42

female

Donald
16

male

Dianne
12

female

Figure 7.4: A family tree containing data on parents and children. An example

of hierarchical data.

as well as code.

The other problem is not as obvious, but is arguably much more important.
The fundamental structure of the flat file format means that each line of
the file contains exactly one record or case in the data set. This works well
when a data set only contains information about one type of object, or, put
another way, when the data set itself has a flat structure.

The data set of family members does not have a flat structure. There is
information about two different types of object, parents and children, and
these objects have a definite relationship between them. We can say that
the data set is hierarchical or multi-level or stratified (as is obvious
from the view of the data in Figure 7.4). Any data set that is obtained
using a non-trivial study design is likely to have a hierarchical structure like
this.

In other words, a flat file format does not allow for sophisticated “data
models” (see Section 7.7.6). A flat file is unable to provide an appropriate
representation of a complex data structure.

The other major weakness of free-form text files is the lack of rules and
standards. In the absence of a formally-declaration of the structure of a
file, it is impossible for software to determine where the data values reside
within the file. There is no standard way to specify the special character
being used in delimited files, there is no way to specify the widths of fields
(within the file itself) for fixed-width formats.

“itdt” — 2008/5/19 — 14:15 — page 123 — #149i
i

i
i

i
i

i
i

Data Storage 123

7.3.5 CSV files

Although not a formal standard, comma-separated value (CSV) files are
very common and are a quite reliable plain text delimited format that at
least solves the problem of a lack of rules and standards. This is a common
way to export data from a spreadsheet.

The main rules for the CSV format are:

• Each field is separated by a comma (i.e., the character ‘,’ is the de-
limiter).

• Fields containing commas must be surrounded by double quotes (i.e.,
the ‘"’ character is special).

• Fields containing double quotes must be surrounded by double quotes
and each embedded double quote must be represented using two dou-
ble quotes (i.e., ‘""’ is an escape sequence for a literal double quote).

• There can be a single header line containing the names of the fields.

7.3.6 Case Study: The Data Expo

The TIROS Operational Vertical Sounder (TOVS)
instruments have been used to collect atmospheric
data aboard National Oceanic and Atmospheric
Administration (NOAA) satellites since 1978.11

The American Statistical Association (ASA) holds an annual conference
called the Joint Statistical Meetings (JSM). One of the events sometimes
held at this conference is a Data Exposition, where contestants are provided
with a data set and must produce a poster demonstrating a comprehensive
analysis of the data. For the Data Expo at the 2006 JSM the data were
geographic and atmospheric measures obtained from NASA’s Live Access
Server (see Section 1.1).

The variables in the data set are: elevation, temperature (surface and air),
ozone, air pressure, and cloud cover (low, mid, and high). With the excep-

11Image source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Orbital_Planes.svg

This image is in the public domain.

http://commons.wikimedia.org/wiki/Image:Orbital_Planes.svg

“itdt” — 2008/5/19 — 14:15 — page 124 — #150i
i

i
i

i
i

i
i

124 Introduction to Data Technologies

Figure 7.5: The geographic locations at which Live Access Server atmospheric

data were obtained for the 2006 JSM Data Expo.

tion of elevation, all variables are monthly averages, with observations for
January 1995 to December 2000. The data are measured at evenly-spaced
geographic locations on a very coarse 24 by 24 grid covering Central America
(see Figure 7.5).

The data were downloaded from the Live Access Server in a plain text
format with one file for each variable, for each month; this produced 72 files
per atmospheric variable, plus 1 file for elevation, for a total of 505 files.
Figure 7.6 shows the start of one of the surface temperature files.

This data set demonstrates a number of advantages and limitations of a plain
text format for storing data. First of all, the data is very straightforward
to access because it does not need sophisticated software. It is also easy for
a human to view the data and understand what is in each file.

“itdt” — 2008/5/19 — 14:15 — page 125 — #151i
i

i
i

i
i

i
i

Data Storage 125

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.7 270.9 270.9 269.7 273.2 275.6 277.3 ...

33.8N / 50: 279.5 279.5 275.0 275.6 277.3 279.5 281.6 ...

31.2N / 49: 284.7 284.7 281.6 281.6 280.5 282.2 284.7 ...

28.8N / 48: 289.3 286.8 286.8 283.7 284.2 286.8 287.8 ...

26.2N / 47: 292.2 293.2 287.8 287.8 285.8 288.8 291.7 ...

23.8N / 46: 294.1 295.0 296.5 286.8 286.8 285.2 289.8 ...

...

Figure 7.6: The first few lines of output from the Live Access Server for the

surface temperature of the Earth for January 1995, over a coarse 24 by 24 grid of

locations covering central America.

However, the file format provides a classic demonstration of the typical lack
of standardised structure in plain text files. For example, the raw data values
only start on the eighth line of the file, but there is no indication of that fact
within the file itself. This is not an issue for a human viewing the file, but a
computer has no chance of detecting this structure automatically. Second,
the raw data are arranged in a matrix, corresponding to a geographic grid
of locations, but again there is no inhereht indication of this structure. For
example, only a human can tell that the first 11 characters on each line of
raw data are row labels describing latitude.

The “header” part of the file (the first seven lines) contains metadata, in-
cluding information about what variable is recorded in the file and the units
used for those measurements. This is very important and useful informa-
tion, but again it is not obvious (for a computer) which bits are labels and
which bits are information, let alone what sort of information is in each bit.

Finally, there is the fact that the data reside in 505 separate files. This is
essentially an admission that plain text files are not suited to data sets with
anything beyond a simple two-dimensional matrix-like structure. In this
case, the temporal dimension—the fact that data are recorded at multiple
time points—and the multivariate nature of the data—the fact that multiple
variables are recorded—leads to there being separate files for each variable
and for each time point. Having the data spread across many files creates
issues in terms of the naming of files, for example, to ensure that all files
from the same date, but containing different variables can be easily located.

“itdt” — 2008/5/19 — 14:15 — page 126 — #152i
i

i
i

i
i

i
i

126 Introduction to Data Technologies

There is also a reasonable amount of redundancy, with metadata and labels
repeated many times over in different files.

7.4 XML

The eXtensible Markup Language, XML, is a language that is used for
storing information. It is particularly appropriate for data that is to be
shared between several different software systems.

Figure 7.7 shows the surface temperature data at the Pacific Pole of Inac-
cessibility (see Section 1.1) in two different formats: the original plain text
and an XML format.

One fundamental similarity between these formats is that they are both just
text. This is an important and beneficial property of XML; we can read it
and manipulate it without any special skills or any specialized software.

There are many advantages to storing information in a plain text format,
mostly related to the simplicity of plain text files. However, that same sim-
plicity also creates problems because, for example, it is difficult to efficiently
store complex data (see Section 7.3.3).

XML is a storage format that is still based on plain text, but does not suffer
from many of the problems of plain text files because it adds flexibility,
rigour, and standardization.

7.4.1 XML syntax

We will use the XML format for the Point Nemo temperature data (Figure
7.7) to demonstrate some of the basic rules of XML syntax.

The XML format of the data consists of two parts: XML mark up and
the actual data itself. For example, the information about the latitude at
which these data were recorded is stored with XML tags, <latitude> and
</latitude>, surrounding the latitude value. The combination of tags and
content are together described as an XML element.

<latitude>48.8S</latitude>

Each temperature measurement is contained within a case element, with
the date and temperature data recorded as attributes of the element.

“itdt” — 2008/5/19 — 14:15 — page 127 — #153i
i

i
i

i
i

i
i

Data Storage 127

<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 93 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 7.7: The first few lines of the surface temperature at Point Nemo in two

formats: plain text and XML.

“itdt” — 2008/5/19 — 14:15 — page 128 — #154i
i

i
i

i
i

i
i

128 Introduction to Data Technologies

<case date="16-JAN-1994" temperature="278.9" />

This should look very familiar because these are exactly the same notions
of elements and attributes that we saw in HTML documents (see Chapter
2).

7.4.2 Advantages and disadvantages

In what ways is the XML format better or worse than the typical unstruc-
tured plain text format?

A self-describing format

The core advantage of an XML document is that it is self-describing.

The tags in an XML document provide information about where the
data is stored within the document. This is an advantage because it
means that humans can find information within the file easily. That is
true of any plain text file, but it is especially true of XML files because
the tags essentially provide a level of documentation for the human
reader. For example, a line like this ...

<latitude>48.8S</latitude>

... not only makes it easy to determine that the value 48.8S constitutes
a single data value within the file, but it also makes it clear that this
value is a north-south geographic location.

The fact that an XML document is self-describing is an even greater
advantage from the perspective of the computer. An XML document
provides enough information for software to determine how to read
the file, without any further human intervention. Looking again at
the line containing latitude information ...

<latitude>48.8S</latitude>

... there is enough information for the computer to be able to de-
tect the value 48.8S as a single data value, and the computer can
also record the latitude label so that if a human user requests the
information on latitude, the computer knows what to provide.

One consequence of this feature that may not be immediately obvious
is that it is much easier to modify the structure of data within an XML
document compared to a plain text file. The location of information
within an XML document is not so much dependent on where it occurs

“itdt” — 2008/5/19 — 14:15 — page 129 — #155i
i

i
i

i
i

i
i

Data Storage 129

within the file, but where the tags occur within the file. As a trivial
example, consider swapping the following lines in the Point Nemo
XML file ...

<longitude>123.8W(-123.8)</longitude>
<latitude>48.8S</latitude>

... so that they look like this instead ...

<latitude>48.8S</latitude>
<longitude>123.8W(-123.8)</longitude>

The information is now at a different location within the file, but the
task of retrieving the information on latitude is exactly the same. This
can be a huge advantage if larger modifications need to be made to a
data set, such as adding an entire new variable.

Representing complex data structures

The second main advantage of the XML format is that it can accom-
modate complex data strucutures. Consider the hierarchical data set
in Figure 7.4. Because XML elements can be nested within each other,
this sort of data set can be stored in a sensible fashion with families
grouped together to make parent-child relations implicit and avoid
repetition of the parent data. The plain text representation of these
data are reproduced from page 121 below along with a possible XML
representation.

John 33 male
Julia 32 female

John Julia Jack 6 male
John Julia Jill 4 female
John Julia John jnr 2 male

David 45 male
Debbie 42 female

David Debbie Donald 16 male
David Debbie Dianne 12 female

“itdt” — 2008/5/19 — 14:15 — page 130 — #156i
i

i
i

i
i

i
i

130 Introduction to Data Technologies

<family>
<parent gender="male" name="John" age="33" />
<parent gender="female" name="Julia" age="32" />
<child gender="male" name="Jack" age="6" />
<child gender="female" name="Jill" age="4" />
<child gender="male" name="John jnr" age="2" />

</family>
<family>
<parent gender="male" name="David" age="45" />
<parent gender="female" name="Debbie" age="42" />
<child gender="male" name="Donald" age="16" />
<child gender="female" name="Dianne" age="12" />

</family>

The XML format is superior in the sense that the information about
each person is only recorded once. Another advantage is that it would
be very easy to represent a wider range of situations using the XML
format. For example, adding a third step-parent to a family would be
straightforward in XML, but it would be much more awkward in the
fixed rows-and-columns plain text format.

Data integrity

Another important advantage of the XML format is that it provides
some level of checking on the correctness of the data file (a check
on the data integrity). We will discuss this more when we look
at XML schema (see Section 7.4.5), but even just the fact that an
XML document must obey the rules of XML means that we can use
a computer to check that an XML document at least has a sensible
structure.

Verbosity

The major disadvantage of XML is that it generates large files. With
it being a plain text format, it is not memory efficient to start with,
then with all of the additional tags around the actual data, files can
become extremely large. In many cases, the tags can take up more
room than the actual data!

These issues can be particularly acute for scientific data sets, where
the structure of the data may be quite straightforward. For example,
geographic data sets containing many observations at fixed locations
naturally form a 3-dimensional array of values, which can be repre-
sented very simply and efficiently in a plain text or binary format. In

“itdt” — 2008/5/19 — 14:15 — page 131 — #157i
i

i
i

i
i

i
i

Data Storage 131

such cases, having highly repetitive XML tags around all values can
be very inefficient indeed.

The verbosity of XML is also a problem for entering data into an XML
format. It is just too laborious for a human to enter all of the tags by
hand, so, in practice, it is only sensible to have a computer generate
XML documents.

Costs of complexity

It should also be acknowledged that the additional sophistication of
XML creates additional costs. Users have to be more educated and the
software has to be more complex (which makes compatible software
more rare).

The fact that computers can read XML easily and effectively, plus the fact
that computers can produce XML rapidly (verbosity is less of an issue for
a computer), means that XML is an excellent format for transferring infor-
mation between different software programs. XML is a good language for
computers to use to talk to each other, with the added bonus that humans
can still easily eavesdrop on the conversation.

7.4.3 More XML syntax

As mentioned in the previous section, one of the advantages of XML is that
the computer can perform checks on the correctness of an XML document,
which provides at least some checks the correctness of the data that are
stored in the document (also see Section 7.4.5). This section provides a
bit more information on the basic rules that an XML document must obey.
Much of the list is just a slightly stricter version of the HTML syntax rules
that we met back in Section 2.2.1.

The first line of the document should declare that it is an XML doc-
ument and the XML version being used. For example:

<?xml version="1.0"?>

The XML document must have a single root element.

Every element must have a start tag and an end tag. Empty elements
must have the form <name />.

Elements must nest cleanly.

“itdt” — 2008/5/19 — 14:15 — page 132 — #158i
i

i
i

i
i

i
i

132 Introduction to Data Technologies

Attribute values must be within quotes.

Element and attribute names are case-sensitive.

Escape sequences

As with HTML, the characters <, >, and & (among others) are special and
must be replaced with special escape sequences, <, >, and &
respectively.

These escape sequences can be very inconvenient when storing data values,
so it is also possible to mark an entire section of an XML document as“plain
text” by placing it within a CDATA section, as follows:

<myxmlelement>
<![CDATA[
Lots of "<"s, ">"s, "&"s, "’"s and """s

]]>
</myxmlelement>

7.4.4 XML design

Though it is important to understand why XML documents are used, de-
signing an XML document may be a rare event for a scientist. Nevertheless,
we have something to gain from a brief consideration of how data might be
organised in an XML file.

The first point is that there are many ways that a data set could be stored
within an XML document. XML is actually a meta-language; it is a lan-
guage for defining languages. In other words, we get to decide the structure
for an XML document and XML is a language for describing the structure
that we choose.

So what structure should we choose? We will look at some issues that
might influence the design of an XML document. These will be useful in
understanding why an XML document that we encounter has a particular
structure and they will be useful as an introduction to similar ideas that we
will discuss when we get to relational databases (Section 7.7).

“itdt” — 2008/5/19 — 14:15 — page 133 — #159i
i

i
i

i
i

i
i

Data Storage 133

Marking up data

The first XML design issue is to make sure that each value within a data set
can be clearly identified. In other words, it should be trivial for a computer
to extract each individual value. This means that every single value should
be either the content of an element or the value of an attribute. The XML
document shown in Figure 7.7 demonstrates this idea.

Figure 7.8 shows two other possible XML representations of the Pacific
Pole of Inaccessibility temperature data. The example at the top of the
figure demonstrates that it is very easy to create an XML document that
follows the rules of XML, but provides no benefits over the original plain
text format.

The example at the bottom of Figure 7.8 is more interesting. In this case,
the irregular and one-off metadata values are individually identified within
elements or attributes, but the regular and repetitive raw data values are
not. This is not ideal from the point of view of the file being self-describing,
but it may be a viable option when the raw data values have a very simple
format (e.g., comma-delimited) and the data set is very large (so avoiding
lengthy tags and attribute names is a major saving).

Things and measurements on things

When a data set has a non-rectangular structure, such as the family tree
in Figure 7.4, an XML document can be designed to store the information
more efficiently and more appropriately. The main idea here is to avoid
repeating values.

When presented with a data set, the following questions should guide the
design of the XML format:

• What sorts objects or “things” have been measured?
• What measurements have been made on each object or “thing”?

The rule of thumb is then to have an element for each object in the data set
(and a different type of element for each different type of object) and then
have an attribute for each measurement in the data set. Simple relationships
between objects can sometimes be expressed by nesting elements.

For example, in the family tree data set, there are obviously measurements
taken on people, those measurements being names and ages and genders.
We could distinguish between parent objects and child objects, so we have
elements like these:

“itdt” — 2008/5/19 — 14:15 — page 134 — #160i
i

i
i

i
i

i
i

134 Introduction to Data Technologies

<?xml version="1.0"?>

<temperatures>

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 93 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

</temperatures>

<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<cases>

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

</cases>

</temperatures>

Figure 7.8: The first few lines of the surface temperature at Point Nemo in two

possible XML formats with differing levels of sophistication and appropriateness.

These should be compared with the “complete” XML solution in Figure 7.7.

“itdt” — 2008/5/19 — 14:15 — page 135 — #161i
i

i
i

i
i

i
i

Data Storage 135

<parent gender="female" name="Julia" age="32" />
<child gender="male" name="Jack" age="6" />

There are two distinct families of people, so we could have elements to
represent the different families and nest the relevant people within the ap-
propriate family element to represent membership of a family.

<family>
<parent gender="male" name="John" age="33" />
<parent gender="female" name="Julia" age="32" />
<child gender="male" name="Jack" age="6" />
<child gender="female" name="Jill" age="4" />
<child gender="male" name="John jnr" age="2" />

</family>
<family>
<parent gender="male" name="David" age="45" />
<parent gender="female" name="Debbie" age="42" />
<child gender="male" name="Donald" age="16" />
<child gender="female" name="Dianne" age="12" />

</family>

Elements versus attributes

Another decision to make is whether to store data values as the value of
attributes of XML elements, or as the content of XML elements. For ex-
ample, when storing the Point Nemo temperature data, we could store the
temperature values as attributes of a case element ...

<case temperature="278.9" />

... or as the contents of a temperature element:

<temperature>278.9</temperature>

As demonstrated so far, the easiest solution is to store all measurements as
the values of attributes. However, this is not always possible or appropriate.
A measurement may have to be stored as the content of a separate element,
rather than as the value of an attribute in the following cases:

• when the measurement is a lot of information, such as a general com-
ment consisting of paragraphs of text.

“itdt” — 2008/5/19 — 14:15 — page 136 — #162i
i

i
i

i
i

i
i

136 Introduction to Data Technologies

• when the measurement contains lots of special characters, which would
require a lot of escape sequences.

• when the order of the measurements matters (the order of attributes
is arbitrary).

• when the measurements are not “simple”values. In other words, when
a measurement is actually a series of measurements on a different sort
of object (e.g., information about a room within a building). This
is another way of saying that the value of an attribute cannot be an
XML element. Data values that are not atomic (a single value) will
generate an entire XML element, which must be stored as the content
of a parent XML element.

7.4.5 XML Schema

We have already discussed the fact that an XML document can provide
some checks that a data set is correct because the XML document must
obey the basic rules of XML (elements must nest, attribute values must be
surrounded by quotes, etc). While this sort of checking is better than noth-
ing, the checks are very basic. It is much more useful to be able to perform
more advanced checks such as whether necessary data values are included in
a document, whether elements contain the correct sort of data value, and so
on. With a little more work, XML provides these more advanced checking
features as well.

The way that this extra information can be specified is by creating a schema
for an XML document, which is a description of the structure of the docu-
ment. A number of technologies exist for specifying XML schema, but we
will focus on the Document Type Definition (DTD) language.

A DTD is a set of rules for an XML document. It contains element type
declarations that describe what elements are permitted within the XML
document, in what order, and how they may be nested within each other.
The DTD also contains attribute list declarations that describe what
attributes an element can have, whether attributes are optional or not, and
what sort of values may be specified for each attribute.

7.4.6 Case study: Point Nemo (continued)

Figure 7.9 shows the temperature data at Point Nemo in an XML format
(this is a reproduction of Figure 7.7 for convenience).

“itdt” — 2008/5/19 — 14:15 — page 137 — #163i
i

i
i

i
i

i
i

Data Storage 137

<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

Figure 7.9: The first few lines of the surface temperature at Point Nemo in an

XML format.

The structure of this XML document is as follows: there is a single overall
temperatures element that contains all other elements. There are several
elements containing various sorts of metadata: a variable element con-
taining a description of the variable that has been measured; a filename
element and a filepath element containing information about the file from
which these data were extracted; and three elements, subset, longitude,
and latitude, that together decribe the temporal and spatial limits of this
subset of the original data. Finally, there are a number of case elements
that contain the raw temperature data and each case element contains a
temperature measurement and the date of the measurement as attributes.

A DTD describing this structure is shown in Figure 7.10.

For each type of element, there has to be an <!ELEMENT> declaration. The
simplest example is for case elements because they are empty (they have
no content), as indicated by the keyword EMPTY. Most other elements are
similarly straightforward because their contents are just text, as indicated by
the #PCDATA keyword. The temperatures element is more complex because
it can contain other elements. The specification given in Figure 7.10 states
that six elements (variable to latitude) must be present, and they must
occur in the given order. There may also be zero or more case elements
(the * means “zero or more”).

“itdt” — 2008/5/19 — 14:15 — page 138 — #164i
i

i
i

i
i

i
i

138 Introduction to Data Technologies

<!ELEMENT temperatures (variable,

filename,

filepath,

subset,

longitude,

latitude,

case*)>

<!ELEMENT variable (#PCDATA)>

<!ELEMENT filename (#PCDATA)>

<!ELEMENT filepath (#PCDATA)>

<!ELEMENT subset (#PCDATA)>

<!ELEMENT longitude (#PCDATA)>

<!ELEMENT latitude (#PCDATA)>

<!ELEMENT case EMPTY>

<!ATTLIST case

date ID #REQUIRED

temperature CDATA #IMPLIED>

Figure 7.10: A DTD for the XML format used to store the surface temperature

at Point Nemo (see Figure 7.9).

The case elements also have attributes, so there is an <!ATTLIST> decla-
ration as well. This says that there must (#REQUIRED) be a date attribute
and that each date value must be unique (ID). The temperature attribute
is optional (#IMPLIED) and, if it occurs, the value can be any text (CDATA).

Section 8.2 describes the syntax and semantics of DTD files in more detail.

The rules given in a DTD are associated with an XML document using a
Document Type Declaration as the second line of the XML document.
This can have one of two forms:

DTD inline:
The DTD can be included within the XML document. In the Point
Nemo example, it would look like this:

<?xml version="1.0"?>
<!DOCTYPE temperatures [

DTD code here
]>
<temperatures>

...

External DTD

“itdt” — 2008/5/19 — 14:15 — page 139 — #165i
i

i
i

i
i

i
i

Data Storage 139

The DTD can be in an external file, say nemo.dtd, and the XML
document can refer to that file:

<?xml version="1.0"?>
<!DOCTYPE temperatures SYSTEM "nemo.dtd">
<temperatures>

...

The DRY principle suggests that an external DTD is by far the most sensible
approach.

If an XML document is well-formed—it obeys the basic rules of XML
syntax—and it obeys the rules given in a DTD, then the document is said
to be valid. A validated XML document has the advantage that we can be
sure that all of the necessary information for a data set has been included
and has the correct structure, and that all data values have the correct sort
of value.

The use of a DTD has some shortcomings, such as a lack of support for
precisely specifying the data type of attribute values or the contents of el-
ements. For example, it is not possible to specify that an attribute value
must be an integer value between 0 and 100. There is also the difficulty that
the DTD language is completely different from XML, so there is another
technology to learn. XML Schema is an XML-based technology for specify-
ing the design of XML documents that solves both of those problems, but
it comes at the cost of much greater complexity. This complexity has lead
to the development of further technologies that simplify the XML Schema
syntax, such as Relax NG. The interested reader is referred to Section 8.3
for further pointers.

7.4.7 XML design for complex relationships

Another way to represent relationships between objects (elements) in an
XML document is to use the special ID and IDREF (or IDREFS) attributes.
An example of their use is given in the following variation on the storage of
the hierarchical family data.

“itdt” — 2008/5/19 — 14:15 — page 140 — #166i
i

i
i

i
i

i
i

140 Introduction to Data Technologies

<family id="family1" />
<family id="family2" />

<parent gender="male" name="John" age="33"
family="family1" />

<parent gender="female" name="Julia" age="32"
family="family1" />

<child gender="male" name="Jack" age="6"
family="family1" />

<child gender="female" name="Jill" age="4"
family="family1" />

<child gender="male" name="John jnr" age="2"
family="family1" />

<parent gender="male" name="David" age="45"
family="family2" />

<parent gender="female" name="Debbie" age="42"
family="family2" />

<child gender="male" name="Donald" age="16"
family="family2" />

<child gender="female" name="Dianne" age="12"
family="family2" />

The family elements have an id attribute and each parent or child ele-
ment has a family attribute that refers to the id attribute value of one of
the family elements. In the DTD, the id attribute is of type ID and the
family attribute is of type IDREF.

When these attributes are used, additional data integrity checks can be
enforced, because the DTD rules state that an IDREF attribute must have a
value that matches the value of an ID element somewhere within the same
XML document.

This sort of design problem arises because some situations cannot be repre-
sented by nesting elements within each other. These sorts of situations are
discussed in more detail in Section 7.7.6 on database design.

7.5 Binary files

As we saw in Section 7.2, all electronic information, regardless of the format,
is ultimately stored in a binary form—as a series of bits (zeroes and ones).
However, the same data value can be recorded as a binary value in a number

“itdt” — 2008/5/19 — 14:15 — page 141 — #167i
i

i
i

i
i

i
i

Data Storage 141

of different ways.

For example, given the number 12345, we could store it as individual char-
acters 1, 2, 3, 4, and 5, using one byte for each character:

00110001 00110010 00110011 00110100 00110101

Alternatively, we could store the number as a four-byte integer (see Section
7.2.3):

00111001 00110000 00000000 00000000

When we store information as individual one-byte characters, the result is
a plain text file. This tends to be a less efficient method because it tends
to consume more memory, but it has the advantage that the file has a very
simple structure. A simple structure means that it is relatively easy to write
software to read the file because we know that each byte just needs to be
converted to a character. There may be problems determining data values
from the individual characters (see Section 7.3), but the process of reading
the basic unit of information (a character) from the file is straightforward.

For the purposes of this book, a binary format is just any format that is
not plain text.

The characteristic feature of a binary format is that there is not a simple
rule for determining how many bits or how many bytes constitute a basic
unit of information. Given a series of, say, four bytes, we cannot assume
that these correspond to four characters, or a single four-byte integer, or
half of an eight-byte floating-point value (see Section 7.2.3). It is necessary
for there to be a description of the rules for the format (we will look at one
example soon) that state what information is stored and how many bits or
bytes are used for each piece of information.

Binary formats are consequently much harder to write software for, which
results in there being less software available to do the job.

However, some binary formats are easier to read than others. Given that a
description is necessary to have any chance of reading a binary file, propri-
etary formats, where the file format description is kept private, are extremely
difficult to deal with. Open standards become more important than ever.

Another advantage of binary formats is an improvement in terms of speed
of access. While the basic unit of information is very straightforward in a
plain text file (one byte equals one character), finding the actual data values
is often much harder. For example, in order to find the third data value on
the tenth row of a CSV file, the reader software must keep reading bytes

“itdt” — 2008/5/19 — 14:15 — page 142 — #168i
i

i
i

i
i

i
i

142 Introduction to Data Technologies

until nine end-of-line characters have been found and then two delimiter
characters have been found. This means that, with text files, it is usually
necessary to read the entire file in order to find any particular value.

For binary formats, some sort of format description, or map, is required to
be able to find the location (and meaning) of any value in the file. However,
the advantage of having such a map is that any value within the file can be
found without having to read the entire file.

As a typical example, a standard feature of binary files is the inclusion
of some sort of header information, both for the overall file, and for
subsections within the file. This header information contains information
such as the byte location within the file where a set of values begins (a
pointer), the number of bytes used for each data value (the data size),
plus the number of data values. It is then very simple to find, for example,
the third data value within a set of values via straightforward arithmetic:
pointer + 2× size.

More information is required in order to locate values within a binary for-
mat, but once that information is available, navigation within the file is
faster and more flexible.

7.5.1 Case study: Point Nemo (continued)

Figure 7.11 shows the start of a binary file representation of the Point Nemo
temperature data (see Section 1.1). The format is called netCDF and it has
a specific structure that combines text and numeric values.

We will learn more about this format below. For now, the only point to
make is that, while we can see some bits of text in the file (the right-hand
column in Figure 7.11 shows ASCII interpretations of the bytes), it is not
clear from this raw display of the data, where the text data starts and ends,
where the numeric values are, and what each value is for.

Compared to a plain text file, this is a complete mess and we need software
that understands the netCDF format in order to extract useful values from
the file.

7.5.2 NetCDF

In order to provide a better understanding of binary formats, we will look
at a specific example of an open standard binary format called network

“itdt” — 2008/5/19 — 14:15 — page 143 — #169i
i

i
i

i
i

i
i

Data Storage 143

0 : 43 44 46 01 00 00 00 00 00 00 00 | CDF........
11 : 0a 00 00 00 01 00 00 00 04 54 69 |Ti
22 : 6d 65 00 00 00 30 00 00 00 00 00 | me...0.....
33 : 00 00 00 00 00 00 0b 00 00 00 02 |
44 : 00 00 00 04 54 69 6d 65 00 00 00 |Time...
55 : 01 00 00 00 00 00 00 00 0c 00 00 |
66 : 00 01 00 00 00 05 75 6e 69 74 73 |units
77 : 00 00 00 00 00 00 02 00 00 00 1f |
88 : 6e 75 6d 62 65 72 20 6f 66 20 64 | number of d
99 : 61 79 73 20 73 69 6e 63 65 20 31 | ays since 1
110 : 39 37 30 2d 30 31 2d 30 31 00 00 | 970-01-01..
121 : 00 00 06 00 00 01 80 00 00 00 ec |
132 : 00 00 00 0b 54 65 6d 70 65 72 61 |Tempera
143 : 74 75 72 65 00 00 00 00 01 00 00 | ture.......
154 : 00 00 00 00 00 0c 00 00 00 02 00 |
165 : 00 00 05 75 6e 69 74 73 00 00 00 | ...units...
176 : 00 00 00 02 00 00 00 06 4b 65 6c |Kel
187 : 76 69 6e 00 00 00 00 00 0d 6d 69 | vin......mi
198 : 73 73 | ss

Figure 7.11: The first 200 bytes of the netCDF format representation of the

surface temperatures at Point Nemo. The data are shown here as unstructured

bytes to demonstrate that, without knowledge of the structure of the binary file,

there is no way to determine where the different data values reside or what format

the values have been stored in (apart from the fact that there is obviously some

textual data in the file).

“itdt” — 2008/5/19 — 14:15 — page 144 — #170i
i

i
i

i
i

i
i

144 Introduction to Data Technologies

Common Data Form (netCDF).12

A netCDF file contains three sorts of information: dimensions, variables,
and attributes. Dimensions correspond to variables that are under experi-
mental control, such as the geographic locations at which measurements are
taken, the time points at which measurements are taken, or the levels of a
drug that are to be administered. These are sometimes called “independent
variables”. In the case of the Point Nemo data set, there is one dimension:
the months for which we have temperature records (from January 1994 to
December 1997).

Variables correspond to measurements that are recorded for each case or
subject. These are sometimes called “dependent variables”. In the Point
Nemo example, the variable is surface temperature.

Attributes are used to record metadata, such as the units of measurement
in the Point Nemo data set.

The structure of a netCDF file consists of header information, which includes
how many dimensions and variables are in the data set, followed by the raw
data itself. Figure 7.12 shows a structured view of the start of the netCDF
format for the Point Nemo temperature data. We will use this display to
explain some of the header information within a netCDF file.

The first four bytes within a netCDF file contain information on the type
of the file. The three characters CDF indicate that this is a netCDF file and
the last byte specifies which version of netCDF is being used. The value 01
indicates that this is a version 1, or “classic”, netCDF file.

The next four bytes in the netCDF format indicate how many “records” are
stored in the file. This is only used when the size of the data set can grow,
so in this case, where there is a fixed size to the data set, the value is just
0.

The third set of four bytes in the netCDF file represent a flag. The value
of these four bytes is an integer that indicates what sort of information is
to follow. In this case, the value 11 states that this is the beginning of a list
of the dimensions that have been stored in the file.

The next four bytes also represent an integer, this time indicating how many
dimensions are in the file. This file contains a single dimension.

At this point in the file, we start to see information about each of the
dimensions. The first piece of information is the name of the dimension.
This is character information so it comes in the form of an integer that says

12http://www.unidata.ucar.edu/software/netcdf/

http://www.unidata.ucar.edu/software/netcdf/

“itdt” — 2008/5/19 — 14:15 — page 145 — #171i
i

i
i

i
i

i
i

Data Storage 145

========magicNumber
0 : 43 44 46 01 | CDF.

========numRecords
4 : 00 00 00 00 | 0

========dimensionArrayFlag
8 : 00 00 00 0a | 10

========dimensionArraySize
12 : 00 00 00 01 | 1
========dim1NameSize
16 : 00 00 00 04 | 4
========dim1Name
20 : 54 69 6d 65 | Time

Figure 7.12: The start of the header information in the netCDF file that contains

the surface temperatures at Point Nemo, with the structure of the netCDF for-

mat revealed so that separate data fields can be observed. The first three bytes

are characters, the fourth byte is a number, the next four bytes are an integer

value, and so on. This structured display shows just the first 24 bytes of the 200

unstructured bytes shown in Figure 7.11.

how many characters there are, followed by that many bytes containing the
actual text. We can see that in the case of the Point Nemo file, the name
of the single dimension is “Time”, which is four characters long.

This small example demonstrates the classic structure of binary files. Infor-
mation of different sorts is packed into the file right next to each other with
lots of signs and labels to provide information about where the each piece
starts and ends.

We will now look a bit further into the file to see a few more examples
of how binary files are structured. Figure 7.13 shows two more chunks of
the netCDF form of the Point Nemo data that relate to the storage of the
surface temperature values within the file.

The top block in Figure 7.13 shows a part of the header of the netCDF file
that contains information about the variables contained within the file. The
first four bytes shown represent an integer value that indicates what data
type is used to store the temperature values. The value 5 is used in netCDF
to indicate that the values are stored as single-precision real values; each
value is stored as a floating-point value using four bytes. The next four
bytes also represent an integer, this time the total number of bytes used to
store the values. This corresponds to the total number of values multiplied
by the amount of memory used for each value; 48× 4 = 192. The final four

“itdt” — 2008/5/19 — 14:15 — page 146 — #172i
i

i
i

i
i

i
i

146 Introduction to Data Technologies

========vble2Type
224 : 00 00 00 05 | 5
========vble2Size
228 : 00 00 00 c0 | 192
========vble2Offset
232 : 00 00 02 6c | 620

========temperatures
620 : 43 8b 73 33 43 8c 00 00 | 278.9 280.0
628 : 43 8b 73 33 43 8b 73 33 | 278.9 278.9
636 : 43 8a e6 66 43 8a 0c cd | 277.8 276.1
644 : 43 8a 0c cd 43 89 cc cd | 276.1 275.6
652 : 43 89 cc cd 43 8a a6 66 | 275.6 277.3
660 : 43 8a 59 9a 43 8b 73 33 | 276.7 278.9
668 : 43 8c cc cd 43 8c 8c cd | 281.6 281.1
676 : 43 8c 00 00 43 8b 73 33 | 280.0 278.9
684 : 43 8a e6 66 43 8a 59 9a | 277.8 276.7
692 : 43 8a a6 66 43 8a 0c cd | 277.3 276.1
700 : 43 8a 0c cd 43 8a 59 9a | 276.1 276.7
708 : 43 8b 33 33 43 8a e6 66 | 278.4 277.8
716 : 43 8c 8c cd 43 8d 99 9a | 281.1 283.2
724 : 43 8c 8c cd 43 8b c0 00 | 281.1 279.5
732 : 43 8b 33 33 43 8a 59 9a | 278.4 276.7
740 : 43 8a 0c cd 43 89 cc cd | 276.1 275.6
748 : 43 89 cc cd 43 8a 0c cd | 275.6 276.1
756 : 43 8a a6 66 43 8b 73 33 | 277.3 278.9
764 : 43 8c 40 00 43 8c cc cd | 280.5 281.6
772 : 43 8c 00 00 43 8b 73 33 | 280.0 278.9
780 : 43 8b 33 33 43 8a 59 9a | 278.4 276.7
788 : 43 89 cc cd 43 89 cc cd | 275.6 275.6
796 : 43 8a a6 66 43 8a 59 9a | 277.3 276.7
804 : 43 8b 33 33 43 8b c0 00 | 278.4 279.5

Figure 7.13: Two blocks of bytes within the netCDF file that contains the surface

temperatures at Point Nemo. The top block, starting at byte 224, shows header

information that specifies where the temperature values are stored within the file

and how much memory is used for each value. These are all four-byte integer

values. The bottom block, starting at byte 620, shows the memory block that

stores the actual temperature values. These are all four-byte floating-point values.

“itdt” — 2008/5/19 — 14:15 — page 147 — #173i
i

i
i

i
i

i
i

Data Storage 147

bytes in this block again represent an integer, but this value is an offset
that indicates the location of the actual temperature values within the file.
This value says that the temperature values start at byte 620 within the
file.

The bottom block in Figure 7.13 shows the 192 bytes within the netCDF file,
starting at byte 620, with every four bytes interpreted as a single-precision
floating-point value. These are the temperature values from the Point Nemo
data set in a binary format.

It is not necessary to deal with binary files at this level of detail in order
to access data. The appropriate software takes care of all of the details.
The purpose of taking this closer look is to demonstrate the difference be-
tween plain text files and binary file formats. This example also provides a
demonstration of how binary formats are set up with formats that describe
the structure of the file itself. This means that, although software has to
be given a lot of information about the netCDF format in order to read
a netCDF file, once that information has been provided, the software can
read any netCDF file. This is in contrast to plain text files; any software
can read the characters within a plain text file, but interpreting the charac-
ters as data is difficult or impossible without information about the specific
structure of the file.

7.6 Spreadsheets

To this point, we have discussed data storage options in terms of various file
formats. We have been concerned with low-level information about how
data is organised within a digital file. In this section, and in the following
section on databases, we will be discussing higher-level interfaces to the
data.

We are no longer concerned with the details of how the information is stored
within a file. Instead we will work with a more conceptual data model,
leaving the details of file formats to software.

For many people, the term spreadsheet is synonymous with Microsoft
Excel. This section is not about Microsoft Excel, nor does it concern the
suite of features of any particular spreadsheet software such as Gnumeric or
Open Office Calc.

This section is concerned with the general concepts of spreadsheets and with
how appropriate they are for data storage.

“itdt” — 2008/5/19 — 14:15 — page 148 — #174i
i

i
i

i
i

i
i

148 Introduction to Data Technologies

7.6.1 The structure of spreadsheets

The fundamental structure of a spreadsheet is a grid or table of cells, which
are arranged neatly in rows and columns.

Spreadsheets are, by default, unstructured, with each cell capable of con-
taining any type of information, independently of all other cells.

7.6.2 Case study: Over the limit

The Lada Riva is one of the highest-selling car
models of all time and the only model to be found
on every continent in the world.13

A study conducted by researchers from the Psychology Department at the
University of Auckland14 looked at whether informative road signs had any
effect on the speed at which vehicles travelled along a busy urban road in
Auckland.

Data were collected for several days during a baseline period and for several
days when each of five different signs were erected beside the road. At
each stage, the vehicle speeds were also collected for traffic travelling in the
opposite direction along the road to provide a control set of observations.

The data were collected by the Waitakere City Council via detectors buried
in the road and were delivered to the researchers in the form of Excel spread-
sheets. Figure 7.14 shows a section of one of these spreadsheets and we will
use this to demonstrate some of the advantages and disadvantages of using
spreadsheets to store data.

One of the major attractions of using a spreadsheet is the fact that spread-
sheet software displays the spreadsheet cells in a rectangular grid so that it
is convenient and fast to enter, view, and modify the raw values in the data
set. The arrangement of cells into distinct columns shares the same benefits
as fixed-width format text files: it makes it very easy for a human to view
and navigate within the data.

13Image source: The Open Clip Art Library
http://openclipart.org/people/KlausGena/KlausGena_Tuned_Lada_VAZ_2101.svg

This image is in the public domain.
14Wrapson, W., Harré, N, Murrell, P. (2006) Reductions in driver speed using posted

feedback of speeding information: Social Comparison or Implied Surveillance? Accident
Analysis and Prevention. 38, 1119-1126.

http://openclipart.org/people/KlausGena/KlausGena_Tuned_Lada_VAZ_2101.svg

“itdt” — 2008/5/19 — 14:15 — page 149 — #175i
i

i
i

i
i

i
i

Data Storage 149

A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Monday 13/03/00
Speed (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 0 1 14 26 15 2 0 0 0 0
 2:00 0 1 7 13 5 2 0 0 0 0
 3:00 0 0 1 2 5 1 2 0 0 0
 4:00 0 0 3 2 2 2 1 0 0 0
 5:00 0 0 5 4 2 0 1 0 0 0
 6:00 0 2 8 28 17 3 0 0 0 0
 7:00 0 4 45 110 39 3 1 0 0 0
 7:15 2 2 37 78 17 1 0 0 0 0
 7:30 0 2 65 84 26 0 0 0 0 0
 7:45 1 0 53 160 16 0 0 0 0 0
 8:00 2 13 43 125 45 2 0 0 0 0
 7− 8 5 17 198 447 104 3 0 0 0 0
 8:15 0 20 44 151 35 1 0 0 0 0
 8:30 0 3 69 154 28 0 0 0 0 0
 8:45 3 4 81 164 12 0 0 0 0 0
 9:00 2 7 106 160 9 0 0 0 0 0
 8− 9 5 34 300 629 84 1 0 0 0 0

10:00 0 12 225 460 80 6 0 0 0 1
11:00 3 13 128 313 68 4 1 2 0 0
12:00 6 18 180 353 62 1 0 0 0 1
13:00 6 11 133 383 84 3 0 0 1 0
14:00 12 16 196 329 55 3 0 0 0 0
15:00 5 28 156 351 74 1 0 0 0 0

Figure 7.14: A section from the vehicle speed data as it was delivered in a

spreadsheet format.

This is not to suggest that data validation should be performed by eye-
balling the data set in a spreadsheet. That should be performed using plots
and tools that produce simple numerical summaries, examples of which we
will meet in Chapter 11. However, taking a look at the raw values within a
data set is never a bad thing.

Figure 7.14 also shows that it is straightforward to include metadata in a
spreadsheet (cells A1 to A3) because each cell in the spreadsheet can contain
any sort of value.

Most spreadsheet software also allows for multiple sheets within a document,
effectively providing a 3-dimensional cube of data cells. The vehicle speed
study made use of this feature to store the data from each day on a separate
sheet. Each condition of the study was stored in a separate spreadsheet
file. Figure 7.15 shows three sheets, representing three days’ worth of data,
within one of the spreadsheet files.

In summary, spreadsheets are easy to use and very convenient. Not surpris-
ingly, they are a very common choice for storing and sharing data sets.

However, there are some dangers to using spreadsheets for data storage,
most of which stem from these same desirable features of simplicity and

“itdt” — 2008/5/19 — 14:15 — page 150 — #176i
i

i
i

i
i

i
i

150 Introduction to Data Technologies

A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Monday 13/03/00
Speed (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 0 1 14 26 15 2 0 0 0 0
 2:00 0 1 7 13 5 2 0 0 0 0
 3:00 0 0 1 2 5 1 2 0 0 0
 4:00 0 0 3 2 2 2 1 0 0 0
 5:00 0 0 5 4 2 0 1 0 0 0
 6:00 0 2 8 28 17 3 0 0 0 0
 7:00 0 4 45 110 39 3 1 0 0 0
 7:15 2 2 37 78 17 1 0 0 0 0
 7:30 0 2 65 84 26 0 0 0 0 0
 7:45 1 0 53 160 16 0 0 0 0 0
 8:00 2 13 43 125 45 2 0 0 0 0
 7− 8 5 17 198 447 104 3 0 0 0 0
 8:15 0 20 44 151 35 1 0 0 0 0
 8:30 0 3 69 154 28 0 0 0 0 0
 8:45 3 4 81 164 12 0 0 0 0 0
 9:00 2 7 106 160 9 0 0 0 0 0
 8− 9 5 34 300 629 84 1 0 0 0 0

10:00 0 12 225 460 80 6 0 0 0 1
11:00 3 13 128 313 68 4 1 2 0 0
12:00 6 18 180 353 62 1 0 0 0 1
13:00 6 11 133 383 84 3 0 0 1 0
14:00 12 16 196 329 55 3 0 0 0 0
15:00 5 28 156 351 74 1 0 0 0 0

A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Tuesday 14/03/00
Speed (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 0 1 24 26 12 0 0 0 0 0
 2:00 0 0 5 14 3 0 0 0 0 0
 3:00 0 2 1 8 4 0 0 0 0 0
 4:00 0 0 8 6 4 1 1 0 0 0
 5:00 0 1 4 7 7 0 0 0 0 0
 6:00 0 5 9 26 12 3 0 0 0 0
 7:00 0 3 46 97 35 3 0 0 0 0
 7:15 0 7 80 60 7 0 0 0 0 0
 7:30 0 3 86 82 8 0 0 0 0 0
 7:45 0 7 97 109 10 0 0 0 0 0
 8:00 1 10 106 124 4 0 0 0 0 0
 7− 8 1 27 369 375 29 0 0 0 0 0
 8:15 0 0 83 156 11 0 0 0 0 0
 8:30 7 10 122 124 7 0 0 0 0 0
 8:45 0 8 147 131 7 0 0 0 0 0
 9:00 4 20 157 123 3 0 0 0 0 0
 8− 9 11 38 509 534 28 0 0 0 0 0

10:00 1 28 327 474 44 0 0 0 0 0
11:00 2 14 160 376 52 1 1 0 0 0
12:00 5 18 195 378 38 0 0 0 0 0
13:00 0 10 130 404 99 6 0 1 0 0
14:00 0 24 182 379 73 2 1 0 0 1
15:00 1 11 172 406 112 11 0 0 0 0

A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Wednesday 15/03/00
Speed (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 1 0 17 42 11 1 0 1 0 0
 2:00 0 1 12 14 5 0 1 0 0 0
 3:00 0 1 2 11 0 1 0 0 0 0
 4:00 0 0 3 5 3 0 1 0 0 0
 5:00 0 1 7 6 6 1 0 0 0 0
 6:00 1 3 7 28 17 2 1 0 0 0
 7:00 0 2 55 124 25 3 0 0 0 0
 7:15 0 0 51 89 13 0 0 1 0 0
 7:30 0 2 77 116 8 0 0 0 0 0
 7:45 0 6 113 118 7 0 0 0 0 0
 8:00 1 15 72 130 17 0 0 0 0 0
 7− 8 1 23 313 453 45 0 0 1 0 0
 8:15 0 21 117 130 5 0 0 0 0 0
 8:30 0 8 121 117 11 3 0 0 0 0
 8:45 19 42 122 74 9 0 0 0 0 0
 9:00 56 64 118 82 5 0 0 0 0 0
 8− 9 75 135 478 403 30 3 0 0 0 0

10:00 70 30 304 364 35 1 0 0 0 0
11:00 4 45 228 305 33 1 0 0 0 0
12:00 5 29 210 346 35 0 0 0 0 0
13:00 2 9 227 360 72 6 0 0 0 0
14:00 2 11 128 402 94 11 0 0 0 0
15:00 5 40 221 370 46 1 0 0 0 0

Figure 7.15: Sections from three of the sheets in the vehicle speed data spread-

sheet.

“itdt” — 2008/5/19 — 14:15 — page 151 — #177i
i

i
i

i
i

i
i

Data Storage 151

ease of use.

One important problem is that spreadsheet cells are able to act indepen-
dently of each other. Although the data in Figure 7.14 appear to have a
useful structure, with each data value clearly associated with a time period
and a speed range, this is in fact an illusion. The spreadsheet software does
not, by default, place any significance on the fact that the values in row 6
all correspond to the time period from midnight to 1:00 a.m. Every cell in
the spreadsheet is free to take any value regardless of which row or column
it resides in.

This problem can be seen by looking at the time values in column A. To
the human observer, it is clear that this column of values (apart from the
first three rows) corresponds to time intervals. However, the spreadsheet
data model does not enforce any such constraint on the data, as the value
in row 17 clearly shows. All of the values up to that point (rows 6 through
16) have been time values, but row 17 contains the value 7-8. To human
eyes this is clearly the time period 7:00 a.m. to 8:00 a.m., but any software
trying to read this column of values will almost certainly fail to make this
intuitive leap.

This particular problem is a feature of this particular data set, but the
general problem pertaining to all spreadsheets is that the flexible value-per-
cell data model allows this sort of thing to happen and the consequence
is that additional data cleaning is necessary before the raw data in the
spreadsheet can be used for analysis.

An example of where the lack of association between values that lie on the
same row of a spreadsheet becomes dangerous is when people make use of
the sorting facilities that are provided by most spreadsheet software. For
example, it is a simple matter in most spreadsheet software to sort the
values within a column, but doing this without simultaneously sorting all
other columns in a data set leads to complete corruption of the data set.

Another major disadvantage of storing data in a spreadsheet is that the
data are then only accessible using spreadsheet software. This is partially
alleviated by the fact that some spreadsheet software is ubiquitous and the
fact that all spreadsheet software can export spreadsheets in many different
formats, including as plain text files. However, it is still necessary to have
the spreadsheet software in order to read the data in first place, before being
able to export it in a new format.

This is more of a problem for some spreadsheet software packages than
others. For example, Microsoft Excel spreadsheets are stored using a closed
proprietary format, making it essential to have Excel in order to access the

“itdt” — 2008/5/19 — 14:15 — page 152 — #178i
i

i
i

i
i

i
i

152 Introduction to Data Technologies

data.15 By contrast, the Open Office Calc software uses the Open Document
format, which is an open standard format based on XML. This means that
Calc documents can be accessed by a number of different software packages;
it is even possible (if dangerous) to view and modify Calc documents using
a text editor.

A final disadvantage with some spreadsheet software is that, at least in some
major spreadsheet software, there are fixed limits on the number of columns
and on the number of rows in a spreadsheet, which means that some data
sets simply cannot be stored in a spreadsheet format.

Many of the dangers associated with spreadsheets boil down to the fact
that spreadsheets are easy to use, which means that many people use them,
and spreadsheets are very flexible and quite powerful, which means that,
without careful discipline, many people use them quite poorly. This is not
directly the fault of spreadsheet software, which is designed for uses far
beyond simple data storage, but it is a caution that spreadsheets should be
used with care and discipline.

7.6.3 Flashback: Spreadsheets and data entry

The convenient table-of-cells arrangement of spreadsheets, plus the ability
to dictate the type of the data that is stored in each cell, makes spreadsheets
a useful and popular tool for data entry. Data are automatically stored in
separate columns and it is possible to set up validity checks as data are
entered, which was one of the major reasons for discussing electronic forms
back in Chapter 5.

The unstructured format of spreadsheets means that it is very easy to end
up with a poor data entry scheme, so if data is to be entered directly into
a spreadsheet, it is important to follow some basic guidelines:

Keep the spreadsheet design simple
Use a separate column for each variable and include all values for each
case on a single row. The layout of the spreadsheet should be decided
before any data entry occurs. The simple spreadsheet interface makes
it tempting to enter data in an ad hoc fashion, but such an approach
will only lead to problems later on.

A simple design will not be the most efficient way to store the data
(in terms of the amount of memory required), but it will reduce the

15In practice, a number of different software products have managed to “reverse en-
gineer” the Excel format so that Excel documents can, for example, be accessed using
Open Office Calc.

“itdt” — 2008/5/19 — 14:15 — page 153 — #179i
i

i
i

i
i

i
i

Data Storage 153

chances of errors in the spreadsheet.

If efficiency of design is important, then a more sophisticated storage
format, such as a database, should be considered (see Section 7.7).

Enter all data on one spreadsheet
This is an extension of the keep-it-simple guideline and is important
for being able to successfully transfer the data to other systems. It is
tempting to split data across spreadsheets, especially when the data
set contains many measurement variables or when a study or experi-
mental design is multi-leveled. Some problems with this approach are
that it requires great discipline to ensure that multiple sheets maintain
the same structure and it is harder to work with multiple spreadsheets
(compared to dealing with multiple plain text files). When the data
become large or complex a database solution is much more appropriate
(see Section 7.7).

One exception to this rule is the inclusion of metadata. It makes
sense to store metadata on a separate spreadsheet. This means that
the metadata is kept in the same file as the raw data, but keeps the
raw data format clean and simple.

Add validity checking
It is possible to specify the type (format) of the data in a cell, but this
does not force any checks on the value that is entered into a cell.

Spreadsheets provide additional validity checking to enforce specific
data types and even specific data ranges on the data being entered into
a cell. These facilities should be used.

7.7 Databases

When a data set becomes very large, or even just very complex in its struc-
ture, the ultimate storage solution is a database.

7.7.1 Some terminology

The term“database”can be used generally to describe any collection of infor-
mation. In this section, the term “database” means a relational database,
which is a a collection of data that is organised in a particular way.

Other types of database exist, such as hierarchical databases, network databases,
and, more recently, object-oriented databases and XML databases, but re-
lational databases are by far the most common.

“itdt” — 2008/5/19 — 14:15 — page 154 — #180i
i

i
i

i
i

i
i

154 Introduction to Data Technologies

The actual physical storage mechanism for a database–whether binary files
or text files are used, whether one file or many files are used—will not
concern us. We will only be concerned with the high-level, conceptual or-
ganisation of the data and will rely on software to decide how best to store
the information in files.

The software that handles the physical representation, and allows us to
work at a conceptual level, is called a database management system
(DBMS), or in our case, more specifically a relational database manage-
ment system (RDBMS).

7.7.2 The structure of a database

A relational database consists of a set of tables, where a table is concep-
tually just like a plain text file or a spreadsheet: a set of values arranged
in rows and columns. The difference is that there are usually several tables
in a single database, and the tables in a database have a much more formal
structure than a plain text file or a spreadsheet.

For example, below we have a simple database table containing information
on books. The table has three columns—the ISBN of the book, the title
of the book, and the author of the book—and four rows, with each row
representing one book.

ISBN title author
---------- -------------------------- ----------------
0395193958 The Hobbit J. R. R. Tolkien
0836827848 Slinky Malinki Lynley Dodd
0393310728 How to Lie with Statistics Darrell Huff
0908783116 Mechanical Harry Bob Kerr

Each table in a database has a unique name and each column in a table has
a unique name.

Each column in a database table also has a data type associated with it, so
all values in a single column are the same sort of data. In the book database
example, all three columns are text or character values. The ISBN is not
stored as an integer because it is a sequence of 10 digits (as opposed to a
decimal value). For example, if we stored the ISBN as an integer, we would
lose the leading 0.

Each table in a database has a primary key. The primary key must be
unique for every row in a table. In the book table, the ISBN provides a
perfect primary key because every book has a different ISBN.

“itdt” — 2008/5/19 — 14:15 — page 155 — #181i
i

i
i

i
i

i
i

Data Storage 155

It is possible to create a primary key by combining the values of two or more
columns. This is called a composite primary key. A table can only have
one primary key, but the primary key may be composed from more than
one column.

A database containing information on books might also contain information
on book publishers. Below we show another table in the same database
containing information on publishers.

ID name city country
-- ----------------- ---------- -----------
1 Mallinson Rendel Wellington New Zealand
2 W. W. Norton New York USA
3 Houghton Mifflin Boston USA

Tables within the same database are related to each other using foreign
keys. These are columns in one table that specify a value from the pri-
mary key in another table. For example, we can relate each book in the
book_table to a publisher in the publisher_table by adding a foreign key
to the book_table. This foreign key consists of a column, pub, containing
the appropriate publisher ID. The book_table now looks like this:

ISBN title author pub
---------- -------------------------- ---------------- ---
0395193958 The Hobbit J. R. R. Tolkien 3
0836827848 Slinky Malinki Lynley Dodd 1
0393310728 How to Lie with Statistics Darrell Huff 2
0908783116 Mechanical Harry Bob Kerr 1

Notice that two of the books have the same publisher.

7.7.3 Data integrity

As shown in the previous section, databases have a much more formal struc-
ture than any other storage option that we have encountered so far. This is
an important advantage because this structure enforces constraints on the
data in a database, which means that there are checks on the accuracy and
consistency of data that is stored in a database. In other words, databases
ensure better data integrity.

For example, the database structure ensures that all values in a single col-
umn of a table are of the same data type (e.g., they are all numbers). It is

“itdt” — 2008/5/19 — 14:15 — page 156 — #182i
i

i
i

i
i

i
i

156 Introduction to Data Technologies

possible, when setting up a database, to enforce quite specific constraints
on what values can appear in a particular column of a table. We will not
discuss the creation of databases in this chapter, but Section 10.3 provides
some information on this topic.

Another important structural feature of databases is the existence of for-
eign keys and primary keys. Database software will enforce the rule that a
primary key must be unique for every row in a table and it will enforce the
rule that the value of a foreign key must refer to an existing primary key
value. This idea is discussed further on page 160.

All of these checks are helpful in reducing the number of errors in a data
set.

7.7.4 Advantages and disadvantages

A database compared to a flat text file is like a Ferrari compared to a horse
and cart: much more expensive!

A database is of course also far more sophisticated than a flat text file, not
to mention faster, more agile, and so on, but the cost is worth keeping in
mind because a database is not always the best option. It is also worth
noting that the cost is not just the software—there are several open source
(free) database management systems—there is also the cost of acquiring or
hiring the expertise necessary to create, maintain, and interact with data
stored in a database.

Databases tend to be used for large data sets because, for most DBMS,
there is no limit on the size of a database. However, even when a data
set is not enormous, there are advantages to using a database because the
organisation of the data can improve accuracy and efficiency. In particular,
databases allow the data to be organised in a variety of ways so that, for
example, data with a hierarchical structure can be stored in an efficient and
natural way. These issues will be discussed further in Section 7.7.6.

Databases are also advantageous because most DBMS provide advanced
features that are far beyond what is provided by the software that is used
to work with data in other formats (e.g., text editors and spreadsheet pro-
grams). These features include the ability to allow multiple people to access
and even modify the data at once and advanced control over who has access
to the data and who is able to modify the data.

“itdt” — 2008/5/19 — 14:15 — page 157 — #183i
i

i
i

i
i

i
i

Data Storage 157

7.7.5 Database notation

In the examples so far, we have only been seeing the contents of a database
table. In the next section, on Database Design, it will be more important to
describe the structure of a database table—the table schema. For this pur-
pose, the contents of each row are not important; instead we are interested
in the names of tables, the names of columns, which columns are primary
keys, and which columns are foreign keys. The notation we will use is a sim-
ple text description, with primary keys and foreign keys indicated in square
brackets. For example, these are the schema for the publisher_table and
the book_table in the book database:

publisher_table (ID [PK], name, city, country)

book_table (ISBN [PK], title, author,
pub [FK publisher_table.ID])

For a foreign key, the name of the table and the name of the column that
the foreign key references are also described.

7.7.6 Database design

In this section, we will look at some issues relating to the design of databases.
Although designing a database is not a very common task for a scientist,
having an understanding of the concepts and tasks involved can be useful
for several reasons:

Getting data out of a database:
When extracting information from a database (Chapter 9), it is nec-
essary to have an appreciation of why a database contains more than
one table, how the tables are structured, and how multiple tables are
related to each other.

It’s good for you:
The concepts of database design are useful for thinking in general
about how to store data (see, in particular, Section 7.7.10). The ideas
in this section can have a positive influence on how we store informa-
tion in other formats, even plain text files.

This section provides neither an exhaustive discussion nor a completely
rigorous discussion of database design. The importance of this section is to
provide a basic introduction to some useful ideas and ways to think about
data.

“itdt” — 2008/5/19 — 14:15 — page 158 — #184i
i

i
i

i
i

i
i

158 Introduction to Data Technologies

Data modelling

Data modelling is a more general task than designing a database. The aim
is to produce a model of a system (a conceptual data model), which can
then be converted to a database representation, but could alternatively be
converted into an object-oriented program, or something else (all logical or
physical data models).

A conceptual data model is usually constructed using some sort of pictorial
or diagram language, such as Entity-Relationship Diagrams (ERDs) or the
Unified Modeling Language (UML). These languages are beyond the scope
of this book, but we will use some of the building blocks of these conceptual
models to help guide us in our brief discussion of database design.

Entities, attributes, and relationships

One way to approach database design is to think in terms of entities and
the relationships between them.

An entity is most easily thought of as a person, place, or physical object
(e.g., a book), an event, or a concept. An attribute is a piece of information
about the entity. For example, the title, author, and ISBN are all attributes
of a book entity.

The simple rule for starting to design a database for storing a data set is
that there should be a table for each entity in the data set and a column in
that table for each attribute of the entity.

Rather than storing a data set as one big table of information, this rule
suggests that we should use several tables, with information about different
entities in separate tables. In the book example, there is information about
at least two entities, books and publishers, so we have a separate table for
each of these.

A relationship is an association between entities. For example, a publisher
publishes books and a book is published by a publisher. Relationships are
represented in a database by foreign key-primary key pairs, but the details
depend on the cardinality of the relationship—whether the relationship is
one-to-one (1:1), many-to-one (M:1), or many-to-many (M:N).

A book is published by exactly one publisher,16 but a publisher publishes
many books, so the relationship between books and publishers is many-to-
one. This sort of relationship can be represented by placing a foreign key

16Every edition or variation of a book gets its own ISBN, so the same book contents
may be published by several different publishers, but they will have different ISBNs.

itdt -- 2008/5/19 -- 14:15 -- page 159 -- #185i
i

i
i

i
i

i
i

Data Storage 159

in the table for books (the “many” side), which refers to the primary key in
the table for publishers (the “one” side).

One-to-one relationships can be handled similarly to many-to-one relation-
ships (it does not matter which table gets the foreign key), but many-to-
many relationships are more complex.

In our book database example, we can identify another sort of entity: au-
thors. This suggests that there should be another table for author infor-
mation. For now, the table only contains the author’s name, but other
information, such as the author’s age and nationality could be added.

author_table (ID [PK], name)

What is the relationship between books and authors? An author can write
several books and a book can have more than one author, so this is an
example of a many-to-many relationship.

A many-to-many relationship can only be represented by creating a new
table. For example, we can create a table that contains the relationship
between authors and books. This table contains a foreign key that refers
to the author table and a foreign key that refers to the book table. The
representaion of book entities, author entities, and the relationship between
them now consists of three tables like this:

author_table (ID [PK], name)

book_table (ISBN [PK], title,
pub [FK publisher_table.ID])

book_author_table (ID [PK],
book [FK book_table.ISBN],
author [FK author_table.ID])

The contents of these tables for several books are shown below. The author
table just lists the authors for whom we have information:

ID name
-- ----------------
2 Lynley Dodd
5 Eve Sutton

The book table just lists the books that are in the database:

“itdt” — 2008/5/19 — 14:15 — page 160 — #186i
i

i
i

i
i

i
i

160 Introduction to Data Technologies

ISBN title
---------- ------------------------------------
0908606664 Slinky Malinki
1908606206 Hairy Maclary from Donaldson’s Dairy
0908606273 My Cat Likes to Hide in Boxes

The association between books and authors is stored in the book_author_table:

ID book author
-- ---------- ------
2 0908606664 2
3 1908606206 2
6 0908606273 2
7 0908606273 5

Notice that author 2 (Lynley Dodd) has written more than one book and
book 0908606273 has more than one author (rows 6 and 7).

Data integrity

Another reason for creating an additional table in a database is for the
purpose of constraining the set of possible values for an attribute. For
example, if the table of authors records the nationality of the author, it can
be useful to have a separate table that contains the possible nationalities.
The column in the author table then becomes a foreign key referring to the
nationality table and, because a foreign key must match the value of the
corresponding primary key (or be NULL), we have a check on the validity of
the nationality in the author table.

The redesigned author table now looks like this:

author_table (ID [PK], name,
nationality [FK nationality_table.ID])

nationality_table (ID [PK], nationality)

Normalisation

Normalisation is a formal process of ensuring that a database satisfies a
set of rules called normal forms. There are several of these rules, but we
will only mention the first three. The proper definition of normalisation

itdt -- 2008/5/19 -- 14:15 -- page 161 -- #187i
i

i
i

i
i

i
i

Data Storage 161

depends on more advanced relational database concepts that are beyond
the scope of this book, so the descriptions below are just to give a feel for
how the process works.

First normal form:
All columns should be atomic, there should be no duplicative columns
and every table must have a primary key.

The first part of this rule says that a column in a database table must
only contain a single value. As an example, consider the following
table for storing information about books:

title authors
----------------------------- -----------------------
Slinky Malinki Lynley Dodd
My Cat Likes to Hide in Boxes Eve Sutton, Lynley Dodd

The first column of this table is acceptable because it just contains
one piece of information: the title of the book. However, the second
column is not atomic because it contains a list of authors for each
book. For example, the book on the second row has two authors.

The second part of the rule says that a table cannot have two columns
containing the same information. For example, in the following table,
the columns author1 and author2 are duplicative columns.

title author1 author2
----------------------------- ----------- -----------
Slinky Malinki Lynley Dodd NULL
My Cat Likes to Hide in Boxes Eve Sutton Lynley Dodd

The final part of the rule says that there must be a column in the
table that has a unique value in every row (or it must be possible to
combine several columns to obtain a unique value for every row). In
other words, every table must have a primary key.

Second normal form:
All tables must be in first normal form and all columns in a table
must relate to the entire primary key.

This rule formalises the idea that there should be a table for each entity
in the data set. Consider the following table for storing information
about books:

“itdt” — 2008/5/19 — 14:15 — page 162 — #188i
i

i
i

i
i

i
i

162 Introduction to Data Technologies

ISBN author price
---------- ----------- -----
0908606664 Lynley Dodd 30.00
1908606206 Lynley Dodd 30.00
0908606273 Lynley Dodd 25.00
0908606273 Eve Sutton 25.00

The primary key for this table is a combination of ISBN and author
(each row of the table carries information about one author of a book).
The price column relates to the ISBN; this is the price of the book.
However, the price column does not relate to the author; this is not
the price of the author!

The table needs to be split into two tables, one with the information
about books and one with the information about authors.

When a new table is created for author information, it is vital that
the new table has a link to the book table via some sort of foreign key
(see the earlier discussion of the relationships between entities).

Third normal form:
All tables must be in second normal form and all columns in a table
must relate only to the primary key (not to each other).

This rule further emphasizes the idea that there should be a separate
table for each entity in the data set. Consider the following table for
storing information about books:

ISBN title publisher country
---------- ---------------- ---------------- -------
0395193958 The Hobbit Houghton Mifflin USA
0836827848 Slinky Malinki Mallinson Rendel NZ
0908783116 Mechanical Harry Mallinson Rendel NZ

The primary key of this table is the ISBN, which uniquely identifies
a book. The title column relates to the book; this is the title of
the book. The publisher column also relates to the book; this is the
publisher of the book. However, the country column does not relate
directly to the book; this is the country of the publisher. That obvi-
ously is information about the book—it is the country of the publisher
of the book—but the relationship is indirect, through the publisher.

There is a simple heuristic that makes is easy to spot this sort of prob-
lem in a database table. Notice that the information in the publisher
and country columns is identical for the books published by Mallinson
Rendel. When two or more columns repeat the same information over
and over, it is a sure sign that either second or third normal form is
not being met.

“itdt” — 2008/5/19 — 14:15 — page 163 — #189i
i

i
i

i
i

i
i

Data Storage 163

In this case, the analysis of the table suggests that there should be a
separate table for information about the publisher.

Again, it is important to link to the new table with a foreign key.

Normalizing a database is an effective and formalized way of achieving the
design goals that we outlined previously: memory efficiency, improved ac-
curacy (data integrity), and ease of maintenance.

Applying the rules of normalisation usually results in the creation of more
tables in a database. The previous discussion of relationships should be
consulted for making sure that any new tables are linked to at least one
other table in the database.

7.7.7 Flashback: The DRY Principle

A well designed database will have the feature that each piece of information
is stored only once. Less repetition of data values means that a well-designed
database will usually require less memory than storing an entire data set in
a naive single-table format. Less repetition also means that a well-designed
database is easier to maintain and update, because a change only needs
to be made in one location. Furthermore, there is less chance of errors
creeping into the data set. If there are multiple copies of information, then
it is possible for the copies to disagree, but with only one copy there can be
no disagreements.

These ideas are an expression of the DRY principle from Section 2.5. A
well-designed database is the ultimate embodiment of the DRY principle
for data storage.

7.7.8 Case Study: The Data Expo (continued)

The Data Expo data set consists of seven atmospheric variables recorded
at 576 locations for 72 time points (every month for 6 years), plus elevation
data for each location (see Section 7.3.6).

The data were originally stored as 505 plain text files, where each file con-
tains the data for one variable for one month. Figure 7.16 shows the first
few lines from one of the plain text files.

As we have discussed earlier in this chapter, this simple format makes the
data very accessible. However, this is an example where a plain text format
is quite inefficent, because many values are repeated. For example, the

itdt -- 2008/5/19 -- 14:15 -- page 164 -- #190i
i

i
i

i
i

i
i

164 Introduction to Data Technologies

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.7 270.9 270.9 269.7 273.2 275.6 277.3 ...

33.8N / 50: 279.5 279.5 275.0 275.6 277.3 279.5 281.6 ...

31.2N / 49: 284.7 284.7 281.6 281.6 280.5 282.2 284.7 ...

28.8N / 48: 289.3 286.8 286.8 283.7 284.2 286.8 287.8 ...

26.2N / 47: 292.2 293.2 287.8 287.8 285.8 288.8 291.7 ...

23.8N / 46: 294.1 295.0 296.5 286.8 286.8 285.2 289.8 ...

...

Figure 7.16: One of the plain text files from the original format of the Data Expo

data set, which contains data for one variable for one month. The file contains

information on latitude and longitude, which is repeated in every other plain text

file in the original format (for each variable and for each month; in total, over 500

times).

longitude and latitude information for each location in the data set is stored
in every single file, which means that that information is repeated over 500
times! That not only takes up more storage space than is necessary, but it
also violates the DRY principle, with all of the negative consequences that
follow.

In this section, we will consider how the Data Expo data set could be stored
as a relational database.

To start with, we will consider what entities there are in the data set. In
this case, the different entities that are being measured are relatively easy to
identify. There are measurements on the atmosphere, and the measurements
are taken at different locations and at different times. We have information
about each time point (i.e., a date), we have information about each location
(longitude and latitude and elevation), and we have several measurements
on the atmosphere. This suggests that we should have three tables: one for
locations, one for time points, and one for atmospheric measures.

We could also look at the data set from a normalisation perspective. We
start with a single table containing all columns (only 7 rows shown):

“itdt” — 2008/5/19 — 14:15 — page 165 — #191i
i

i
i

i
i

i
i

Data Storage 165

date lon lat elv chi cmid clo ozone press stemp temp

---------- ------ ----- --- ---- ---- ---- ----- ------ ----- -----

1995-01-16 -56.25 36.25 0.0 25.5 17.5 38.5 298.0 1000.0 289.8 288.8

1995-01-16 -56.25 33.75 0.0 23.5 17.5 36.5 290.0 1000.0 290.7 289.8

1995-01-16 -56.25 31.25 0.0 20.5 17.0 36.5 286.0 1000.0 291.7 290.7

1995-01-16 -56.25 28.75 0.0 12.5 17.5 37.5 280.0 1000.0 293.6 292.2

1995-01-16 -56.25 26.25 0.0 10.0 14.0 35.0 272.0 1000.0 296.0 294.1

1995-01-16 -56.25 23.75 0.0 12.5 11.0 32.0 270.0 1000.0 297.4 295.0

1995-01-16 -56.25 21.25 0.0 7.0 10.0 31.0 260.0 1000.0 297.8 296.5

In terms of first normal form, all columns are atomic and there are no
duplicative columns, and we can, with a little effort, find a (composite)
primary key: we need a combination of date, lon (longitude), and lat
(latitude) to get a unique value for all rows.

Moving on to second normal form, the column elv (elevation) immediately
fails. The elevation at a particular location clearly relates to the longitude
and latitude of the location, but it has very little to do with the date. We
need a new table to hold the longitude, latitude, and elevation data.

The new table looks like this (only 7 rows shown):

lon lat elv
------ ----- ---
-56.25 36.25 0.0
-56.25 33.75 0.0
-56.25 31.25 0.0
-56.25 28.75 0.0
-56.25 26.25 0.0
-56.25 23.75 0.0
-56.25 21.25 0.0

This “location” is in third normal form. It has a primary key (a combina-
tion of longitude and latitude), and the elv column relates directly to that
primary key.

Going back to the original table, the remaining columns of atmospheric
measurements are all related to the primary key; the data in these columns
represents an observation at a particular location at a particular time point.

Having split the data set into separate tables, we must make sure that the
tables are linked to each other (at least indirectly), and in order to achieve
this, we need to determine the relationships between the tables.

We have two tables, one representing atmospheric measurements, at various
locations and times, and one representing information about the locations.
What is the relationship between these tables? Each location (each row of

“itdt” — 2008/5/19 — 14:15 — page 166 — #192i
i

i
i

i
i

i
i

166 Introduction to Data Technologies

the location table) corresponds to several measurements, but each individual
measurement (each row of the measurement table) corresponds to only one
location, so the relationship is many-to-one.

This means that the table of measurements should have a foreign key that
references the primary key in the location table. The design could be ex-
pressed like this:

location_table (longitude [PK],
latitude [PK],
elevation)

measure_table (date [PK],
longitude [PK] [FK location_table.longitude],
latitude [PK] [FK location_table.latitude],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature)

Both tables have composite primary keys, the measure_table also has
a composite foreign key (to match the composite primary key), and the
longitude and latitude columns of the measure_table have roles in both
the primary key and the foreign key.

This design is a reasonable one, but we will go a bit further because the
date column deserves a little more consideration.

As mentioned elsewhere, dates can be tricky to work with. The dates have
been entered into the database as text. They are in the ISO 8601 format,
so that alphabetical order is chronological order. This makes it easy to sort
or extract information from a contiguous set of dates (e.g., all dates after
December 1998). However, it would be difficult to extract non-contiguous
subsets of the data (e.g., all data from December for all years). This sort of
task would be much easier if we had separate columns of month and year
information. If we add these columns to the data set, we get a table like
this (only 7 rows shown; not all atmospheric variables shown):

date lon lat month year chi cmid clo ozone

---------- ------ ----- ------- ---- ---- ---- ---- -----

1995-01-16 -56.25 36.25 January 1995 25.5 17.5 38.5 298.0

1995-01-16 -56.25 33.75 January 1995 23.5 17.5 36.5 290.0

1995-01-16 -56.25 31.25 January 1995 20.5 17.0 36.5 286.0

1995-01-16 -56.25 28.75 January 1995 12.5 17.5 37.5 280.0

1995-01-16 -56.25 26.25 January 1995 10.0 14.0 35.0 272.0

1995-01-16 -56.25 23.75 January 1995 12.5 11.0 32.0 270.0

1995-01-16 -56.25 21.25 January 1995 7.0 10.0 31.0 260.0

“itdt” — 2008/5/19 — 14:15 — page 167 — #193i
i

i
i

i
i

i
i

Data Storage 167

With these extra columns added, the table violates second normal form
again. The month and year columns relate to the date, but have nothing
to do with longitude and latitude. We must create a new table for the date
information.

This new table consists of date, month, and year, and we can use date as
the primary key. The relationship between this table and the original table
is many-to-one (each date corresponds to many measurements, but each
individual measurement was taken on a single date), so another foreign key
is added to the original table to link the tables together. The new date table
looks like this (only 7 rows shown):

date month year
---------- ------- ----
1995-01-16 January 1995
1995-02-16 Februar 1995
1995-03-16 March 1995
1995-04-16 April 1995
1995-05-16 May 1995
1995-06-16 June 1995
1995-07-16 July 1995

One possible final adjustment to the database design is to consider a surro-
gate auto-increment key as the primary key for the location table, because
the natural primary key is quite large and cumbersome. This leads to a
final design that can be expressed like this:

date_table (date [PK],
month, year)

location_table (ID [PK],
longitude, latitude, elevation)

measure_table (date [PK] [FK date_table.date],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature)

The final database, stored as an SQLite file, is a little over 2 MB in size,
compared to 4 MB for the original plain text files.

“itdt” — 2008/5/19 — 14:15 — page 168 — #194i
i

i
i

i
i

i
i

168 Introduction to Data Technologies

7.7.9 Case study: Cod stomachs

Overfishing of Northwest Atlantic
Cod lead to a collapse of the fishery
over a four-year period in the early
1990s (the population dropped
by 99.5%). Cod fishing is now
completely banned in the region.17

One of the research projects conducted by Pêches et Océans Canada, the
Canadian Department of Fisheries and Oceans (DFO), involves collecting
data on the diet of Atlantic cod (Gadus morhua) in the Gulf of St.Lawrence,
Eastern Canada.

Large quantities of cod are collected by a combination of research vessels
and contracted fishing vessels and the contents of the cod stomachs are
analysed to determine which species the cod have eaten.

Fish are collected when one or more ships set out on a fishing “trip”. On
a single trip, each ship performs several “sets”, where each set consists of
either a hooked line or a net being placed in the water and then subsequently
being recovered (and checked for fish).

The primary experimental unit is a lump of something (a“prey item”) found
in a cod stomach. For each lump, the following variables are measured:

prey_mass The weight, in grams, of the prey item.

prey_type The species of the prey item. There are 24 different identified
species, plus a special category "Empty" which is used when there
are no prey items within the cod stomach, plus a general category
"Other" into which all other species have been gathered.

fish_id A number identifying each fish within a particular set. In most
cases, there are several records for a single fish because the fish has
consumed more than one type of prey. A fish_id of 1 just means
that the fish was the first fish measured from a particular set, so it is
possible for different fish to share the same fish_id.

fish_length The length of a fish, in millimetres.
17Source: Carole Walsh Computer Graphics & Design

http://carolewalsh.com/

Used and redistributed with permission.

http://carolewalsh.com/

“itdt” — 2008/5/19 — 14:15 — page 169 — #195i
i

i
i

i
i

i
i

Data Storage 169

region ship_type ship_id trip set fish_id fish_length prey_mass prey_type

"SGSL" "2" NA "95" 3 30 530 27.06 "Other"

"SGSL" "2" NA "95" 3 30 530 1.47 "Other"

"SGSL" "2" NA "95" 3 30 530 4.77 "Other"

"SGSL" "2" NA "95" 3 31 490 34.11 "Other"

"SGSL" "2" NA "95" 3 31 490 0.17 "Other"

"SGSL" "2" NA "95" 3 31 490 2.27 "Other"

"SGSL" "2" NA "95" 3 32 470 0.52 "Other"

"SGSL" "2" NA "95" 3 32 470 0.21 "Other"

"SGSL" "2" NA "95" 3 32 470 1.7 "Other"

"SGSL" "2" NA "95" 3 33 480 1.97 "Other"

...

Figure 7.17: The first few lines of the Cod data set as a plain text file (there are

10,000 lines in total).

set_num A simple set label that is only unique to a particular ship on a
particular trip. A set of 1 just means that the set was the first set
by a particular ship on a particular trip.

trip A simple trip label that is only unique to a particulare trip region (see
region below). Unfortunately, there is no guarantee that two ships
with the same trip label were on the same trip.

ship.type For research vessels, this provides a unique identifier. For con-
tract vessels, this just represents the type of fishing gear in use (90 or
type 99), so different contract ships share the same ship type; these
ships can be distinguished from one another by the ship_id (see be-
low).

ship_id A unique identifier for ships owned by fisherman who were con-
tracted to catch cod. The combination of ship_type and ship_id is
unique for all ships.

region The region where the trip occurred: either Northern ("NGSL") or
Southern ("SGSL") Gulf of St Lawrence.

We can start off by identifying a few simple entities within this data set.
For example, thinking about the physical objects involved, there is clearly
information about individual ships and information about individual fish,
so we will have a fish_table and a ship_table.

It is abundantly clear that there are going to be several tables in the
database; from a normalisation point of view, it is clear that we could not
have a single table because there would be columns that do not relate to the
primary key, or relate not only to the primary key, but also to each other;

“itdt” — 2008/5/19 — 14:15 — page 170 — #196i
i

i
i

i
i

i
i

170 Introduction to Data Technologies

not to mention that we would have trouble finding a primary key for one
big table in the first place.

The ship table

For each ship we have one or two identification numbers. We need both
numbers in order to uniquely identify each ship (different commercial vessels
share the same ship_type), so we cannot use either variable on its own as
a primary key. Furthermore, the ship_id for research vessels is missing
(in database terms, the value will be NULL), which means that the ship_id
variable cannot be used as part of the primary key. We will use an artificial,
auto-increment key for this table.

ship_table (ID [PK], ship_type, ship_id)

The fish table

For each fish, we have a numeric label and the length of the fish; we also
have lots of information about what was in the stomach of the fish, but we
will leave that until later. The fish_id label is not unique for each fish, so
again we will use an auto-increment primary key.

fish_table (ID [PK], fish_id, fish_length)

The prey item table

Another important physical entity in the data set is a prey item (a lump
found in a fish stomach). We could have a lump_table where, for each lump,
we have information about the species of the prey item and the weight of the
lump. We will add an auto-increment variable to provide a unique identifier
for each lump in the entire data set.

lump_table (ID [PK], prey_mass, prey)

We will develop this table more a little later.

The prey type table

The prey_type variable is a good example where we might like to create
a new table for validating the species entered in the lump_table. Another

“itdt” — 2008/5/19 — 14:15 — page 171 — #197i
i

i
i

i
i

i
i

Data Storage 171

reason for considering this approach is the possibility that we might be in-
terested in a species that does not occur in the data set we have (but could
conceivably occur in future studies). We could also use a prey_table to
provide a mapping between the generic Other species category and indi-
vidual species which have been grouped therein. We could use the species
name itself as the primary key for the prey_table, but in terms of effi-
ciency of storage, having a single integer identifier for each species requires
less storage in the (large) lump_table than storing the full species label.

prey_table (ID [PK], prey_type)

Relating lumps to prey and fish

The relationship between the lump_table and the prey_table is many-to-
one, so we place a prey foreign key in the lump_table.

Lumps are also fairly obviously related to fish; each lump comes from exactly
one fish and each fish can have several lumps. We also place a fish foreign
key in the lump_table.

lump_table (ID [PK], prey_mass,
prey [FK prey_table.ID],
fish [FK fish_table.ID]))

It is worth pointing out that, through the lump_table, we have resolved
the many-to-many relationship between fish and prey.

Relating fish and ships

Now we come to the more complicated part of modelling the cod data set.
How are fish and ships related to each other? And how do we bring in the
other information in the data set (region, trip, and set)? At this point,
thinking about physical entities does not help us much; we need to think in
terms of the events involved in the data collection instead.

Initially, the situation does not look too bad; each fish was caught by exactly
one ship (and each ship caught many fish). However, the process was not
that simple. Each fish was caught in exactly one set (one check of the net
or hooks) and each set occurred on exactly one trip. However, some trips
involved several ships and some ships conducted more than one trip. There
is another many-to-many relationship lurking within the data. To resolve
this, we will focus on the fishing sets.

“itdt” — 2008/5/19 — 14:15 — page 172 — #198i
i

i
i

i
i

i
i

172 Introduction to Data Technologies

The set table

For each set we have a label, set_num. The set occurred on exactly one
trip, so we can include the label for the trip.18 The set was performed by
exactly one ship, so we can include a foreign key to the ship table. This
resolves the many-to-many relationship between ships and trips. Finally,
we include information about the region. This is expanded into a separate
table, which allows us to provide a more expansive description of each region.
The original region code makes a nice primary key and because it is fairly
compact, will not result in too much inefficiency in terms of space. An
auto-increment variable provides a unique identifier for each set.

region_table (region [PK], name)

set_table (ID [PK], set_num, trip,
fish [FK fish_table.ID],
region [FK region_table.region])

7.7.10 Flashback: Database design and XML design

In Section 7.4.4 we discussed some basic ideas for deciding how to represent
a data set in an XML format. The ideas of normalisation express very
similar ideas, just in a more formal manner. In fact, there is often a simple
correspondence between database designs and XML designs for the same
data set.

As a rough guideline, a database table corresponds to a set of XML elements
of the same type. Each row of the table will correspond to a single XML
element, with each column of values recorded as a separate attribute within
the element. The caveats about when attributes cannot be used still apply
(see page 135).

Simple one-to-one or many-to-one relationships can be represented in XML
by nesting several elements (the many) within another element (the one).
More complex relationships cannot be solved by nesting, but with the corre-
spondence of ID attributes to primary keys and IDREF attributes to foreign
keys, it is possible to emulate relationships between entities via XML ele-
ments that are not nested.

18If we had more information on trips, such as a date, we might split the trip informa-
tion into a separate table.

“itdt” — 2008/5/19 — 14:15 — page 173 — #199i
i

i
i

i
i

i
i

Data Storage 173

7.7.11 Case study: The Data Expo (continued)

The Data Expo data set consists of several atmospheric measurements taken
at many different locations and at several time points. A database design
that we developed for storing these data consisted of three tables: one
for the location data, one for the time data, and one for the atmospheric
measurements (see Section 7.7.8). The database schema is reproduced below
for easy reference.

date_table (date [PK],
month, year)

location_table (ID [PK],
longitude, latitude, elevation)

measure_table (date [PK] [FK date_table.date],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature)

We can translate this database design into an XML document design very
simply, by creating a set of elements for each table, with attributes for each
column of data. For example, the fact that there is a table for location infor-
mation implies that we should have location elements, with an attribute
for each column in the database table. The data for the first few locations
is represented like this in a database table:

lon lat elv
------ ----- ---
-56.25 36.25 0.0
-56.25 33.75 0.0
-56.25 31.25 0.0

The same data could be represented in XML like this:

<location longitude="-56.25" latitude="36.25"
elevation="0.0" />

<location longitude="-56.25" latitude="33.75"
elevation="0.0" />

<location longitude="-56.25" latitude="31.25"
elevation="0.0" />

“itdt” — 2008/5/19 — 14:15 — page 174 — #200i
i

i
i

i
i

i
i

174 Introduction to Data Technologies

7.7.12 Database software

Every different database software product has its own format for storing the
database tables on disk, which means that data stored in a database is only
accessible via one specific piece of software.

This means that, if we are given data stored in a particular database format,
we are forced to use the corresponding software. Something that slightly
alleviates this problem is the existence of a standard language for querying
databases. We will meet this language, SQL, in the next chapter.

If we are in the position of storing information in a database ourselves, there
are a number of fully-featured open source database management systems
to choose from. PostgreSQL and MySQL are very popular options, though
they require some investment in resources and expertise to set up because
they have separate client and server software components. SQLite is much
simpler to set up and use, especially for a database that only requires access
by a single person on a single computer.

PostgreSQL
http://www.postgresql.org/

MySQL
http://www.mysql.com/

SQLite
http://www.sqlite.org/

The major proprietary database systems include Oracle, Microsoft SQL
Server, and Microsoft Access. The default user interface for these software
products is based on menus and dialogs so they are beyond the scope and
interest of this book. Nevertheless, in all of these, as with the default inter-
faces for the open source database software, it is possible to write computer
code to access the data. Writing these data queries is the topic of the next
chapter.

7.8 Further reading

“Modern Database Management”
by Jeffrey A. Hoffer, Mary Prescott, and Fred McFadden
7th edition (2004) Prentice Hall.

http://www.postgresql.org/
http://www.mysql.com/
http://www.sqlite.org/

“itdt” — 2008/5/19 — 14:15 — page 175 — #201i
i

i
i

i
i

i
i

Data Storage 175

Comprehensive text book treatment of databases and associated tech-
nologies. Has more of a business focus. Includes advanced topics way
beyond the scope of this book.

Summary

Simple text data is stored using 1 byte per character. Integers are stored using
2 or 4 bytes and real values typically use 4 or 8 bytes.

There is a limit to the size of numbers that can be stored digitally and for real
values there is a limit on the precision with which values can be stored.

Plain text files are the simplest data storage solution, with the advantage that
they are simple to use, work across different computer platforms, and work
with virtually any software. The main disadvantage to plain text files is their
lack of standard structure, which means that software requires human input
to determine where data values reside within the file. Plain text files are also
generally slower and larger than other data storage options.

CSV (commas-separated values) files offer the most standardised plain text
format.

XML is a language that can be used for marking up data. XML files are plain
text, but provide structure that allows software to automatically determine the
location of data values within the file (XML files are self-describing).

Binary file formats tend to provide smaller files and faster access speeds. The
disadvantage is that data stored in a binary format can only be accessed using
specific software.

Spreadsheets are ubiquitous, flexible, and easy to use. However, they lack
structure so should be used with caution.

Databases are sophisticated, but relatively complex. They are useful for storing
very large or very complex data sets, but require specific software and much
greater expertise.

“itdt” — 2008/5/19 — 14:15 — page 176 — #202i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 177 — #203i
i

i
i

i
i

i
i

X
M

L

8
XML Reference

XML (the eXtensible Markup Language) is a data description language that
can be used for storing data. It is particularly useful as a format for sharing
information between different software systems.

8.1 XML syntax

The first line of an XML document should be a declaration that this is an
XML document, including the version of XML being used.

<?xml version="1.0"?>

An XML document consists entirely of XML elements. An element usually
consists of a start tag, an end tag, with plain text content or other XML
elements in between.

A start tag is of the form <elementName> and an end tag has the form
</elementName>.

The start tag may include attributes of the form attrName="attrValue".
The attribute value must be enclosed within double-quotes.

The names of XML elements and XML attributes are case-sensitive.

It is also possible to have an empty element, which consists of a single tag,
with attributes. In this case, the tag has the form <elementName />.

The following code shows examples of XML elements. The second example
is an empty element with two attributes.

<filename>ISCCPMonthly_avg.nc</filename>

<case date="16-JAN-1994" temperature="278.9" />

XML elements may have other XML elements as their content. An XML
element must have a single root element, which contains all other XML
elements in the document.

“itdt” — 2008/5/19 — 14:15 — page 178 — #204i
i

i
i

i
i

i
i

178 Introduction to Data Technologies

A comment in XML is anything between the delimiters <!-- and -->.

For the benefit of human readers, the contents of an XML element are
usually indented. However, white space is preserved within XML so this is
not always possible when including plain text content.

In XML code, certain characters, such as the greater-than and less-than
signs, have special meanings. Escape sequences, such as > and <,
must be used to obtain the corresponding literal character within plain text
content. A special syntax is provided for escaping an entire section of plain
text content for the case where many such special characters are included.
Any text between the delimiters <![CDATA[and]]> is treated as literal.

8.2 Document Type Definitions

An XML document that obeys the rules of the previous section is described
as well-formed.

It is also possible to specify additional rules for the structure and content
of an XML document, via a schema for the document. If the document is
well-formed and also obeys the rules given in a schema, then the document
is described as valid.

The Document Type Definition language (DTD) is a language for describ-
ing the schema for an XML document. DTD code consists of element
declarations and attribute declarations.

8.2.1 Element declarations

An element declaration should be included for every different type of element
that will occur in an XML document. Each declaration describes what
content is allowed inside a particular element. An element declaration is of
the form:

<!ELEMENT elementName elementContents>

The elementContents can be one of the following:

EMPTY
The element is empty.

(#PCDATA)
The element may contain plain text.

“itdt” — 2008/5/19 — 14:15 — page 179 — #205i
i

i
i

i
i

i
i

XML Reference 179

X
M

L

ANY
The element may contain anything (other elements, plain text, or
both).

(childName)
The element must contain exactly one childName element.

(childName*)
The element may contain zero or more childName elements.

(childName+)
The element must contain one or more childName elements.

(childName?)
The element must contain zero or one childName elements.

(childName?)
The element must contain zero or one childName elements.

(childA,childB)
The element must contain exactly one childA element and exactly one
childB element.

(childA|childB)
The element must contain either exactly one childA element or exactly
one childB element.

(#PCDATA|childA|childB)*
The element may contain zero or more occurences of plain text, childA
elements and childB elements.

8.2.2 Attribute declarations

An attribute declaration should be included for every different type of ele-
ment that can have attributes. The declaration describes which attributes
an element may have, what sort of values the attribute may take, and
whether the attribute is optional. An attribute declaration is of the form:

<!ATTLIST elementName
attrName attrType attrDefault
...

>

The attrType controls what value the attribute can have. It can have one
of the following forms:

“itdt” — 2008/5/19 — 14:15 — page 180 — #206i
i

i
i

i
i

i
i

180 Introduction to Data Technologies

CDATA
The attribute can take any value.

ID
The value of this attribute must be unique for all elements of this type
in the document (i.e., a unique identifier). This is similar to a primary
key in a database table.

IDREF
The value of this attribute must be the value of some other element’s
ID attribute. This is similar to a foreign key in a database table.

(option1|option2)
This provides a list of the possible values for the attribute. This is a
good way to limit an attribute to only valid values (e.g., only "male"
or "female" for a gender attribute).

The attrDefault either provides a default value for the attribute or states
whether the attribute is optional or required (i.e., must be specified). It can
have one of the following forms:

value
This is the default value for the attribute.

#IMPLIED
The attribute is optional. It is valid for elements of this type to contain
this attribute, but it is not required.

#REQUIRED
The attribute is required so it must appear in all elements of this type.

8.2.3 Including a DTD

A DTD can be included directly within an XML document or the DTD
can be located within a separate file and just referred to from the XML
document.

The DTD information is included within a DOCTYPE definition following the
XML declaration. An inline DTD has the form:

<!DOCTYPE rootElementName [
... DTDcode ...

]>

“itdt” — 2008/5/19 — 14:15 — page 181 — #207i
i

i
i

i
i

i
i

XML Reference 181

X
M

L

An external DTD stored in a file called file.dtd would be referred to as
follows:

<!DOCTYPE rootElementName SYSTEM "file.dtd">

8.3 Further reading

The W3C XML 1.0 Specification
http://www.w3.org/TR/2006/REC-xml-20060816/
The formal and official definition of XML. Quite technical.

The w3schools XML Tutorial
http://www.w3schools.com/xml/
Quick, basic tutorial-based introduction to XML.

The w3schools DTD Tutorial
http://www.w3schools.com/dtd/
Quick, basic tutorial-based introduction to DTDs.

The w3schools XML Schema Tutorial
http://www.w3schools.com/schema/
Quick, basic tutorial-based introduction to XML Schema.

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3schools.com/xml/
http://www.w3schools.com/dtd/
http://www.w3schools.com/schema/

“itdt” — 2008/5/19 — 14:15 — page 182 — #208i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 183 — #209i
i

i
i

i
i

i
i

9
Data Queries

Having stored information in a particular data format, how do we get it
back out again? How easy is it to access the data? The answer naturally
depends on which data format we are dealing with.

For data stored in plain text files, it is very easy to find software that can
read the files, although the software may have to be provided with additional
information about the structure of the files—where the data values reside
within the file.

For data stored in binary files, the main problem is finding software that is
designed to read the specific binary format. Having done that, the software
does all of the work of extracting the appropriate data values. This is an all
or nothing scenario; we either have software to read the file, in which case
data extraction is trivial, or we do not have the software, in which case we
can do nothing. This scenario includes data stored in spreadsheets, though
in that case the likelihood of having appropriate software is much higher.

Another factor that determines the level of difficulty involved in retrieving
data from storage is the structure of the data within the data format.
We also need to consider the fact that, for the purposes of analysing the
data, we generally need to be able to extract the data in a rectangular
arrangement, with a row per case and columns for each variable. This is
the format required for most statistical software programs.

For plain text files, the data structure is typically a row of values for each
case and a column of values for each variable in the data set, so the data
are extracted in a desirable arrangement quite naturally.

For binary files, the structure of the stored data can be arbitrarily complex.
We saw one such example, netCDF, in Section 7.5.1. Dealing with these
structures requires knowledge of the relevant binary format, so must be
dealt with on a case-by-case basis. In the case of netCDF, a solution is
demonstrated later in Section 11.6.5.

The structure of data within XML files and within relational databases
can be relatively complex. Within XML files, the data may be represented
as attributes within several nested elements and data that is stored in a
database may be spread across several tables.

“itdt” — 2008/5/19 — 14:15 — page 184 — #210i
i

i
i

i
i

i
i

184 Introduction to Data Technologies

However, standard technologies exist to allow complete information to be
extracted from within XML documents and relational databases, no matter
how complex their structure.

The main focus of this chapter is the Structured Query Language
(SQL), the language for extracting information from relational databases.
We will also touch on XPath for XML documents.

To begin with, we will look at an example of data retrieval from a relational
database. As with previous introductory examples, the focus at this point
is not so much on the computer code itself as it is on the concepts involved
and on what sorts of tasks we are able to achieve.

9.1 Case study: The Human Genome

Deoxyribonucleic Acid.1

The typical homo sapiens has 46 chromosomes.

The chromosomes come in pairs, with 22 pairs of autosomes where the pair
consists of two copies of the same chromosome (one from the mother and one
from the father), and one pair of sex chromosomes, where each chromosome
can be either an X chromosome or a Y chromosome. This means that there
are 24 distinct types of chromosome.

Each chromosome is a long strand of DNA, consisting of two long molecules
that wind around each other in the famous double-helix formation.

1Image source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:ADN.jpg

This image is in the Public Domain.

http://commons.wikimedia.org/wiki/Image:ADN.jpg

“itdt” — 2008/5/19 — 14:15 — page 185 — #211i
i

i
i

i
i

i
i

Data Queries 185

The two molecules in a DNA strand are linked together by “base pairs”,
like rungs on a (twisted) ladder. Each base pair is a combination of two
molecules with only two possible variations: either adenine (A) connected
to thymine (T), or guanine (G) connected to cytosine (C). In humans, chro-
mosomes are quite long strands of DNA, with each chromosome containing
millions of these base pairs.

Each strand of DNA can be characterised by the order of the base molecules
along the strand. A chromosome can be represented by this order written
as a series of letters, using the common abbreviations of the base pairs, like
this: AAAGTCTGAC. This is called a DNA sequence or genetic sequence.

The Human Genome Project2 was established in 1990 to determine the
complete sequence of the entire human genome; the DNA sequence for all 24
distinct chromosomes, representing over 3 billion base pairs. This project
is now complete and the human genome is publicly available for genetic
researchers to explore.

The human genome data set is obviously large, not just because it contains
a sequence 3 billion characters long, but also because it contains information
on the genes, the important sub-sequences of the genome, plus information
on many other important chemical sub-structures. All of this extra infor-
mation also makes the data set complex in its structure. All of which means
that this is an ideal data set for storing in a database.

The Ensembl Project3 provides genomic data, including the human genome,
in many different formats, including as MySQL databases. Furthermore,
the Ensembl Project provides anonymous network access to their database
server so that anyone can explore the genomic data.

As a simple exercise, we will attempt to extract from this database the open-
ing sequence of the human genome—the first few characters on chromosome
1 of the typical human.

The first observation that we can make is that accessing this information
is not as simple as opening a plain text file. The information is stored
in a database, so we need appropriate computer tools to get access to the
data. The tool that we will discuss in this chapter is the Structure Query
Language (SQL), a standard language for extracting information from a
database.

SQL is a standard language for interacting with database management sys-
tems. In this case, we are dealing with a MySQL DBMS, so we start a
MySQL client and connect to the Ensembl server with a statement like

2http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
3http://www.ensembl.org/index.html

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ensembl.org/index.html

“itdt” — 2008/5/19 — 14:15 — page 186 — #212i
i

i
i

i
i

i
i

186 Introduction to Data Technologies

this:4

mysql --host=ensembldb.ensembl.org --user=anonymous

The second observation that we can make about these data is that people
wanting to use the information in the database are unlikely to want to access
the entire data set at once. It is more common to require only a subset of
the data. The part of SQL that we will focus on in this chapter is the part
of the language that allows querying the data in order to extract subsets.

The data on the human genome is provided as a database called homo_sapiens_core_46_36h.5

From within a MySQL session, we can select the database we are interested
in as shown below:

mysql> use homo_sapiens_core_46_36h;

The human genome database is quite large and complex and contains a total
of 75 tables, but we will just consider a subset of the tables that deals with
the DNA sequence data. The tables, and the relationships between them
are described below:

dna (seq_region_id [PK] [FK seq_region.seq_region_id],
sequence)

This table contains DNA sequences. Each row contains a DNA se-
quence for a sequence region, which is a small part of a chromosome.
For each DNA sequence, there is the sequence data itself, and a code
that uniquely identifies the sequence region that this DNA sequence
is from. Only DNA sequences for small sequence regions are stored
in this table. Data for large sequences, such as entire chromosomes,
must be built up by combining smaller sequences together (see the
assembly table below and Figure 9.1).

seq_region (seq_region_id [PK],
name,
coord_system_id [FK coord_system.coord_system_id],
length)

This table provides information about sequence regions. For each
4This is from a Linux shell on a machine with access to the internet.
5This was the latest version of the core DNA sequencing information at the time of

writing.

“itdt” — 2008/5/19 — 14:15 — page 187 — #213i
i

i
i

i
i

i
i

Data Queries 187

T C G A T A T C A T T C A C T G C T C G

clone

clone clone clone

clone

contig contig

chromosome

Figure 9.1: Clones are small segments of DNA, contigs are larger sequences con-

structed from overlapping clones, and chromosomes are constructed by combining

contigs (which may also overlap). Diagram NOT drawn to scale!

sequence region, there is a unique identifier, a region name (for ex-
ample, the sequence region corresponding to the first chromosome is
called "1"), a coordinate system (see the coord_system table below),
and a length (the number of base pairs in the DNA sequence for this
sequence region). This table contains information about both large
and small sequence regions. For the smaller regions, there are corre-
sponding DNA sequences in the dna table, but for larger regions, there
is no direct DNA sequence information. Larger sequence regions cor-
respond to combinations of smaller sequence regions and many regions
overlap with each other.

coord_system (coord_system_id [PK],
name, version, rank, attrib)

This table contains information about all of the possible types of se-
quence region in the data set. Larger sequence regions correspond
to entire chromosomes, but smaller sequence regions represent just a
piece of a chromosome (called a clone or a contig).

itdt -- 2008/5/19 -- 14:15 -- page 188 -- #214i
i

i
i

i
i

i
i

188 Introduction to Data Technologies

assembly (asm_seq_region_id [PK]
[FK seq_region.seq_region_id],

cmp_seq_region_id [PK]
[FK seq_region.seq_region_id],

asm_start [PK],
asm_end [PK],
cmp_start [PK],
cmp_end [PK],
ori [PK])

An “assembly” describes how one sequence region can be constructed
from other sequence regions. For example, how a contig can be con-
structed from several clones, and how a chromosome can be con-
structed from contigs. Each row of this table describes which pieces of
a larger (asm) sequence region correspond to which pieces of a smaller
(cmp) sequence region. The ori column describes the order of the data
in the sequence region (some sequence regions are read right-to-left).

We will now try to extract information from the tables in this database. We
are interested in chromosome 1, and the following code extracts information
on the sequence region for chromosome 1:

mysql> SELECT * FROM seq_region WHERE name = ’1’;

+---------------+------+-----------------+-----------+
| seq_region_id | name | coord_system_id | length |
+---------------+------+-----------------+-----------+
| 226034 | 1 | 17 | 247249719 |
| 1965892 | 1 | 101 | 245522847 |
+---------------+------+-----------------+-----------+

This is an example of a simple query that extracts information from just
one table in the database. We only require some of the rows from this table,
so we use a condition, name = ’1’, to specify the subset that we want.

This result tells us that there are almost 250 million base pairs on chro-
mosome 1, but why are there are two sequence regions for chromosome 1?
A quick look at the coord_system table shows that these are two different
versions of the data:

itdt -- 2008/5/19 -- 14:15 -- page 189 -- #215i
i

i
i

i
i

i
i

Data Queries 189

mysql> SELECT coord_system_id, name, version
-> FROM coord_system;

+-----------------+-------------+---------+
| coord_system_id | name | version |
+-----------------+-------------+---------+
| 17 | chromosome | NCBI36 |
| 15 | supercontig | NULL |
| 4 | contig | NULL |
| 11 | clone | NULL |
| 101 | chromosome | NCBI35 |
+-----------------+-------------+---------+

This example again just obtains data from one of the tables in the data set.
In this case we get all of the rows, but we only ask for some of the columns.

We will use the newer version of the data, NCBI36, which, based on the
previous query, is sequence region 226034. A better way to express that
is to say that we want the sequence region that has the name "1" in table
seq_region and that has the version "NCBI36" in the coord_system table.

The entire DNA sequence for chromosome 1 is not stored in one row of the
dna table (that table only has DNA sequences for smaller sequence regions),
so we need to find out which sequence regions can be combined to make up
the whole chromosome. We will focus on the sequence regions that cover
the start of chromosome 1.

The code below performs this task by getting information from the seq_region
table, to get the right name, from the coord_system table, to get the right
version, and from the assembly table, to get the relevant sequence regions.

itdt -- 2008/5/19 -- 14:15 -- page 190 -- #216i
i

i
i

i
i

i
i

190 Introduction to Data Technologies

mysql> SELECT asm_seq_region_id AS asm_id,
-> cmp_seq_region_id AS cmp_id,
-> asm_start AS asm_1, asm_end AS asm_2,
-> cmp_start AS cmp_1, cmp_end AS cmp_2,
-> ori
-> FROM assembly INNER JOIN seq_region
-> ON asm_seq_region_id = seq_region_id
-> INNER JOIN coord_system
-> ON seq_region.coord_system_id =
-> coord_system.coord_system_id
-> WHERE seq_region.name = ’1’ AND
-> coord_system.version = ’NCBI36’ AND
-> asm_start = 1;

+--------+---------+-------+--------+-------+--------+-----+
| asm_id | cmp_id | asm_1 | asm_2 | cmp_1 | cmp_2 | ori |
+--------+---------+-------+--------+-------+--------+-----+
| 226034 | 162952 | 1 | 616 | 36116 | 36731 | -1 |
| 226034 | 1965892 | 1 | 257582 | 1 | 257582 | 1 |
| 226034 | 225782 | 1 | 167280 | 1 | 167280 | 1 |
+--------+---------+-------+--------+-------+--------+-----+

This task highlights a common complication when extracting data from a
database. Because a properly-designed database usually consists of more
than one table, anything but trivial queries on the data involve combining
information from more than one table. The ability to perform this sort of
database join is an important part of SQL.

The important result from our query is the information that the sequence
region with identifier 162952 covers the first 616 base pairs on chromosome
1. This information is provided by characters 36116 to 36731 within that
sequence region and these characters have to be read from right to left (the
value of ori is -1).

A quick check of the seq_region table shows that these characters are the
last 616 in this sequence region (the region only contains 36731 characters):

“itdt” — 2008/5/19 — 14:15 — page 191 — #217i
i

i
i

i
i

i
i

Data Queries 191

ATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGG

ATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGTTGGGATTGGG

TTGGGATTGGGATTGGGATTGGGATTGGGGATTGGGATTGGGATTGGGATTGGGATTGG

TTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGATTGGGGATTGG

ATTGGGATTTGGGATTTGGGATTGGGATTGGGATTGGGATTGGGATTGGGGTTGGGGTT

GGGTTGGGGTTGGGGTTGGGGTTGGGATTGGGGATTGGGATTGGGATTGGGATGGGATT

GGATTGGGATTGGGATTGGGATTGGGATTGGGGATTGGGGATTGGGATTGGGATTGGGA

TGGGATTGGGATTGGGATTGGGGATTGGGATTGGGATTGGGATTGGGAGCGCCATGGGA

TCGGCCGGGCGGGCGGGCCCAGACTGGACTCCTCTTGACACGAGGCGGAAGTCTCATGG

GGCTTTAGACACGTCTCCTGTTGCGTCGAGGCGGGAGCGCCACGAGAGGCCCAGACACG

CTCCTCTTGCGTTGAG

Figure 9.2: The first 616 characters of the DNA sequence on chromosome 1 of

the human genome.

mysql> SELECT seq_region_id, name, length
-> FROM seq_region
-> WHERE seq_region_id = 162952;

+---------------+--------------------+--------+
| seq_region_id | name | length |
+---------------+--------------------+--------+
| 162952 | AP006221.1.1.36731 | 36731 |
+---------------+--------------------+--------+

The final step is to extract the DNA sequence for this sequence region. The
SQL code for the task is shown below, but because the result is quite large,
the result is shown separately in Figure 9.2.

SELECT * FROM dna WHERE seq_region_id = 162952;

This example demonstrates that SQL code allows us to write expressions to
extract specific rows and specific columns from one or more tables within
a database. We will now look in more detail at the syntax of such SQL
queries and how more complex queries can be constructed.

9.2 SQL

SQL consists of three components:

The Data Definition Language (DDL)

“itdt” — 2008/5/19 — 14:15 — page 192 — #218i
i

i
i

i
i

i
i

192 Introduction to Data Technologies

This is concerned with the creation of databases and the specification
of the structure of tables and of constraints between tables. This part
of the language is used to specify the data types of each column in
each table, which column(s) make up the primary key for each table,
and how foreign keys are related to primary keys. We will not discuss
this part of the language in this chapter, but some mention of it is
made in Section 10.3.

The Data Control Language (DCL)
This is concerned with controlling access to the database—who is al-
lowed to do what to which tables. This part of the language is the
domain of database administrators and need not concern us.

The Data Manipulation Language (DML)
This is concerned with getting data into and out of a database. We
will focus on data extraction in this chapter, but Section 10.3 includes
information about some of the other features.

In this section, we are only concerned with one particular statement within
the DML part of SQL: the SELECT statement for extracting values from
tables within a database.

9.2.1 The SELECT statement

Everything we do in this section will be a variation on the SELECT statement
of SQL, which has the following basic form:

SELECT columns
FROM tables
WHERE row condition

This will extract the specified columns from the specified tables, but only
include the rows for which the row condition is true.

9.2.2 Case study: The Data Expo (continued)

The Data Expo data set consists of seven atmospheric measurements at
locations on a 24 by 24 grid averaged over each month for six years (72
time points). The elevation (height above sea level) at each location is also
included in the data set (see Section 7.3.6 for more details).

itdt -- 2008/5/19 -- 14:15 -- page 193 -- #219i
i

i
i

i
i

i
i

Data Queries 193

The data set was originally provided as 505 plain text files, but the data
can also be stored in a database with the following structure (see Section
7.7.8).

location_table (ID [PK], longitude, latitude, elevation)

date_table (date [PK], month, year)

measure_table (date [PK] [FK date_table.date],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid,
ozone, pressure,
surftemp, temperature)

The location_table contains all of the geographic locations at which mea-
surements were taken, and includes the elevation at each location. The
date_table contains all of the dates at which measurements were taken.
This table also includes the text form of each month and the numeric form
of the year. These have been split out to make it easier to perform queries
based on months or years. The full dates are stored using the ISO 8601
format so that alphabetical ordering gives chronological order.

The measure_table contains all of the atmospheric measurements for all
dates and locations. Locations are represented by simple ID numbers, re-
ferring to the appropriate complete information in the location_table.

The goal for contestants in the Data Expo was to summarize the important
features of this data set. In this section, we will perform some straightfor-
ward explorations of the data in order to demonstrate a variety of simple
SQL statements.

A basic first step in data exploration is just to view the univariate distri-
bution of each measurement variable. The following code extracts all air
pressure values from the database using a very simple SQL query that ex-
tracts extracting all rows from the pressure column of the measure_table.

SQL> SELECT pressure FROM measure_table;

“itdt” — 2008/5/19 — 14:15 — page 194 — #220i
i

i
i

i
i

i
i

194 Introduction to Data Technologies

0 10000 20000 30000 40000

60
0

70
0

80
0

90
0

10
00

Index

pr
es

su
re

 (
m

ill
ib

ar
s)

Figure 9.3: All of the air pressure measurements from the 2006 JSM Data Expo.

pressure

835.0
810.0
810.0
775.0
795.0
915.0
...

The result contains 41472 (24 × 24 × 72) values, so only the first few are
shown here. Figure 9.3 shows a plot of all of the pressure values.

itdt -- 2008/5/19 -- 14:15 -- page 195 -- #221i
i

i
i

i
i

i
i

Data Queries 195

The resolution of the data is immediately apparent; the pressure is only
recorded to the nearest multiple of 5. However, the more striking feature
is the change in the spread of the second half of the data. NASA have
confirmed that this change is real, but unfortunately have not been able to
give an explanation for why it occurred.

An entire column of data from the measure_table in the Data Expo database
represents measurements of a single variable at all locations for all time pe-
riods. One interesting way to “slice” the Data Expo data is to look at the
values for a single location over all time periods. For example, how does
surface temperature vary over time at a particular location?

The following code shows a slight modification of the previous query to
obtain a different column of values, surftemp, and to only return some of
the rows from this column. The WHERE clause limits the result to rows for
which the location column has the value 1.

SQL> SELECT surftemp
FROM measure_table
WHERE location = 1;

surftemp

272.7
282.2
282.2
289.8
293.2
301.4
...

Again, the result is too large to show all values, so only the first few are
shown. Figure 9.4 shows a plot of all of the values.

The interesting feature here is that we can see a cyclic change in tempera-
ture, as we might expect, with the change of seasons.

The order of the rows in a database table is not guaranteed. This means
that, whenever we extract information from a table, we should be explicit
about the order that we want for the results. This is achieved by specifying
an ORDER BY clause in the query. For example, the following SQL statement
extends the previous one to ensure that the temperatures for location 1 are
returned in chronological order.

itdt -- 2008/5/19 -- 14:15 -- page 196 -- #222i
i

i
i

i
i

i
i

196 Introduction to Data Technologies
28

0
29

0
30

0
31

0

Surface Temperature (Kelvin)

1995 1996 1997 1998 1999 2000 2001

Figure 9.4: All of the surface temperature measurements from the 2006 JSM

Data Expo for location 1. Vertical grey bars mark the change of years.

SQL> SELECT surftemp
FROM measure_table
WHERE location = 1
ORDER BY date;

The WHERE clause can use other comparison operators besides equality. As
a trivial example, the following code has the same result as the previous
example by specifying that we only want rows where the location is less
than 2 (the only location value less than two is the value 1).

SQL> SELECT surftemp
FROM measure_table
WHERE location < 2
ORDER BY date;

It is also possible to combine several conditions together within the WHERE
clause, using logical operators AND, to specify conditions that must both be
true, and OR, to specify that we want rows where either of two conditions are
true. As an example, the following code extracts the surface temperature for
two locations. In this example, we include the location and date columns
in the result to show that rows from both locations (for the same date) are
being included in the result.

“itdt” — 2008/5/19 — 14:15 — page 197 — #223i
i

i
i

i
i

i
i

Data Queries 197
27

0
28

0
29

0
30

0
31

0

Surface Temperature (Kelvin)

1995 1996 1997 1998 1999 2000 2001

Figure 9.5: All of the surface temperature measurements from the 2006 JSM Data

Expo for locations 1 (solid line) and 2 (dashed line). Vertical grey bars mark the

change of years.

SQL> SELECT location, date, surftemp
FROM measure_table
WHERE location = 1 OR

location = 2
ORDER BY date;

location date surftemp
-------- ---------- --------
1 1995-01-16 272.7
2 1995-01-16 270.9
1 1995-02-16 282.2
2 1995-02-16 278.9
1 1995-03-16 282.2
2 1995-03-16 281.6
...

Figure 9.5 shows a plot of all of the values, which shows a clear trend of
lower temperatures overall for location 2 (the dashed line).

As well as extracting raw values from a column, it is possible to calculate
derived values by combining columns with simple arithmetic operators or by
using a function to produce the sum or average of the values in a column.

As a simple example, the following code calculates the average surface tem-
perature value across all locations and across all time points. It crudely

itdt -- 2008/5/19 -- 14:15 -- page 198 -- #224i
i

i
i

i
i

i
i

198 Introduction to Data Technologies

represents the average surface temperature of Central America for the years
1995 to 2000.

SQL> SELECT AVG(surftemp) avgtemp
FROM measure_table;

avgtemp

296.231

One extra feature to notice about this example SQL query is that it defines a
column alias, avgtemp, for the column of averages. This alias can be used
within the SQL query, which can make the query easier to type and easier
to read. The alias is also used in the presentation of the result. Column
aliases will become more important as we construct more complex queries
later in the section.

An SQL function will produce a single overall value for a column of a table,
but what is usually more interesting is the value of the function for sub-
groups within a column, so the use of functions is commonly combined with
a GROUP BY clause, which results in a separate summary value computed for
subsets of the column.

For example, instead of investigating the trend in surface temperature over
time just for location 1, we could look at the change in the surface temper-
ature over time averaged across all locations.

The following code performs this query and Figure 9.6 shows a plot of the
result. The use of GROUP BY clause means that we get an average surface
temperature value for each different value in the date column.

SQL> SELECT date, AVG(surftemp) avgtemp
FROM measure_table
GROUP BY date
ORDER BY date;

“itdt” — 2008/5/19 — 14:15 — page 199 — #225i
i

i
i

i
i

i
i

Data Queries 199
29

4
29

5
29

6
29

7
29

8
29

9

Average Surface Temperature (Kelvin)

1995 1996 1997 1998 1999 2000 2001

Figure 9.6: The surface temperature measurements from the 2006 JSM Data

Expo averaged across all locations for each time point. Vertical grey bars mark

the change of years.

date avgtemp
---------- -------
1995-01-16 294.985
1995-02-16 295.486
1995-03-16 296.315
1995-04-16 297.119
1995-05-16 297.244
1995-06-16 296.976
...

Overall, it appears that 1997 and 1998 were generally warmer years in Cen-
tral America.

9.2.3 Querying several tables: Joins

As demonstrated in the previous section, database queries from a single table
are quite straightforward. However, most databases consist of more than one
table, and most interesting database queries involve extracting information
from more than one table. In database terminology, most queries involve
some sort of join between two or more tables.

“itdt” — 2008/5/19 — 14:15 — page 200 — #226i
i

i
i

i
i

i
i

200 Introduction to Data Technologies

9.2.4 Case study: Commonwealth swimming

The Commonwealth of Nations
(“The Commonwealth”) is a collec-
tion of 53 countries (most of which
are former British colonies).6

New Zealand sent a team of 18 swimmers to the Melbourne 2006 Com-
monwealth Games, 10 women and 8 men. The results from their races are
recorded in a database with the following structure.

swimmer_table (ID [PK], first, last)

This table has one row for each swimmer and contains the first and
last name of each swimmer. Each swimmer also has a unique numeric
identifier.

distance_table (length [PK])

This table defines the set of valid swim distances: 50, 100, 200, 400.

stroke_table (ID [PK], stroke)

This table defines the set of valid swim strokes: breaststroke (Br),
freestyle (Fr), butterfly (Bu), backstroke (Ba), and individual medley
(IM).

gender_table (ID [PK], gender)

This table defines the valid genders: male (M) and female (F).

stage_table (stage [PK])

This table defines the valid types of race that can occur: heats (heat),
semifinals (semi), and finals (final).

6Image source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Flag_of_the_Commonwealth_of_Nations.

svg

This image is in the public domain.

http://commons.wikimedia.org/wiki/Image:Flag_of_the_Commonwealth_of_Nations.svg
http://commons.wikimedia.org/wiki/Image:Flag_of_the_Commonwealth_of_Nations.svg

“itdt” — 2008/5/19 — 14:15 — page 201 — #227i
i

i
i

i
i

i
i

Data Queries 201

result_table (swimmer [PK] [FK swimmer_table.ID],
distance [PK] [FK distance_table.length],
stroke [PK] [FK stroke_table.ID],
gender [PK] [FK gender_table.ID],
stage [PK] [FK stage_table.stage],
time, place)

This table contains information on the races swum by individual swim-
mers. Each row specifies a swimmer and the type of race (distance,
stroke, gender, and stage). In addition, the swimmer’s time and posi-
tion in the race (place) are recorded.

As an example of the information stored in this database, the following code
shows that the swimmer with an ID of 1 is called Zoe Baker.

SQL> SELECT * FROM swimmer_table
WHERE ID = 1;

ID first last
-- ----- -----
1 Zoe Baker

Notice the use of * in this query to denote that we want all columns from
the table in our result.

The following code shows that Zoe Baker swam in three races, a heat, a
semifinal and the final of the women’s 50m breaststroke, and she came 4th

in the final in a time of 31 minutes and 27 seconds.

SQL> SELECT * FROM result_table
WHERE swimmer = 1;

swimmer distance stroke gender stage time place
------- -------- ------ ------ ----- ----- -----
1 50 Br F Final 31.45 4
1 50 Br F Heat 31.7 4
1 50 Br F Semi 31.84 5

9.2.5 Cross joins

The most basic type of database join, upon which all other types of join are
based, is a cross join. The result of a cross join is the cartesian product of

“itdt” — 2008/5/19 — 14:15 — page 202 — #228i
i

i
i

i
i

i
i

202 Introduction to Data Technologies

the rows of one table with the rows of another table. In other words, row 1
of table 1 is paired with each row of table 2, then row 2 of table 1 is paired
with each row of table 2, and so on. If the first table has n1 rows and the
second table has n2 rows, the result of a cross join is a table with n1 × n2

rows.

The simplest way to create a cross join is simply to perform an SQL query
on more than one table. As an example, the following code performs a cross
join on the distance_table and stroke_table in the swimming database
to generate all possible combinations of swimming stroke and event distance.

SQL> SELECT length, stroke
FROM distance_table, stroke_table;

length stroke
------ ----------------
50 Breaststroke
50 Freestyle
50 Butterfly
50 Backstroke
50 IndividualMedley
100 Breaststroke
100 Freestyle
100 Butterfly
100 Backstroke
100 IndividualMedley
200 Breaststroke
200 Freestyle
200 Butterfly
200 Backstroke
200 IndividualMedley
400 Breaststroke
400 Freestyle
400 Butterfly
400 Backstroke
400 IndividualMedley

A cross join can also be obtained more explicitly using the CROSS JOIN
syntax as shown below (the result is exactly the same as for the code above).

SELECT length, stroke
FROM distance_table CROSS JOIN stroke_table;

“itdt” — 2008/5/19 — 14:15 — page 203 — #229i
i

i
i

i
i

i
i

Data Queries 203

9.2.6 Inner joins

An inner join is the most common way of combining two tables. In this
sort of join, only “matching” rows are extracted from two tables. Typically,
a foreign key in one table is matched to the primary key in another table.

Conceptually, an inner join is a cross join, with only the desired rows re-
tained. In practice, DBMS software analyses queries and obtains the result
more directly in order to use less time and less computer memory.

9.2.7 Case study: The Data Expo (continued)

In order to demonstrate inner joins, we will return to the Data Expo database
(see 9.2.2). In a previous query, we saw that the surface temperatures for
location 1 were consistently higher than the surface temperatures for loca-
tion 2. Why is this? One obvious possibility is that location 1 is closer
to the equator than location 2. To test this hypothesis, we will repeat the
earlier query, but add information about the latitude and longitude of the
two locations.

To do this we need information from two tables. The surface tempera-
ture comes from the measure_table and the longitude/latitude information
comes from the location_table.

SQL> SELECT longitude, latitude, location, date, surftemp
FROM measure_table mt, location_table lt
WHERE mt.location = lt.ID AND

(location = 1 OR
location = 2)

ORDER BY date;

longitude latitude location date surftemp
--------- -------- -------- ---------- --------
-113.75 36.25 1 1995-01-16 272.7
-111.25 36.25 2 1995-01-16 270.9
-113.75 36.25 1 1995-02-16 282.2
-111.25 36.25 2 1995-02-16 278.9
-113.75 36.25 1 1995-03-16 282.2
-111.25 36.25 2 1995-03-16 281.6
...

The result shows that the difference between the locations is in fact that
location 2 is to the East of location 1 (further inland in the US southwest)

“itdt” — 2008/5/19 — 14:15 — page 204 — #230i
i

i
i

i
i

i
i

204 Introduction to Data Technologies

because the longitude for location 2 is less negative (less westward) then
the longitude for location 1.

The most important feature of this code is the fact that it obtains informa-
tion from two tables.

FROM measure_table mt, location_table lt

In order to merge the information from the two tables in a sensible fashion,
we must specify how rows from one table are matched up with rows from the
other table. In most cases, this means specifying that a foreign key from one
table matches the primary key in the other table, which is precisely what
has been done in this case.

WHERE mt.location = lt.ID

Another feature of this code is that it makes use of table aliases. For
example, mt is defined as an alias for the measure_table. This makes it
easier to type the code and can also make it easier to read the code.

The WHERE clause also demonstrates the combination of three separate con-
ditions: the condition matching the foreign key of the measure_table to
the primary key of the location_table, plus two conditions that limit our
attention to just two values of the location column. The use of parentheses
is important; without them, we would get rows from location 2 where the
foreign key of the measure_table does not match the primary key of the
location_table.

Another way to specify this join uses a different syntax that places all of the
information about the join in the FROM clause of the query. The following
code produces exactly the same result as before, but uses the key words
INNER JOIN between the tables that are being joined and follows that with
a specification of the columns to match ON. Notice how the WHERE clause is
much simpler in this case.

SQL> SELECT longitude, latitude, pressure, elevation
FROM measure_table mt INNER JOIN location_table lt

ON mt.location = lt.ID
WHERE location = 1 OR

location = 2
ORDER BY date;

We will now consider a major summary of temperature values: what is the
average temperature per year, across all locations on land (above sea level)?

itdt -- 2008/5/19 -- 14:15 -- page 205 -- #231i
i

i
i

i
i

i
i

Data Queries 205

In order to answer this question, we need to know the temperatures from
the measure_table, the elevation from the location_table, and the years
from the date_table. In other words, we need to combine all three tables
together.

This situation is one reason for using the INNER JOIN syntax shown above,
because it naturally extends to joining more than two tables, and provides a
way for us to control the order in which the tables are joined. The following
code performs the desired query (see Figure 9.7).

SQL> SELECT year, AVG(surftemp) avgtemp
FROM measure_table mt

INNER JOIN location_table lt
ON mt.location = lt.ID

INNER JOIN date_table dt
ON mt.date = dt.date

WHERE elevation > 0
GROUP BY year;

year avgtemp
---- -------
1995 295.380
1996 295.006
1997 295.383
1998 296.416
1999 295.258
2000 295.315

This result shows only 1998 as warmer than other years; the higher tempera-
tures for 1997 that we saw in Figure 9.6 must be due to higher temperatures
over water.

9.2.8 Sub-queries

It is possible to use an SQL query within another SQL query, in which case
the nested query is called a sub-query.

As a simple example, consider the problem of extracting the date at which
the maximum surface temperature occurred. It is simple enough to deter-
mine the maximum surface temperature.

SQL> SELECT MAX(surftemp) max FROM measure_table;

“itdt” — 2008/5/19 — 14:15 — page 206 — #232i
i

i
i

i
i

i
i

206 Introduction to Data Technologies
av

gt
em

p

295.0

295.5

296.0

1995 1996 1997 1998 1999 2000

●

●

●

●

●
●

Figure 9.7: The average temperature over land per year. (Data from the the 2006

JSM Data Expo.)

max

314.9

However, it is not so easy to report the date along with the maximum
temperature because it is not valid to mix aggregated columns with non-
aggregated columns. For example, the following SQL code will either trigger
an error message or produce an incorrect result.

SELECT date, MAX(surftemp) max FROM measure_table;

The column date returns 41472 values, but the column MAX(surftemp) only
returns 1 value.

The solution is to use a subquery as shown below.

SQL> SELECT date, surftemp temp
FROM measure_table
WHERE surftemp = (SELECT MAX(surftemp)

FROM measure_table);

date temp
---------- -----
1998-07-16 314.9
1998-07-16 314.9

itdt -- 2008/5/19 -- 14:15 -- page 207 -- #233i
i

i
i

i
i

i
i

Data Queries 207

The query that calculates the maximum surface temperature is inserted
within brackets as a subquery within the WHERE clause. The outer query
returns only the rows of the measure_table where the surface temperature
is equal to the maximum.

The maximum temperature occured in July 1998 at two different locations.

9.2.9 Outer Joins

Another type of table join is the outer join, which differs from an inner
join by including additional rows in the result.

9.2.10 Case study: Commonwealth swimming (contin-
ued)

The results of New Zealand’s swimmers at the 2006 Commonwealth Games
in Melbourne are stored in a database consisting of six tables: a table of
information about each swimmer, separate tables for the distance of a swim
event, the type of swim stroke, the gender of the swimmers in an event, and
the stage of the event (heat, semifinal, or final), plus a table of results for
each swimmer in different events.

In Section 9.2.5 we saw how to generate all possible combinations of dis-
tance and stroke in the swimming database using a cross join between the
distance_table and the stroke_table. There are four possible distances
and five different strokes, so the cross join produces 20 different combina-
tions.

We will now take that cross join and combine it with the table of race
results using an inner join. Our goal is to summarize the result of all races
for a particular distance/stroke combination by calculating the average time
from such races. The following code performs this inner join, with the results
ordered from fastest event on average to slowest event on average.

SQL> SELECT length, st.stroke style, AVG(time) avg
FROM distance_table dt

CROSS JOIN stroke_table st
INNER JOIN result_table rt

ON dt.length = rt.distance AND
st.ID = rt.stroke

GROUP BY length, st.stroke
ORDER BY avg;

itdt -- 2008/5/19 -- 14:15 -- page 208 -- #234i
i

i
i

i
i

i
i

208 Introduction to Data Technologies

length style avg
------ ---------------- -----
50 Freestyle 26.16
50 Butterfly 26.40
50 Backstroke 28.04
50 Breaststroke 31.29
100 Butterfly 56.65
100 Freestyle 57.10
100 Backstroke 60.55
100 Breaststroke 66.07
200 Freestyle 118.6
200 Butterfly 119.0
200 IndividualMedley 129.5
200 Backstroke 129.7
400 IndividualMedley 275.2

The result suggests that freestyle and butterfly events tend to be faster
on average than breaststroke and backstroke events, but the feature of the
result that we need to focus on for the current purpose is that this result
has only 13 rows.

What has happened to the remaining 7 combinations of distance and stroke?
The answer is that, for inner joins, a row is not included in the result if
either of the two columns being matched has the value NULL. In this case,
some rows from the cross join, which produced all possible combinations
of distance and stroke, have been dropped from the result because some of
these combinations do not appear in the result_table. For example, no
New Zealand swimmer competed in the 400m Freestyle.7

This feature of inner joins is not always desirable and can produce misleading
results, which is why an outer join is sometimes necessary. The idea of
an outer join is to retain in the final result rows where one or other of the
columns being compared has a NULL value.

The following code repeats the previous query, but instead of using INNER
JOIN it uses LEFT JOIN to perform a left outer join so that all dis-
tance/stroke combinations are reported, even though there is no average
time information available for some combinations. The result now includes
all possible combinations of distance and stroke, with a NULL value where
there is no matching avg value from the result_table.

7Some other events are missing because they simply do not exist. For example, there
is no 50m Individual Medley at the Commonwealth Games!

“itdt” — 2008/5/19 — 14:15 — page 209 — #235i
i

i
i

i
i

i
i

Data Queries 209

SQL> SELECT length, st.stroke style, AVG(time) avg
FROM distance_table dt

CROSS JOIN stroke_table st
LEFT JOIN result_table rt

ON dt.length = rt.distance AND
st.ID = rt.stroke

GROUP BY length, st.stroke;

length style avg
------ ---------------- -----
50 Backstroke 28.04
50 Breaststroke 31.29
50 Butterfly 26.40
50 Freestyle 26.16
50 IndividualMedley NULL
100 Backstroke 60.55
100 Breaststroke 66.07
100 Butterfly 56.65
100 Freestyle 57.10
100 IndividualMedley NULL
200 Backstroke 129.7
200 Breaststroke NULL
200 Butterfly 119.0
200 Freestyle 118.6
200 IndividualMedley 129.5
400 Backstroke NULL
400 Breaststroke NULL
400 Butterfly NULL
400 Freestyle NULL
400 IndividualMedley 275.2

The use of LEFT JOIN in this example is significant because it means that
all rows from the original cross join are retained even if there is no matching
row in the result_table. A different result would have been obtained if
we had used RIGHT JOIN to perform a right outer join instead. In that
case, all rows of the result_table (the table on the right of the join) would
have been retained.

In this case, the result of a right outer join would be the same as using INNER
JOIN because all rows of the result_table have a match in the cross join.
This is not surprising because it is equivalent to saying that all swimming
results came from events that are a subset of all possible combinations of
event stroke and event distance.

itdt -- 2008/5/19 -- 14:15 -- page 210 -- #236i
i

i
i

i
i

i
i

210 Introduction to Data Technologies

It is also possible to perform a full outer join, in which case all rows from
tables on both sides of the join are retained in the final result.

9.2.11 Self joins

It is useful to remember that database joins always begin with a cartesian
product of the rows of the tables being joined (conceptually at least). The
different sorts of database join are all just different subsets of a cross join.
This makes it possible to answer questions that, at first sight, may not
appear to be database queries.

For example, it is possible to join a table with itself—a so-called self join.
The result is all possible combinations of the rows of a table, which can be
used to answer questions that require comparing a column within a table
to itself or to other columns within the same table.

9.2.12 Case study: The Data Expo (continued)

Consider the following question: at what locations and dates did the surface
temperature at location 1 for January 1995 reoccur?

This question requires a comparison of one row of the surftemp column in
the measure_table with the other rows in that column. The code below
performs the query using a self join.

SQL> SELECT mt1.surftemp temp1, mt2.surftemp temp2,
mt2.location loc, mt2.date date

FROM measure_table mt1, measure_table mt2
WHERE mt1.surftemp = mt2.surftemp AND

mt1.date = ’1995-01-16’ AND
mt1.location = 1;

“itdt” — 2008/5/19 — 14:15 — page 211 — #237i
i

i
i

i
i

i
i

Data Queries 211

temp1 temp2 loc date
----- ----- --- ----------
272.7 272.7 1 1995-01-16
272.7 272.7 2 1995-12-16
272.7 272.7 3 1995-12-16
272.7 272.7 2 1996-01-16
272.7 272.7 3 1996-01-16
272.7 272.7 5 1996-12-16
272.7 272.7 5 1997-02-16
272.7 272.7 27 1997-12-16
272.7 272.7 29 1997-12-16
272.7 272.7 7 2000-12-16
272.7 272.7 8 2000-12-16
272.7 272.7 13 2000-12-16
272.7 272.7 14 2000-12-16

The temperature occurred again in neighbouring locations in December and
January of 1995/1996 and again in several other locations in later years.

9.3 Other query languages

One of the reasons we needed to learn SQL is because information that is
stored in a database has a complex structure. SQL provides a language
that allows us to extract information from complex structures in a logical
and predictable way, no matter what DBMS software was used to store the
data. The other main reason was that databases tend to be large and we
often only need to extract a subset of the data.

Data sets that are stored as XML also tend to be large and can have a
complex structure, so there is also a need for a language to express subsets
of XML documents.

There is a powerful language called XQuery for extracting specific sets
of elements and attributes from an XML document, including facilities to
structure the result.

A full discussion of XQuery is beyond the scope of this book, plus it is
harder to find software that implements the language (compared to SQL).
However, we will look briefly at a language that XQuery is built on. This
language is called XPath and it provides a very flexible way to express
subsets of an XML document.

itdt -- 2008/5/19 -- 14:15 -- page 212 -- #238i
i

i
i

i
i

i
i

212 Introduction to Data Technologies

<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

Figure 9.8: The first few lines of the surface temperature at Point Nemo in an

XML format.

9.3.1 XPath

An XPath expression specifies a subset of elements and attributes from
within an XML document. We will look at the basic structure of XPath
expressions via an example.

9.3.2 Case study: Point Nemo (continued)

Figure 9.8 shows the temperature data at Point Nemo in an XML format
(this is a reproduction of Figure 7.7 for convenience).

The most basic XPath expressions consist of element names separated by
forwardslashes. The following XPath selects the temperatures element
from the XML document.

/temperatures

“itdt” — 2008/5/19 — 14:15 — page 213 — #239i
i

i
i

i
i

i
i

Data Queries 213

<temperatures>
<variable>Mean TS from clear sky composite (kelvin)</variable>
<filename>ISCCPMonthly_avg.nc</filename>
<filepath>/usr/local/fer_data/data/</filepath>
<subset>48 points (TIME)</subset>
<longitude>123.8W(-123.8)</longitude>

...

More specifically, it selects the root element temperatures. If we want
to select elements below the root element, we need to specify a complete
path to those elements, or start the expression with a double-forwardslash.
The following two expressions, both select all case elements from the XML
document. In the first case, we specify case elements that are directly
nested within the (root) temperatures element:

/temperatures/case

<case date="16-JAN-1994" temperature="278.9"/>
<case date="16-FEB-1994" temperature="280"/>
<case date="16-MAR-1994" temperature="278.9"/>
<case date="16-APR-1994" temperature="278.9"/>
<case date="16-MAY-1994" temperature="277.8"/>
<case date="16-JUN-1994" temperature="276.1"/>
...

The second approach selects case elements no matter where they are within
the XML document.

//case

<case date="16-JAN-1994" temperature="278.9"/>
<case date="16-FEB-1994" temperature="280"/>
<case date="16-MAR-1994" temperature="278.9"/>
<case date="16-APR-1994" temperature="278.9"/>
<case date="16-MAY-1994" temperature="277.8"/>
<case date="16-JUN-1994" temperature="276.1"/>
...

Attributes may also be selected by specifying the appropriate name, pre-
ceded by an @ character. The following example selects the temperature
attributes from the case elements.

“itdt” — 2008/5/19 — 14:15 — page 214 — #240i
i

i
i

i
i

i
i

214 Introduction to Data Technologies

/temperatures/case/@temperature

temperature="278.9"
temperature="280"
temperature="278.9"
temperature="278.9"
temperature="277.8"
temperature="276.1"
...

Several separate paths may also be specified, separated by a vertical bar.
This next XPath selects both longitude and latitude elements from any-
where within the XML document.

//longitude | //latitude

<longitude>123.8W(-123.8)</longitude>
<latitude>48.8S</latitude>

It is also possible to specify predicates, which are conditions that must be
met for an element to be selected. These are placed within square brack-
ets. In the following example, only case elements where the temperature
attribute has the value 280 are selected.

/temperatures/case[@temperature=280]

<case date="16-FEB-1994" temperature="280"/>
<case date="16-MAR-1995" temperature="280"/>
<case date="16-MAR-1997" temperature="280"/>

We will demonstrate one example of the use of XPath expressions later in
Section 11.6.4.

9.4 Further reading

The w3schools XPath Tutorial
http://www.w3schools.com/xpath/
Quick, basic tutorial-based introduction to XPath.

http://www.w3schools.com/xpath/

“itdt” — 2008/5/19 — 14:15 — page 215 — #241i
i

i
i

i
i

i
i

Data Queries 215

Summary

“itdt” — 2008/5/19 — 14:15 — page 216 — #242i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 217 — #243i
i

i
i

i
i

i
i

S
Q

L

10
SQL Reference

The Structured Query Language (SQL) is a language for working with in-
formation that has been stored in a database.

SQL has three parts: the Data Manipulation Language (DML) concerns
adding information to a database, modifying the information, and extract-
ing information from a database; the Data Definition Lanuage (DDL) is
concerned with the structure of a database (creating and destroying tables);
and the Data Control Language (DCL) is concerned with administration of
a database (deciding who gets what sort of access to which parts of the
database).

This chapter is mostly focused on the SELECT command, which is the part
of the DML that is used to extract information from a database, but other
useful SQL commands are also mentioned briefly in Section 10.3.

10.1 SQL syntax

Column names and table names must all start with a letter and may include
letters, digits, and the underscore character, _. These names may be case-
sensitive if the underlying operating system is case-sensitive.

Numeric values are typed as usual and string values must be contained
within single quotes. The escape sequence for a single quote (apostrophe)
within a string is to type two single quotes.

The SQL key words are not case-sensitive, but it is traditional to write all
key words in upper case.

White space is ignored, so long queries can (and should) be split across
several lines.

Every SQL query must end with a semi-colon, ;.

“itdt” — 2008/5/19 — 14:15 — page 218 — #244i
i

i
i

i
i

i
i

218 Introduction to Data Technologies

10.2 SQL queries

The basic format of an SQL query is this:

SELECT columns
FROM tables
WHERE row condition
ORDER BY order by columns

This will select the named columns from the specified tables and return all
rows matching the row condition.

The order of the rows in the result is based on the values in the order by columns.

10.2.1 Selecting columns

The special character * selects all columns, otherwise only those columns
named are included in the result. If more than one column name is given,
the column names must be separated by commas.

SELECT *
...

SELECT colname
...

SELECT colname1, colname2
...

The column name may be followed by a column alias and that alias can
be used elsewhere in the query (e.g., in the WHERE clause.

SELECT colname colalias
...

If more than one table is included in the query, and the tables share a column
with the same name, a column name must be preceded by the relevant table
name, with a full stop in between.

SELECT tablename.colname
...

Functions and operators may be used to produce results that are calculated

“itdt” — 2008/5/19 — 14:15 — page 219 — #245i
i

i
i

i
i

i
i

SQL Reference 219

S
Q

L

from the column. The set of functions that is provided varies widely between
DBMS, but the normal mathematical operators for addition, subtraction,
multiplication, and division, plus a set of basic aggregation functions for
maximum value (MAX), minimum value (MIN), summation (SUM), and arith-
metic mean (AVG) should always be available.

SELECT MAX(colname)
...

SELECT colname1 + colname2
...

A column name can also be a constant value (number or string), in which
case the value is replicated for every row of the result.

10.2.2 Specifying tables: the FROM clause

The FROM clause must contain at least one table and all columns specified
in the query must exist in at least one of the tables in the the FROM clause.

If a single table is specified, then the result is all rows of that table, subject
to any filtering applied by a WHERE clause. A table name may be followed
by a table alias, in which case, the alias may be used anywhere else in the
query.

SELECT colname
FROM tablename
...

SELECT talias.colname
FROM tablename talias
...

If two tables are specified, separated only by a comma, the result is all
possible combinations of the rows of the two tables (a cartesian product).
This is known as a cross join.

SELECT ...
FROM table1, table2
...

An inner join is created from a cross join by specifying a condition so that
only rows that have matching values are returned (typically using a foreign

“itdt” — 2008/5/19 — 14:15 — page 220 — #246i
i

i
i

i
i

i
i

220 Introduction to Data Technologies

key to match with a primary key). The condition may be specified within
the WHERE clause, or as part of an INNER JOIN syntax as shown below.

SELECT ...
FROM table1 INNER JOIN table2

ON table1.primarykey = table2.foreignkey
...

An outer join extends the inner join by including in the result rows from one
table that have no match in the other table. There are left outer joins (where
rows are retained from the table named on the left of the join syntax), right
outer joins, and full outer joins (where non-matching rows from both tables
are retained).

SELECT ...
FROM table1 LEFT OUTER JOIN table2

ON table1.primarykey = table2.foreignkey
...

A self join is a join of a table with itself. This requires the use of table
aliases.

SELECT ...
FROM tablename alias1, tablename alias2
...

10.2.3 Selecting rows: the WHERE clause

By default, all rows from a table or from a combination of tables, are re-
turned. However, if the WHERE clause is used to specify a condition, then
only rows matching that condition will be returned.

Conditions may involve any column from any table that is included in the
query. Conditions usually involve a comparison between a column and a
constant value, or between two columns. Valid comparison operators in-
clude: equality (=), greater-than or less-than (>, <, or equal-to, >=, <=), and
inequality (!= or <>).

“itdt” — 2008/5/19 — 14:15 — page 221 — #247i
i

i
i

i
i

i
i

SQL Reference 221

S
Q

L

SELECT ...
FROM ...
WHERE colname = 0;

SELECT ...
FROM ...
WHERE column1 > column2;

Complex conditions can be constructed by combining simple conditions with
logical operators: AND, OR, and NOT. Parentheses should be used to make the
order of evaluation explicit.

SELECT ...
FROM ...
WHERE column1 = 0 AND

column2 != 0;

SELECT ...
FROM ...
WHERE NOT (stroke = ’IM’ AND

(distance = 50 OR
distance = 100));

For the case where a column can match several possible values, the special
IN keyword can be used to specify a range of valid values.

SELECT ...
FROM ...
WHERE column1 IN (value1, value2);

Comparison with string constants can be generalised to allow patterns us-
ing the special LIKE comparison operator. In this case, within the string
constant, the underscore character, _, has a special meaning; it will match
any single character. The percent character, %, is also special and it will
match any number of characters of any sort.

SELECT ...
FROM ...
WHERE stroke LIKE ’%stroke’;

See Section 11.8.2 for more advanced pattern matching tools.

“itdt” — 2008/5/19 — 14:15 — page 222 — #248i
i

i
i

i
i

i
i

222 Introduction to Data Technologies

10.2.4 Sorting results: the ORDER BY clause

The order of the columns in the results of a query is based on the order of
the column names in the query.

The order of the rows in a result is undetermined unless an ORDER BY clause
is included in the query. The ORDER BY clause names the column to order
results by followed by ASC for ascending and DESC for descending order.

SELECT ...
FROM ...
ORDER BY columnname ASC;

The results can be ordered by the values in several columns simply by spec-
ifying several column names, separated by commas. The results are ordered
by the first column then, within identical values of the first column, rows
are ordered by the second column, and so on.

SELECT ...
FROM ...
ORDER BY column1 ASC, column2 DESC;

10.2.5 Aggregating results: the GROUP BY clause

The aggregation functions MAX, MIN, SUM, and AVG (see Section 10.2.1) all
return a single value from a column. If a GROUP BY clause is included in the
query, aggregated values are reported for each unique value of the column
specified in the GROUP BY clause.

SELECT column1, SUM(column2)
FROM ...
GROUP BY column1;

Results can be reported for combinations of unique values of several columns
simply by naming several columns in the GROUP BY clause.

SELECT column1, column2, SUM(column3)
FROM ...
GROUP BY column1, column2;

The GROUP BY clause can include a HAVING sub-clause that works like the
WHERE clause, but operates on the rows of aggregated results rather than

“itdt” — 2008/5/19 — 14:15 — page 223 — #249i
i

i
i

i
i

i
i

SQL Reference 223

S
Q

L

the original rows.

SELECT column1, SUM(column2) colalias
FROM ...
GROUP BY column1

HAVING colalias > 0;

10.2.6 Sub-queries

The result of an SQL query may be used as part of a larger query. The sub-
query is placed within parentheses, but otherwise follows the same syntax
as a normal query.

Sub-queries are used in place of table names within the FROM clause and to
provide comparison values within a WHERE clause.

SELECT column1
FROM table1
WHERE column1 IN

(SELECT column2
FROM table2

...);

10.3 Other SQL commands

This section deals with SQL statements that perform other common useful
actions on a database.

We start with entering the data into a database.

Creating a table proceeds in two steps: first we must define the schema or
structure of the table and then we can load rows of values into the table.

10.3.1 Defining tables

A table schema is defined using the CREATE statement.

“itdt” — 2008/5/19 — 14:15 — page 224 — #250i
i

i
i

i
i

i
i

224 Introduction to Data Technologies

Table 10.1: Common SQL data types.

Type Description
CHAR(n) Fixed-length text (n characters)
VARCHAR(n) Variable-length text (maximum n characters)
INTEGER Whole number
REAL Real number
DATE Calendar date

CREATE TABLE table
(col1name col1type,
col2name col2type)

column constraints;

This statement specifies the name of the table, the name of each column,
and the data type to be stored in each column. A common variation is to
add NOT NULL after the column data type to indicate that the value of the
column can never be NULL. This must usually be specified for primary key
columns.

The possible data types available depends on the DBMS being used, but
some standard options are shown in Table 10.1.

The column constraints are used to specify primary and foreign keys for the
table.

CREATE TABLE table1
(col1name col1type NOT NULL,
col2name col2type)
CONSTRAINT constraint1

PRIMARY KEY (col1name)
CONSTRAINT constraint2

FOREIGN KEY (col2name)
REFERENCES table2 (table2col);

The primary key constraint specifies which column or columns make up the
primary key for the table. The foreign key constraint specifies which column
or columns act as a foreign key and which (primary-key) column in which
other table that foreign key refers to.

As concrete examples, code in Figure 10.1 shows the SQL code that was used
to create the database tables location_table and measurements_table for

“itdt” — 2008/5/19 — 14:15 — page 225 — #251i
i

i
i

i
i

i
i

SQL Reference 225

S
Q

L

CREATE TABLE location_table
(ID INTEGER NOT NULL,
longitude REAL,
latitude REAL,
elevation REAL,
CONSTRAINT location_table_pk PRIMARY KEY (ID));

CREATE TABLE measure_table
(location INTEGER NOT NULL,
date INTEGER NOT NULL,
cloudhigh REAL,
cloudmid REAL,
cloudlow REAL,
ozone REAL,
pressure REAL,
surftemp REAL,
temperature REAL,
CONSTRAINT measure_table_pk

PRIMARY KEY (location, date),
CONSTRAINT measure_location_table_fk

FOREIGN KEY (location)
REFERENCES location_table(ID),

CONSTRAINT measure_date_table_fk
FOREIGN KEY (date)
REFERENCES date_table(date));

Figure 10.1: The SQL code used to define the table schema for storing the Data

Expo data set in a relational database.

the Data Expo case study in Section 7.3.6.

The primary key of the location_table is the ID column. The (composite)
primary key of the measure_table is a combination of the location and
date columns and the location column also acts as a foreign key, referring
to the ID column of the location_table.

10.3.2 Populating tables

Having generated the table schema, values are entered into the table using
the INSERT statement.

“itdt” — 2008/5/19 — 14:15 — page 226 — #252i
i

i
i

i
i

i
i

226 Introduction to Data Technologies

INSERT INTO table VALUES
(value1, value2);

Most DBMS also provide their own syntax for reading data values into a
table from an external (text) file.

10.3.3 Modifying data

10.3.4 Deleting data

The DELETE statement can be used to remove specific rows from a table.

DELETE FROM table
WHERE row condition;

The DROP statement can be used to completely remove, not only the contents
of a table, but the entire table schema so that the table no longer exists
within the database.

DROP TABLE table;

In some DBMS, it is even possible to “drop” an entire database (and all of
its tables).

DROP DATABASE database;

These statements should obviously be used with extreme caution.

10.4 Further reading

SQL: The Complete Reference
by James R. Groff and Paul N. Weinberg
2nd Edition (2002), McGraw-Hill.
Like the title says, a complete reference to SQL.

Using SQL
by Rafe Colburn
Special Edition (1999), Que.
Still a thorough treatment, but an easier read (more of a learning
resource than a reference).

“itdt” — 2008/5/19 — 14:15 — page 227 — #253i
i

i
i

i
i

i
i

11
Data Crunching

In previous chapters, we have encountered a number of different computer
languages for specific applications: HTML and CSS for web publishing and
electronic forms, XML for data storage, and SQL for working with relational
databases. In this chapter, we will look at a general purpose computer lan-
guage; it is not designed for one specific task, but has facilities for conquering
many different sorts of tasks.

As we might expect, a general purpose language will let us do a lot more
than the specific languages can do, but this will come at a cost; we will need
to learn a few more complex concepts and the general purpose language will
not always do a job as well as the specific-purpose languages.

Many general-purpose languages exist, such as Perl, Python, and Ruby. The
R language is used as the primary general-purpose language in this chapter
because it is particularly well-suited to working with data.

11.1 Case study: The Population Clock

The Doomsday Clock symbolizes how close the
world is to complete disaster. It currently stands at
5 minutes to midnight ...1

As early as the 1970s, Isaac Asimov was attempting to draw the eye of
the general public to the looming problem of the overpopulation of Planet
Earth. In several books and speeches2 he dramatically pointed out that

1Image source: The Open Clip Art Library
http://openclipart.org/people/ernes/ernes_orologio_clock.svg

This image is in the public domain.
2For example, The Future of Humanity: a Lecture by Isaac Asimov, given at Newark

College of Engineering November 8, 1974.
http://www.asimovonline.com/oldsite/future_of_humanity.html

http://openclipart.org/people/ernes/ernes_orologio_clock.svg
http://www.asimovonline.com/oldsite/future_of_humanity.html

“itdt” — 2008/5/19 — 14:15 — page 228 — #254i
i

i
i

i
i

i
i

228 Introduction to Data Technologies

the world population at the time stood at around 4 billion, but with the
increasing rate of growth, it would be around 7 billion by the turn of the
millenium. Asimov also pointed out that, one way or another, the growth
of the human population would slow, it was just a matter of how messy the
deceleration was. Nature and the limits of natural resources would do the
job if necessary, but the least messy solution, he suggested, was voluntary
birth control.

Asimov did not live to see the turn of the millenium, but he may have been
pleased to see that his prediction was slightly pessimistic, not because his
calculations were wrong, but because population growth had begun to slow,
and because it was slowing for non-messy reasons.

Overall estimates of the population of the world can be obtained from the
U.S. Census Bureau.3 Figure 11.1 shows estimates dating from 1900 and
extending until 2050. This clearly shows the upward curve during the first
three quarters of the 20th Century, but already a straightening and tailing
off beginning as we pass the turn of the millenium.

This slowing in the growth of the world’s population is mainly thanks
to lower fertility rates (the non-messy solution), which is due to cultural
changes such as people marrying later, and the greater availability and use
of contraceptives. Even longer term projections by the United Nations sug-
gest that, assuming trends in lower fertility continue, the world’s population
may actually stabilize at around 9 or 10 billion before 2500. Asimov, or at
least his descendants, have some reason to hope.

11.1.1 Estimating population growth

Another population-related service offered by the U.S. Census Bureau is the
World Population Clock (see Figure 11.2).

This web site provides an up-to-the-minute snapshot of the current estimate
of the world’s population, based on estimates by the U.S. Census Bureau.
It is updated every few seconds.

What we are going to do in this case study is use this clock to generate a
rough estimate of the current rate of growth of the world’s population.

We will do this by looking at the steps involved, how we might perform this
task “by hand”, and how we might use the computer to do the work instead.

3http://www.census.gov/ipc/www/worldhis.html

http://www.census.gov/ipc/www/idb/worldpop.html.

http://www.census.gov/ipc/www/worldhis.html
http://www.census.gov/ipc/www/idb/worldpop.html

“itdt” — 2008/5/19 — 14:15 — page 229 — #255i
i

i
i

i
i

i
i

Data Crunching 229

1900 1950 2000 2050

20
00

40
00

60
00

80
00

year

W
or

ld
 P

op
ul

at
io

n
(m

ill
io

ns
)

Figure 11.1: The population of the world, based on estimates by the U.S. Census

Bureau. The shaded area to the right indicates projected estimates of world

population.

“itdt” — 2008/5/19 — 14:15 — page 230 — #256i
i

i
i

i
i

i
i

230 Introduction to Data Technologies

Figure 11.2: The World Population Clock shows an up-to-the-minute snapshot

of the current estimate of the world’s population (based on estimates by the U.S.

Census Bureau).

Copy the current value of the population clock.
The first step is to capture a snapshot of the world population from
the U.S. Census Bureau web site.

This is very easy to do by simply navigating a web browser to the
population clock web page and typing out or cutting-and-pasting the
current population value.

What about getting the computer to do the work?

Navigating to a web page and downloading the information is not
actually very difficult. The following R code will do this data import
task:4
R> clockHTML <-

readLines("http://www.census.gov/ipc/www/popclockworld.html")

Getting the population estimate from the downloaded information is
a bit more difficult, but not much.

The above code says “read the HTML code from the given URL.”
The first thing to realise is that the result is not a nice picture of the
web page like we see in a browser. Instead, we have the raw HTML

4We will not focus on understanding the details of the R code in this section—that is
the purpose of the the remainder of this chapter. The code is just provided as concrete
evidence that the task can be done and as a simple visual indication of the level of effort
and complexity involved.

“itdt” — 2008/5/19 — 14:15 — page 231 — #257i
i

i
i

i
i

i
i

Data Crunching 231

code that describes the web page (see Figure 11.3). This is actually
a good thing because it would be incredibly difficult for the computer
to extract the population information from a picture.

The HTML code is better than a picture because there is structure to
this information and we can use that structure to get the computer to
extract the relevant population value for us.

The current population value on the web page is contained within an
HTML div tag with a unique id attribute (line 41 in Figure 11.3).
This makes it very easy to find the line that contains the population
estimate. This text search task can be performed using the following
code:
R> popLine <- grep(’id="worldnumber"’, clockHTML)
R> popLine

[1] 41

This code says “tell me which line of HTML code contains the text
id="worldnumber".”

It is easy to extract the population estimate from this line by deleting
all of the bits of the line that we do not want. This is a text search-
and-replace task and can be performed using the following code:
R> popString <- gsub(’^.+id="worldnumber">’, "",

gsub("</div>.*$", "",
clockHTML[popLine]))

R> popString

[1] "6,617,746,521"

This code says “extract the relevant line of HTML code and delete ev-
erything from the </div> to the end of the line, then delete everything
from the start of the line up to the text id="worldnumber">.

The final thing we need to do is turn the text of the population es-
timate into a number so that we can later carry out mathematical
operations. This is called data coercion and appropriate code is
shown below (notice that we have to remove the commas that are so
useful for human viewers, but a complete distraction for computers):
R> pop <- as.numeric(gsub(",", "", popString))
R> pop

[1] 6617746521

This example provides a classic demonstration of the difference be-
tween performing a task by hand and writing code to get a computer

“itdt” — 2008/5/19 — 14:15 — page 232 — #258i
i

i
i

i
i

i
i

232 Introduction to Data Technologies

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"

4 xml:lang="en" lang="en">

5 <head>

6 <title>World POPClock Projection</title>

7 <link rel="stylesheet"

8 href="popclockworld%20Files/style.css"

9 type="text/css">

10 <meta name="author" content="Population Division">

11 <meta http-equiv="Content-Type"

12 content="text/html; charset=iso-8859-1">

13 <meta name="keywords" content="world, population">

14 <meta name="description"

15 content="current world population estimate">

16 <style type="text/css">

17 #worldnumber {

18 text-align: center;

19 font-weight: bold;

20 font-size: 400%;

21 color: #ff0000;

22 }

23 </style>

24 </head>

25 <body>

26 <div id="cb_header">

27

28 <img src="popclockworld%20Files/cb_head.gif"

29 alt="U.S. Census Bureau"

30 border="0" height="25" width="639">

31

32 </div>

33

34 <h1>World POPClock Projection</h1>

35

36 <p></p>

37 According to the

38 International Programs Center, U.S. Census Bureau,

39 the total population of the World, projected to 09/12/07

40 at 07:05 GMT (EST+5) is

41 <div id="worldnumber">6,617,746,521</div>

42 <p></p>

43 <hr>

...

Figure 11.3: HTML code for the World Population Clock (see 11.2). The line

numbers (in grey) are just for reference.

“itdt” — 2008/5/19 — 14:15 — page 233 — #259i
i

i
i

i
i

i
i

Data Crunching 233

to do the work. The manual method is simple, requires no new skills,
and takes very little time. On the other hand, the computer code
approach requires learning new information (it will take substantial
chunks of this chapter to explain just the code we have used so far),
so it is slower and harder. However, the computer code approach will
pay off in the long run, as we are about to see.

Wait ten minutes.
The second step involves letting time pass so that we can obtain a
second snapshot of the world population after a fixed time interval.

Doing nothing is about as simple as it gets for a do-it-yourself task.
However, it highlights two of the major advantages of automating
tasks by computer. First, computers will perform boring tasks with-
out complaining or falling asleep and, second, their accuracy will not
degrade as a function of the boredom of the task.

The following code will make the computer wait for 10 minutes (600
seconds):

R> Sys.sleep(600)

Copy the new value of the population clock.
The third step is to take another snapshot of the world population
from the U.S. Census Bureay web site.

This is the same as the first task. If we do it by hand, it is just as easy
as it was before, though the boredom issue quite quickly comes into
play. What about doing it by computer code? Here we see the third
major benefit of writing computer code: once code has been written
to perform a task, repetitions of the task become essentially free. All
of the pain of writing the code in the first place starts to pay off very
rapidly once a task has to be repeated. Almost exactly the same code
as before will produce the new population clock estimate.
R> clockHTML2 <-

readLines("http://www.census.gov/ipc/www/popclockworld.html")
R> popLine2 <- grep(’id="worldnumber"’, clockHTML2)
R> popString2 <- gsub(’^.+id="worldnumber">’, "",

gsub("</div>.+", "",
clockHTML2[popLine2]))

R> pop2 <- as.numeric(gsub(",", "", popString2))

Calculate the growth rate.
The fourth step is to divide the change in population by the time
interval.

“itdt” — 2008/5/19 — 14:15 — page 234 — #260i
i

i
i

i
i

i
i

234 Introduction to Data Technologies

This is a very simple calculation that is, again, easy to do by hand.
Computer code still provides an advantage because there is less chance
of making an error in the calculation. There is the usual cost to pay
in terms of writing the code in the first place, but in this case, that is
fairly small. All we need to do is divide the change in population by
the elapsed time (10 minutes):

R> rateEstimate <- (pop2 - pop)/10

[1] 146.6

Repeat several times to get a decent sample
Because we are unaware of the process going on behind the scenes at
the population clock web site, it would be unwise to trust a single
point estimate of the population growth rate using this technique. A
safer approach would be to generate a sample of several estimates and
that means that we should repeat the whole process.

As mentioned previously, computers are world champions when it
comes to mindlessly repeating tasks, so the computer code approach
will now pay off handsomely.

The computer code that will generate 10 population growth rate esti-
mates is shown in Figure 11.4. As mentioned previously, the details of
how this code works are not important at this stage. However, there
are several important features that we should highlight.

The core task in this example involves downloading the World Pop-
ulation Clock and processing the information to extract a time and
a population estimate. For each estimate of the population growth
rate, this core task must be performed twice. A naive approach would
suggest writing out two copies of the code to perform the task. How-
ever, that would violate the DRY principle (see Section 2.5) because it
would create two copies of an important piece of information; the in-
formation in this case being computer code to perform a certain task.
As can be seen from Figure 11.4, the code can be written so that only
one copy, written as a function, is required (lines 2 to 9) and that
single copy can be referred to, via functions calls, from elsewhere in
the code (lines 15 and 17).

At a slightly higher level, the task of calculating an estimate of the
population growth is also repeated, in this case, 10 times. Again,
rather than having 10 copies of the code to calculate an estimate,
there is only one copy (lines 15 to 18), with other code, a for loop, to
express the fact that the this sub-task needs to be repeated 10 times
(lines 14 and 19).

“itdt” — 2008/5/19 — 14:15 — page 235 — #261i
i

i
i

i
i

i
i

Data Crunching 235

1 checkTheClock <- function() {

2 clockHTML <-

3 readLines("http://www.census.gov/ipc/www/popclockworld.html")

4 popLine <- grep(’id="worldnumber"’, clockHTML)

5 popString <- gsub(’^.+id="worldnumber">’, "",

6 gsub("</div>.*", "",

7 clockHTML[popLine]))

8 pop <- as.numeric(gsub(",", "", popString))

9 return(list(popString=popString, pop=pop))

10 }

11

12 rateEstimates <- rep(0, 10)

13

14 for (i in 1:10) {

15 clock1 <- checkTheClock()

16 Sys.sleep(600)

17 clock2 <- checkTheClock()

18 rateEstimates[i] <- (clock2$pop - clock1$pop) / 10

19 }

20

21 writeLines(as.character(rateEstimates),

22 paste("popGrowthEstimates",

23 as.Date(Sys.time()), sep=""))

Figure 11.4: R code for estimating world population growth by downloading the

World Population Clock web site and processing it at 10 minute intervals. The

line numbers (in grey) are just for reference.

“itdt” — 2008/5/19 — 14:15 — page 236 — #262i
i

i
i

i
i

i
i

236 Introduction to Data Technologies

146.6

146.5

146.6

148.1

134.181818181818

146.8

146.3

146.6

146.8

147.9

Figure 11.5: Ten estimates of the rate of growth (people per ten minutes) of the

World’s population, based on the U.S. Census Bureau’s World Population Clock.

These ideas of encapsulating chunks of code as functions and repeat-
ing chunks of code within loops are examples of the extra concepts
that will be introduced in this chapter that will allow us the flexibility
to perform a wide variety of tasks.

Calculate a final growth rate estimate
Now that we have 10 estimates of the population growth rate, we can
generate an overall estimate of the growth rate by averaging these
values.

This sort of arithmetic is equally simple whether done by hand or by
writing computer code, but code has all of the advantages already
mentioned.
R> mean(rateEstimates)

[1] 145.6382

At the time of writing, we estimate that the world population was
growing at the rate of about 146 people every ten minutes.

Write the answer down
The final step in this exercise is to record the results of all of our work.
This will be useful if, for example, we want to compare the current
population growth rate with the rate next month, or next year. This
is the purpose of lines 21 to 23 in Figure 11.4. This code creates a
plain text file containing our estimates and includes the current date
in the name of the file so that we know when it was generated.

Figure 11.5 shows the full set of 10 population growth estimates.

To reiterate, that all may seem like quite a lot of work to go through to
perform a relatively simple task, but the effort is worth it. By writing code

“itdt” — 2008/5/19 — 14:15 — page 237 — #263i
i

i
i

i
i

i
i

Data Crunching 237

so that the computer performs the task, we can improve our accuracy and
efficiency, and we can repeat the task whenever we like for no additional
cost.

This chapter is concerned with writing code like this, using the R language,
to conduct and automate general data handling tasks: importing and ex-
porting data, manipulating the shape of the data, and processing data into
new forms.

11.2 The R language

The R language is a popular general-purpose language for working with and
analysing data.

R code consists of one or more expressions. Each expression describes an
action to take and the expressions are carried out, or evaluated one at a
time, in the order they appear.

The following code consists of two expressions. The first expression reads
HTML code from a web location and the second expression searches within
that HTML code for a particular pattern. Notice that a single expression
can flow across several lines.

clockHTML <-

readLines("http://www.census.gov/ipc/www/popclockworld.html")

popLine <- grep(’id="worldnumber"’, clockHTML)

R is used to describe both the language and the software package that is
used to run code written in the language. In this chapter, we will focus just
on writing code in the R language. Chapter 12 contains a brief description
of the R software that is used to run R code.

Having said that, most R code examples in this chapter will be presented in
a format resembling the R software command-line interface, with R expres-
sions shown to the right of an R “prompt” and the results of the expressions
displayed below.

In the example below, we type a very simple piece of R code consisting of the
number 1 and R prints the result of running that code, which is displayed
as [1] 1 (i.e., a single value, 1).

R> 1

[1] 1

“itdt” — 2008/5/19 — 14:15 — page 238 — #264i
i

i
i

i
i

i
i

238 Introduction to Data Technologies

11.2.1 Constant values

The simplest sort of R expression is just a constant value—a piece of text
(a string) or a number. The value of such expressions is just the constant
itself.

For example, if we need to specify the name of a file that we want to read
data from, we specify the name as a string.

R> "http://www.census.gov/ipc/www/popclockworld.html"

[1] "http://www.census.gov/ipc/www/popclockworld.html"

If we need to specify a number of seconds corresponding to 10 minutes, we
specify a number.

R> 600

[1] 600

11.2.2 Arithmetic

Numeric values can be combined in simple arithmetic expressions: addition,
subtraction, multiplication, division, and exponentiation.

For example, the following code shows the arithmeric calculation that was
performed in Section 11.1 to obtain the rate of growth of the world’s population—
the change in population divided by the elapsed time. Note the use of the
forward-slash character, /, to represent division and the use of brackets to
control the order of evaluation.5

R> (6617747987 - 6617746521) / 10

[1] 146.6

11.2.3 Function calls

The most common and useful type of R expression is a function call.

Function calls are very important because they are how we use R to perform
any non-trivial task.

5R obeys the normal BODMAS rules of precedence for arithmetic operators, but brack-
ets are a useful way of avoiding any ambiguity, especially for the human audience.

“itdt” — 2008/5/19 — 14:15 — page 239 — #265i
i

i
i

i
i

i
i

Data Crunching 239

A function call consists of the function name followed by, within parentheses
and separated from each other by commas, expressions called arguments
that provide necessary information for the function to perform its task.

The following code gives an example of a function call.

Sys.sleep(600)

The name of the function is Sys.sleep (this function makes the computer
wait, or “sleep”, for a number of seconds). There is one argument to the
function, the number of of seconds to wait, and in this case the value supplied
for this argument is 600 (10 minutes).

Because function calls are so common and important, it is worth looking at
a few more examples to show some of the variations in their format.

The grep() function is used to search for a pattern in text, so it has two
arguments: a pattern to search for and the text to search within. The
following expression shows a call to grep(), demonstrating that a comma
must be placed between arguments in a function call. The first argument is
the text to search for ’id="worldnumber"’ and the second argument is the
text to search within, which in this case has been stored in an object called
clockHTML (see the discussion of symbols and assignment in Section 11.2.4
below).

R> grep(’id="worldnumber"’, clockHTML)

[1] 41

This example also demonstrates that many functions have a return value.
The result of calling the grep() function is a number indicating in which
line(s) of text the pattern was found. In this case, the pattern occurs on
line 41.

The next example shows a call to the readLines() function, which is used
to read text from a file. The following expression reads the first six lines
from the world population clock web page.

R> readLines("http://www.census.gov/ipc/www/popclockworld.html",

n=6)

[1] "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\""

[2] "\t\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"

[3] "<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\" lang=\"en\">"

[4] "<head>"

[5] "<title>World POPClock Projection</title>"

[6] ""

“itdt” — 2008/5/19 — 14:15 — page 240 — #266i
i

i
i

i
i

i
i

240 Introduction to Data Technologies

The interesting thing about this example is that the readLines() function
actually has five arguments. For example, there is an argument that controls
whether this function call will fail (produce an error) if we ask for more lines
than exist in the file.

We have only specified two arguments in the function call, which demon-
strates the fact that some function arguments have default values that will
be used if no value is specified for the argument. The default behaviour of
the function is not to generate an error.

The other thing that this example shows is that function arguments have
names and these names can be used in the function call. In the case of the
readLines() function, the argument with the name n controls how many
lines of text are read from the file. We specify the value 6 specifically for
this argument by typing n=6.

The argument that controls whether an error will occur has the name ok (the
meaning of some function and argument names in R are not immediately
transparent). If we want the function to generate an error if we ask for more
lines than there are in a file, we would specify ok=FALSE.

11.2.4 Symbols and assignment

Code written in a general-purpose language can be compared to a cooking
recipe; there is a series of steps to perform and the results of the initial
steps are used later on. For example, eggs and milk may be mixed together
in one bowl and flour and salt mixed in another bowl, then the two sets of
ingredients may be combined together.

This idea of storing intermediate results is an important feature of general-
purpose languages. In R, we describe this process as assigning values to
symbols.

Anything that we type that starts with a letter, and which is not one of the
special R keywords, is interpreted by R as a symbol.

A symbol represents a container where a value can be stored. When R
encounters a symbol it returns the value that has been stored with that
symbol. For example, there is a predefined symbol called pi and the value
stored in pi is the mathematical constant π.

R> pi

[1] 3.141593

“itdt” — 2008/5/19 — 14:15 — page 241 — #267i
i

i
i

i
i

i
i

Data Crunching 241

The result of any expression can be assigned to a symbol, which means
that the result is stored and remembered for use later on.

For example, when we read the contents of a text file into R using the
readLines() function, we usually want to store the contents so that we can
work with the information later on. This is accomplished by assigning the
result of the function to a symbol, like in the following code.

R> clockHTML <-

readLines("http://www.census.gov/ipc/www/popclockworld.html")

We say that clockHTML is assigned the value returned by the readLines()
function.6

Whenever we use the symbol clockHTML, R retrieves the value that we
assigned to it, namely the strings containing the contents of the text file
(not all lines are shown).

R> clockHMTL

[1] "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\" "

[2] " \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">"

[3] "<html xmlns=\"http://www.w3.org/1999/xhtml\" "

[4] " xml:lang=\"en\" lang=\"en\">"

[5] "<head>"

[6] " <title>World POPClock Projection</title>"

11.2.5 Control flow

Computer code in a general-purpose language typically consists of more
than a single expression. When there are several expressions, they are run
in the order that they appear.

For example, in the following code, the first expression determines which
line in an HTML file contains the special text id="worldnumber". The
second expression takes that line and removes unwanted text from the line
to end up with a string that contains the current population of the world.

popLine <- grep(’id="worldnumber"’, clockHTML)
popString <- gsub(’^.+id="worldnumber">’, "",

gsub("</div>.*", "",
clockHTML[popLine]))

6The assignment operator in R is either = or <-. For clarity, we will use the latter in
all examples.

“itdt” — 2008/5/19 — 14:15 — page 242 — #268i
i

i
i

i
i

i
i

242 Introduction to Data Technologies

The second expression can make use of the result in the first expression
because that result has been assigned to a symbol. The second expression
uses the symbol popLine to access the result from the first expression.

General-purpose languages include features that allow some exceptions from
the usual rule that expressions are run one at a time, from first to last. One
such exception is the loop, which allows a collection of expressions to be
run repeatedly.

In the example in Section 11.1, we performed the same task, calculating the
rate of population growth, 10 times. This was achieved, not by typing out
the relevant code 10 times, but by using a loop.

for (i in 1:10) {
pop1 <- checkTheClock()
Sys.sleep(600)
pop2 <- checkTheClock()
rateEstimates[i] <- (pop2 - pop1) / 10

}

The line first line of this code specifies that this loop will run 10 times.

for (i in 1:10) {

The expression 1:10 is a shorthand way of expressing the integer values
from 1 to 10.

The expressions within the braces, the body of the loop, are run each time
through the loop. In this case, almost exactly the same actions are taken
each time the loop is run; the one thing that does change is that the symbol
i is assigned a different value. The first time the loop runs, i is assigned
the value 1. The second time through the loop, i has the value 2, and so
on. In this example, the changing value of i is just used to make sure that
each estimate of the population growth rate is stored in a different place,
rateEstimates[i], rather than overwriting the result from previous times
through the loop.

In R, there is less need for loops compared to other scripting languages,
because R naturally deals with entire vectors, or matrices of data at once
(see Sections 11.3 and 11.7).

R also provides a while loop, which can be used when it is not known how
many times the code will repeat (e.g., an iterative optimisation algorithm).
See Section 12.2.4 for more information.

There are also other ways to control the evaluation of expressions, such as

“itdt” — 2008/5/19 — 14:15 — page 243 — #269i
i

i
i

i
i

i
i

Data Crunching 243

conditional statements. These are described in Section 12.2.5.

11.2.6 Flashback: Writing for an audience

Chapter 2 introduced general principles for writing computer code. In this
section, we will look at some specific issues related to writing scripts in R.

The same principles, such as commenting code and laying out code so that
it is easy for a human audience to consume, still apply. In R, a comment
is anything on a line after the special hash character, #. For example, the
comment in the following line of code is useful as a reminder of why the
number 600 has been chosen.

Sys.sleep(600) # Wait 10 minutes

Indenting is also very important. We need to consider indenting whenever
an expression is too long and has to be broken across several lines of code.
The example below shows a standard approach that ensures that arguments
to a function call are left-aligned.

popString <- gsub(’^.+id="worldnumber">’, "",
gsub("</div>.*", "",

clockHTML[popLine]))

When using loops, the expressions within the body of the loop should be
indented, as below.

for (i in 1:10) {
pop1 <- checkTheClock()
Sys.sleep(600)
pop2 <- checkTheClock()
rateEstimates[i] <- (pop2 - pop1) / 10

}

It is also important to make use of whitespace. Examples in the code above
include the use of spaces around the assignment operater (<-), around arith-
metic operators, and between arguments (after the comma) in function calls.

11.2.7 Naming variables

When writing R code, because we are constantly assigning intermediate
values to symbols, we are forced to come up with lots of different symbol

“itdt” — 2008/5/19 — 14:15 — page 244 — #270i
i

i
i

i
i

i
i

244 Introduction to Data Technologies

names. It is important that we choose sensible symbol names for several
reasons:

1. Good symbol names are a form of documentation in themselves. A
name like dateOfBirth tells the reader a lot more about what value
has been assigned to the symbol than a name like d, or dob, or even
date.

2. Short or convenient symbol names, such as x, or xx, or xxx should be
avoided because it too easy to create conflict by reusing them in our
own code or by having other code reuse them.

Anyone with children will know how difficult it can be to come up with
even one good name, let alone a constant supply, but fortunately there are
several good guidelines for producing sensible variable names:

• The symbol name should fully and accurately represent the informa-
tion that has been assigned to that symbol. Unlike children, symbols
usually have a specific purpose, so the symbol name naturally arises
from a description of that purpose.

• Use a mixture of lowercase and uppercase letters when typing the
name; treat the symbol name like a sentence and start each new word
with a capital letter (e.g., dateOfBirth). This naming mechanism is
called “camelCase” (the uppercase letters form humps like the back of
a camel).

This topic involves quite a lot of personal preference and some very
strong opinions. Fortunately, R, allows for a large degree of flexibility.
Other naming conventions include placing a dot, ., or an underline, _,
between words in the name (e.g., date.of.birth or date_of_birth).
For historical reasons, both of these alternatives have potentially se-
rious downsides so we will always use camelCase in this book.

• Use a naming scheme that reflects the structure of the data within a
symbol. For example, when naming a data frame in R (see Section
11.3), one approach would be to always end the name with .df.

• There are some short symbol names that are acceptable because they
are so consistently used for a particular purpose. Some examples are
i, j, and k as counters within loops (see Section 11.2.5).

• Beware of using names of predefined constants. For example, R defines
the symbol pi and redefining this value to, for example, the name of
the ith parent in a data set would have disastrous consequences for
subsequent arithmetic calculations.

“itdt” — 2008/5/19 — 14:15 — page 245 — #271i
i

i
i

i
i

i
i

Data Crunching 245

11.3 Basic Data types and data structures

General-purpose languages allow us to work with numbers, text (strings),
and logical values. This section briefly describes important features of how
values are represented using these basic data types, then goes on to the
larger topic of how multiple values, possibly of differing types, can be stored
together in data structures.

11.3.1 Case study: Counting candy

The image in Figure 11.6 shows a simple counting puzzle. The task is to
count how many of each different type of candy there are in the image.

Our task is to record the different shapes (round, oval, or long), the different
shades (light or dark), and whether there is a pattern on the candies that
we can see in the image. How can this information be entered into R?7

We will start by just entering the names of the possible categories of candy.

One way to enter data in R is to use the scan() function. This allows us
to type data into R separated by spaces. Once we have entered all of the
data, we enter an empty line to indicate to R that we have finished. We
can use this to enter the information describing the possible candy shapes
as strings:

R> shapeNames <- scan(what="character")
1: round oval long
4:
Read 3 items

R> shapeNames

[1] "round" "oval" "long"

Another way to enter data is using the c() function. In the following code,
we use this to enter the information on the possible patterns and shades of
the candies:

7There are two ways to view the information that we will enter: either the number of
candies is fixed and, for each candy, we are making three measurements (shape, shade,
and pattern); or the categories are fixed and, for each type of candy, we are measuring
how many candies there are of that type. At different times we will use whichever of
these interpretations is most convenient in order to illustrate a point.

“itdt” — 2008/5/19 — 14:15 — page 246 — #272i
i

i
i

i
i

i
i

246 Introduction to Data Technologies

Figure 11.6: A counting puzzle. How many candies of each different shape are

there? (round, oval, and long). How many candies have a pattern? How many

candies are dark and how many are light?

“itdt” — 2008/5/19 — 14:15 — page 247 — #273i
i

i
i

i
i

i
i

Data Crunching 247

R> patternNames <- c("pattern", "plain")
R> patternNames

[1] "pattern" "plain"

R> shadeNames <- c("light", "dark")
R> shadeNames

[1] "light" "dark"

These are examples of ways to enter text values into R. The same func-
tions can be used to enter numbers as well, as subsequent examples will
demonstrate.

At this point in our case study, we have only entered some metadata; the
possible categories of candies. In the following sections, we will add counts
of how many times each shape-shade-pattern combination occurs.

11.3.2 Vectors

One of the reasons that R is a good environment for working with data is
because it works very naturally with vectors of values. Any symbol, like
shapeNames, patternNames, and shadeNames above, can contain several
values at once. For example, shapeNames is a character vector containing
three strings.

R> shapeNames

a
b
c

[1] "round" "oval" "long"

Many functions exist for creating and for manipulating vectors.

The previous section demonstrated the c() function for combining values
together. Another example is the rep() function, which can be used to
repeat values in a vector. We can use this function to create a symbol
representing the shade for each of the candies in the image above (by my
count, there are 11 light-coloured candies and 25 dark-coloured candies).

“itdt” — 2008/5/19 — 14:15 — page 248 — #274i
i

i
i

i
i

i
i

248 Introduction to Data Technologies

R> shades <- rep(shadeNames, c(11, 25))
R> shades

a
b
c

[1] "light" "light" "light" "light" "light" "light" "light"
[8] "light" "light" "light" "light" "dark" "dark" "dark"
[15] "dark" "dark" "dark" "dark" "dark" "dark" "dark"
[22] "dark" "dark" "dark" "dark" "dark" "dark" "dark"
[29] "dark" "dark" "dark" "dark" "dark" "dark" "dark"
[36] "dark"

This example also demonstrates that many R functions accept vectors of
values for arguments. In this case, two values are provided to be repeated
and a number of replicates is specified for each value (so the first shadeNames
value is repeated 11 times and the second shadeNames value is repeated 25
times). The return value is also a vector (36 strings).

A vector can only contain values of the same sort, so we can have numeric
vectors containing all numbers, character vectors contianing only strings,
and logical vectors containing only true/false values.

11.3.3 The recycling rule

Because the arguments to a function, or an arithmetic operation, can involve
vectors, there arises a general problem of what to do when the vectors have
different lengths.

There is a general, but informal, rule in R that, in such cases, the shorter
vector is recycled to become the same length as the longer vector. This is
easiest to demonstrate via simple arithmetic.

In the following code, a vector of length 3 is added to a vector of length 6.

R> c(1, 2, 3) + c(1, 2, 3, 4, 5, 6)

1
2
3

[1] 2 4 6 5 7 9

What happens is that the first vector is recycled to make a vector of length
6, then element-wise addition can occur.

This rule is not followed in all possible situations, but it is the expected
behaviour in most cases.

“itdt” — 2008/5/19 — 14:15 — page 249 — #275i
i

i
i

i
i

i
i

Data Crunching 249

11.3.4 Factors

A factor is a basic data structure in R that is ideal for storing categorical
data.

For example, consider the shades symbol that we created previously as just
a vector of text (a character vector) recording the word “light” for each of
the light-shaded candies and “dark” for each of the dark-shaded candies.

This is not the ideal way to store this information because it does not
acknowledge that elements containing the same text (e.g., "light") really
are the same value. A text vector can contain any strings at all, so there
are no data integrity constraints (see Section 7.7.3). The information would
be represented better using a factor.

The following code creates the candy shade information as a factor:

R> shades.f <- factor(shades, levels=shadeNames)
R> shades.f

F
M
F

[1] light light light light light light light light light
[10] light light dark dark dark dark dark dark dark
[19] dark dark dark dark dark dark dark dark dark
[28] dark dark dark dark dark dark dark dark dark
Levels: light dark

This is a better representation because every value in shades.f is guaran-
teed to be one of the valid “levels” of the factor. It is also more efficient
because what is stored is only integer codes which refer to the appropriate
levels.

A factor is the best way to store categorical information in R. If we need
to work with the data as text (see Section 11.8), we can convert the factor
back to text using the as.character() function (see page 261).

11.3.5 Data Frames

A vector in R contains values that are all of the same type. Vectors corre-
spond to a single variable in a data set.

Most data sets consist of more than just one variable, so to store a complete
data set we need a different data structure. In R, several variables can be
stored together in an object called a data frame.

We will now build a data frame for the candy example, with variables in-

“itdt” — 2008/5/19 — 14:15 — page 250 — #276i
i

i
i

i
i

i
i

250 Introduction to Data Technologies

dicating the different combinations of shape, pattern, and shade, and a
variable containing the number of candies for each combination.

The function data.frame() creates a data frame object. If we just consider
shape and shade, the following code generates a data frame with all possible
combinations of these catgories.

R> data.frame(shape=factor(rep(shapeNames, 2),
levels=shapeNames),

shade=factor(rep(shadeNames, each=3),
levels=shadeNames))

●

1
2
3

●

a
b
c

●

F
T
F

shape shade
1 round light
2 oval light
3 long light
4 round dark
5 oval dark
6 long dark

Rather than enumerate all of the combinations ourselves, we can use the
function expand.grid(). This function takes several factors and produces a
data frame containing all possible combinations of the levels of the factors.8

R> candy <- expand.grid(shape=shapeNames,
pattern=patternNames,
shade=shadeNames)

R> candy
●

1
2
3

●

a
b
c

●

F
T
F

shape pattern shade
1 round pattern light
2 oval pattern light
3 long pattern light
4 round plain light
5 oval plain light
6 long plain light
7 round pattern dark
8 oval pattern dark
9 long pattern dark
10 round plain dark
11 oval plain dark
12 long plain dark

Now we can count the number of candies for each of these combinations

8The gl() function is similar.

“itdt” — 2008/5/19 — 14:15 — page 251 — #277i
i

i
i

i
i

i
i

Data Crunching 251

and enter the counts in a variable in our data frame called count. This
demonstrates how to add new variables to an existing data frame.

R> candy$count <- c(2, 0, 3, 1, 3, 2, 9, 0, 2, 1, 11, 2)
R> candy

●

1
2
3

●

a
b
c

●

F
T
F

shape pattern shade count
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3
4 round plain light 1
5 oval plain light 3
6 long plain light 2
7 round pattern dark 9
8 oval pattern dark 0
9 long pattern dark 2
10 round plain dark 1
11 oval plain dark 11
12 long plain dark 2

At this point, it is worth checking that our two counting efforts are consistent
(I had previously counted 11 light and 25 dark candies). We can extract just
one variable from a data frame using the special character $. The function
sum() provides the sum of a numeric vector.

R> sum(candy$count)

1
2
3

[1] 36

We can also check that our counts sum to the correct amounts for the differ-
ent shades using the aggregate() function. This calls the sum() function
for subsets of the candy$count variable corresponding to the different candy
shades.
R> aggregate(candy$count, list(shade=candy$shade), sum)

●

1
2
3

●

a
b
c

●

F
T
F

shade x
1 light 11
2 dark 25

More examples of this sort of data frame manipulation are described in
Section 11.7.

“itdt” — 2008/5/19 — 14:15 — page 252 — #278i
i

i
i

i
i

i
i

252 Introduction to Data Technologies

11.3.6 Accessing variables in a data frame

Several previous examples have demonstrated the simple way to specify a
variable within a data frame: dataFrameName$variableName.

Always typing the data frame name can become tiring, but there are two
ways to avoid it. The attach() function adds a data frame to the list of
places where R will look for variable names. For example, instead of typing
candy$count, we can instead do the following:

R> attach(candy)
R> count

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

After the call to attach(), R will look at the names of the variables in the
candy data frame and will find count there.

If we use attach() like this, we should remember to call detach() again
once we have finished with the data frame, as below.

R> detach(candy)

Another way to avoid always having to type the data frame name is to use
the with() function. This is similar to attach(), but, in effect, it only
temporarily adds the data frame to R’s search path, and it automatically
removes the data frame from the search path again. The code below shows
how to check the candy counts for the different shades using the with()
function.
R> with(candy,

aggregate(count, list(shade=shade), sum))
●

1
2
3

●

a
b
c

●

F
T
F

shade x
1 light 11
2 dark 25

These approaches are convenient, but can harbour some nasty side-effects,
so some care is warranted. In particualr, unexpected things can happen
if we perform assignments on an attached data frame, so these usages are
really only safe when we are just accessing information in a data frame (see
the discussion on the help page for this function by typing ?attach).

“itdt” — 2008/5/19 — 14:15 — page 253 — #279i
i

i
i

i
i

i
i

Data Crunching 253

11.3.7 Lists

So far we have seen two sorts of data structures: vectors and data frames.
A vector corresponds to a single variable; it is a set of values all of the
same type. A numeric vector contains numbers, a character vector contains
strings, and a factor contains categories.

A data frame corresponds to a data set, or a set of variables. It can be
thought of as a two-dimensional structure with a variable in each column
and a case in each row. All columns of a data frame have the same length.

These are the two data structures that are most commonly used for storing
data, but, like any general purpose programming language, R also provides
a variety of other data structures. We will need to know about these other
data structures because different R functions produce results in a variety of
different formats. For example, consider the result of the following code:

R> candyLevels <- lapply(candy, levels)
R> candyLevels

●

1
2
3

●

●

F

●

a
b
c

$shape
[1] "round" "oval" "long"

$pattern
[1] "pattern" "plain"

$shade
[1] "light" "dark"

$count
NULL

The lapply() function is described in more detail in Section 11.7.3. For
now, we just need to know that this code calls the levels() function for each
of the variables in the candy data frame. The levels() function returns
the levels of a factor (the possible categories in a categorical variable), so
the result of the lapply() function is a set of levels for each variable in the
data set.

The number of levels is different for each variable; in fact, the count variable
is numeric so it has no levels at all. This means that the lapply() function
has to return several vectors of information, each of which may have a
different length. This cannot be done using a data frame; instead the result
is returned as a data structure called a list.

A list is a very flexible data structure. It can have several components,

“itdt” — 2008/5/19 — 14:15 — page 254 — #280i
i

i
i

i
i

i
i

254 Introduction to Data Technologies

each of which can be any data structure of any length or size. In the current
example, there are four components, three of which are character vectors of
differing lengths, and one of which is NULL (empty).

The components of a list can have names—in this case, the names have
come from the names of the variables in the data set—and the names()
function can be used to extract these names. Individual components of a
list can be extracted using the $ operator, just like for data frames.

R> names(candyLevels)

a
b
c

[1] "shape" "pattern" "shade" "count"

R> candyLevels$shape

a
b
c

[1] "round" "oval" "long"

Section 11.4 contains more information about extracting subsets of a list.

It is also possible to create a list directly using the list() function. For
example, the following code creates a list of the levels of just the factors in
the candy data frame:

R> list(shape=levels(candy$shape),
pattern=levels(candy$pattern),
shade=levels(candy$shade))

●

1
2
3

●

●

F

●

a
b
c

$shape
[1] "round" "oval" "long"

$pattern
[1] "pattern" "plain"

$shade
[1] "light" "dark"

Everyone who has worked with a computer should be familiar with the idea
of a list because a directory or folder of files has this sort of structure; a
folder contains multiple files of different kinds and sizes and a folder can
contain other folders, which can contain more files or even more folders,
and so on. Lists have this hierarchical structure.

“itdt” — 2008/5/19 — 14:15 — page 255 — #281i
i

i
i

i
i

i
i

Data Crunching 255

11.3.8 Matrices and arrays

Another sort of data structure in R, that lies in between vectors and data
frames, is the matrix. This is a two-dimensional structure (like a data
frame), but one where all values are of the same type (like a vector).

As for lists, it is useful to know how to work with matrices because many
R functions either return a matrix as their result or take a matrix as an
argument. The data.matrix() function is one example; it takes a data
frame and returns a matrix by converting all factors to their underlying
integer codes (see page 249).

R> data.matrix(candy)

1 4 7
2 5 8
3 6 9

shape pattern shade count
[1,] 1 1 1 2
[2,] 2 1 1 0
[3,] 3 1 1 3
[4,] 1 2 1 1
[5,] 2 2 1 3
[6,] 3 2 1 2
[7,] 1 1 2 9
[8,] 2 1 2 0
[9,] 3 1 2 2
[10,] 1 2 2 1
[11,] 2 2 2 11
[12,] 3 2 2 2

It is also possible to create a matrix directly using the matrix() function,
as in the following code (notice that values are used column-first).

R> matrix(1:100, ncol=10, nrow=10)

1 4 7
2 5 8
3 6 9

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 11 21 31 41 51 61 71 81 91
[2,] 2 12 22 32 42 52 62 72 82 92
[3,] 3 13 23 33 43 53 63 73 83 93
[4,] 4 14 24 34 44 54 64 74 84 94
[5,] 5 15 25 35 45 55 65 75 85 95
[6,] 6 16 26 36 46 56 66 76 86 96
[7,] 7 17 27 37 47 57 67 77 87 97
[8,] 8 18 28 38 48 58 68 78 88 98
[9,] 9 19 29 39 49 59 69 79 89 99
[10,] 10 20 30 40 50 60 70 80 90 100

“itdt” — 2008/5/19 — 14:15 — page 256 — #282i
i

i
i

i
i

i
i

256 Introduction to Data Technologies

The array data structure extends the idea of a matrix to more than two
dimensions. For example, a three-dimensional array corresponds to a data
cube. The array() function can be used to create an array.

R> array(1:8, dim=c(2, 2, 2))

1 4 7
2 5 8
3 6 9

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

11.4 Subsetting

In the previous section, we saw that data can be represented in R as quite
large and complex data structures.

In order to work with the data, we need to be able to extract smaller parts
of these data structures, such as a single variable from a data frame.

We will refer to this sort of operation as selecting a subset from a data
structure. It is analogous to performing a query on a database (see Chapter
9).

R has very powerful mechanisms for subsetting. In this section, we will
outline the basic format of these operations and many more examples will
be demonstrated as we progress through the rest of the chapter.

We have previously seen that we can get a single variable from a data frame
using the $ operator. For example, the count variable can be obtained from
the candy data set using candy$count. Another way to do the same thing
is to use the double-square-bracket subsetting operator, [[, and specify the
variable of interest as a string.

R> candyCounts <- candy[["count"]]
R> candyCounts

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

“itdt” — 2008/5/19 — 14:15 — page 257 — #283i
i

i
i

i
i

i
i

Data Crunching 257

The advantage of the [[operator is that it allows a number or an expression
as the index. For example, the count variable is the fourth variable, so this
code also works.
R> candy[[4]]

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

The following code evaluates an expression that determines which of the
variables in the data frame is numeric and then selects just that variable
from the data frame. The sapply() function is described in Section 11.7.
The which() function returns the indices of all TRUE values in a logical
vector.
R> sapply(candy, is.numeric)

F
T
F

shape pattern shade count
FALSE FALSE FALSE TRUE

R> which(sapply(candy, is.numeric))

1
2
3

count
4

R> candy[[which(sapply(candy, is.numeric))]]

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

R has another subsetting operator consisting of single square brackets, [.
This is similar to the [[operator, but it is more flexible because it allows
several elements to be selected, rather than just one. For example, the
following code produces the first three counts (the number of light-shaded
candies with a pattern).

R> candyCounts[1:3]

1
2
3

[1] 2 0 3

The indices can be any integer sequence, they can include repetitions, and
even negative numbers (to exclude specific values). The following two ex-
amples produce counts for all candies with a pattern and then all counts
except the count for round plain dark candies.

R> candyCounts[c(1:3, 7:9)]

1
2
3

[1] 2 0 3 9 0 2

R> candyCounts[-10]

1
2
3

[1] 2 0 3 1 3 2 9 0 2 11 2

“itdt” — 2008/5/19 — 14:15 — page 258 — #284i
i

i
i

i
i

i
i

258 Introduction to Data Technologies

As well as using integers for indices, we can use logical values. For example,
a better way to express the idea that we want the counts for all candies with
a pattern is to use an expression like this:

R> hasPattern <- candy$pattern == "pattern"
R> hasPattern

F
T
F

[1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[10] FALSE FALSE FALSE

This vector of logical values can be used as an index to return all of the
counts where hasPattern is TRUE.
R> candyCounts[hasPattern]

1
2
3

[1] 2 0 3 9 0 2

Better still would be to work with the entire data frame and retain the
pattern with the counts, so that we can check that we have the correct
result. A data frame can be indexed using the [operator too, though
slightly differently because we have to specify both which rows and which
columns we want. Here are two examples which extract the pattern and
count variables from the data frame for all candies with a pattern:

R> candy[hasPattern, c(2, 4)]

R> candy[hasPattern, c("pattern", "count")]
●

1
2
3

●

a
b
c

●

F
T
F

pattern count
1 pattern 2
2 pattern 0
3 pattern 3
7 pattern 9
8 pattern 0
9 pattern 2

In both cases, the index is of the form [<rows>, <columns>], but the first
example uses column numbers and the second example uses column names.
The result is still a data frame, just a smaller one.

The function subset() provides another way to perform this sort of subset-
ting, with a subset argument for specifying the rows and a select argument
for specifying the columns.

“itdt” — 2008/5/19 — 14:15 — page 259 — #285i
i

i
i

i
i

i
i

Data Crunching 259

R> subset(candy, subset=hasPattern,
select=c("pattern", "count"))

●

1
2
3

●

a
b
c

●

F
T
F

pattern count
1 pattern 2
2 pattern 0
3 pattern 3
7 pattern 9
8 pattern 0
9 pattern 2

It is possible to leave the row or column index completely empty, in which
case all rows or columns are returned. For example, this code extracts all
variables for the light-shaded candies with a pattern:

R> candy[1:3,]
●

1
2
3

●

a
b
c

●

F
T
F

shape pattern shade count
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3

It is also possible to extract all rows for a selection of variables in a data
frame by just specifying a single index with the [operator.

R> candy["count"]
●

1
2
3

●

a
b
c

●

F
T
F

count
1 2
2 0
3 3
4 1
5 3
6 2
7 9
8 0
9 2
10 1
11 11
12 2

This result, which is a data frame, is quite different to the result from using
the [[operator, which gives a vector.

R> candy[["count"]]

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

“itdt” — 2008/5/19 — 14:15 — page 260 — #286i
i

i
i

i
i

i
i

260 Introduction to Data Technologies

This is another difference between the subsetting operators: [[extracts just
a single component from a larger data structure, but [extracts a smaller
version of the larger data structure. It is like the difference between remov-
ing a single egg from an egg carton and ripping an egg carton into two pieces
(and keeping the eggs intact).

11.4.1 Accessor functions

Some R functions produce complex results (e.g., the result of a linear re-
gression returned by lm()). These results are often returned as list objects,
which makes it tempting to obtain various subsets of the results, e.g., the
model coefficients from a linear regression, using the basic subsetting syntax.
However, this is usually not the correct approach.

Many functions that produce complex results are accompanied by a set of
other functions that perform the extraction of useful subsets of the result.
For example, the coefficients of a linear regression analysis should be ob-
tained using the coef() function.

The reason for this is so that the people who write a function that produces
complex results can change the structure of the result without breaking code
that extracts subsets of the result. This idea is known as encapsulation.

11.4.2 Assigning to a subset

The subsetting operators can also be used to assign a value to only some
components of a larger data structure. As an example, we will look at
replacing the zero values in the counts of candies with a missing value, NA.

The zeroes occur as the second and eighth value of the vector candyCounts.

R> candyCounts

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

The following code replaces the zeroes with NAs.

R> candyCounts[c(2, 8)] <- NA
R> candyCounts

1
2
3

[1] 2 NA 3 1 3 2 9 NA 2 1 11 2

As with extracting subsets, the indices can be a wide variety R expressions.
A better way to perform the above replacement would be to let the computer
figure out which values are zeroes, as in the following code.

“itdt” — 2008/5/19 — 14:15 — page 261 — #287i
i

i
i

i
i

i
i

Data Crunching 261

R> candyCounts[candyCounts == 0] <- NA

11.5 More on Data Types

11.5.1 Type coercion

We have seen several examples of functions that take an object of one type
and return an object of a different type. For example, the data.matrix()
function takes a data frame and returns a matrix.

There are general functions of the form as.type() for deliberately converting
between different types of object; an operation known as type coercion.
For example, the function for converting an object to a numeric vector is
called as.numeric() and the function for converting to a character vector
is called as.character().

An interesting example is the as.matrix() function to convert an object
from a data frame to a matrix. The following code does this for the candy
data frame.
R> as.matrix(candy)

1 4 7
2 5 8
3 6 9

shape pattern shade count
[1,] "round" "pattern" "light" " 2"
[2,] "oval" "pattern" "light" " 0"
[3,] "long" "pattern" "light" " 3"
[4,] "round" "plain" "light" " 1"
[5,] "oval" "plain" "light" " 3"
[6,] "long" "plain" "light" " 2"
[7,] "round" "pattern" "dark" " 9"
[8,] "oval" "pattern" "dark" " 0"
[9,] "long" "pattern" "dark" " 2"
[10,] "round" "plain" "dark" " 1"
[11,] "oval" "plain" "dark" "11"
[12,] "long" "plain" "dark" " 2"

This is interesting because, unlike the data.matrix() function, which con-
verts all values to numbers, the as.matrix() function has converted all of
the values in the data set to strings (because not all of the variables in the
data frame are numeric). Even the factors have been converted to strings.

It is important to keep in mind that many functions will automatically
perform type coercion if we give them an argument in the wrong form. For

“itdt” — 2008/5/19 — 14:15 — page 262 — #288i
i

i
i

i
i

i
i

262 Introduction to Data Technologies

example, the paste() function expects to be given strings to concatenate
(see Section 11.8). If we give it objects which do not contain strings, paste()
will automatically coerce them to strings.

R> paste(candy$shape, candy$count)

a
b
c

[1] "round 2" "oval 0" "long 3" "round 1" "oval 3"
[6] "long 2" "round 9" "oval 0" "long 2" "round 1"
[11] "oval 11" "long 2"

11.5.2 Attributes

The value of a symbol in R can be any sort of data structure, e.g., a vector,
a data frame, a matrix, or a list. In addition, a symbol may contain other
information, perhaps metadata related to the data structure, in what are
called attributes.

For example, the names of the variables in a data frame and the levels of a
factor are stored as attributes.

Some very common attributes are:

dim The dimensions of a structure, e.g., the number of rows and columns
in a data frame or matrix. The dim() function returns this attribute;
nrow() and ncol() return just the appropriate dimension.

R> dim(candy)

1
2
3

[1] 12 4

names The labels associated with each element of a vector or list. These
are usually obtained using the names() function. The rownames()
and colnames() functions are useful for obtaining labels from two-
dimensional structures. The dimnames() function is useful for arrays
of arbitrary dimension.

R> colnames(candy)

a
b
c

[1] "shape" "pattern" "shade" "count"

Any information can be stored in the attributes of an object. The function
attributes() lists all existing attributes of an object and the function
attr() can be used to get or set a single attribute.

“itdt” — 2008/5/19 — 14:15 — page 263 — #289i
i

i
i

i
i

i
i

Data Crunching 263

11.5.3 Classes

With all of these different data structures available in R and with different
functions returning results in various formats, it is useful to be able to
determine the exact nature of an R object.

Every object in R has a special attribute called its class that describes the
object’s structure; the class of an object can be obtained using the class()
function. For example, candy is a data frame, candy$shape is a factor, and
candy$count is a (numeric) vector.

R> class(candy)

[1] "data.frame"

R> class(candy$shape)

[1] "factor"

R> class(candy$count)

[1] "numeric"

It is possible to create new classes in R and many R packages use this
facility to identify complicated R objects that are created by functions in the
package. For example, the stats package has a ts() function for entering
time-series data. The object returned by this function contains information
about both the data values and the time points associated with the data
values; the complete object has the class "ts".

11.5.4 Generic functions

We saw previously that many R functions will accept a variety of data
structures as arguments. For example, the paste() function can be given
numbers as well as text and it will automatically convert the numbers into
text before concatenating everything together.

R> paste("a", 1)

a
b
c

[1] "a 1"

This approach makes use of type coercion; the function always does the
same thing (e.g., pastes strings together) and it forces the arguments into
the data type that it requires.

“itdt” — 2008/5/19 — 14:15 — page 264 — #290i
i

i
i

i
i

i
i

264 Introduction to Data Technologies

Some other functions, known as generic functions, take a different ap-
proach. Instead of coercing the arguments, they look at the class of the
arguments and behave differently for different classes. Instead of changing
the arguments to fit the function, the function changes to fit the arguments.

An example of a generic function is the summary() function. This func-
tion prints a brief summary of the important contents of an object; what
sort of information gets displayed depends on what sort of object is being
summarised.

For example, the summary for a factor gives a table of counts, but the
summary for a numeric vector gives a five-number summary (plus the mean).

R> summary(candy$shape)

1
2
3

round oval long
4 4 4

R> summary(candy$count)

class Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1 2 3 3 11

Notice that the table of counts is not a vector or any other data structure
that we have encountered so far. It is in fact an object of class "table"
(which behaves very like and array).

11.5.5 Exploring objects

If the class of an object is unfamiliar, the str() function is a useful way of
seeing what information is stored in the object. This function is also useful
when dealing with large objects because it only shows a sample of the values
in each part of the object.

R> str(candy$shape)

Factor w/ 3 levels "round","oval",..: 1 2 3 1 2 3 1 2 3 1 ...

Another function that is useful for inspecting a large object is the head()
function. This just shows the first few elements of an object, so we can see
the basic structure without seeing all of the values. There is also a tail()
function for viewing the last few elements of an object.

“itdt” — 2008/5/19 — 14:15 — page 265 — #291i
i

i
i

i
i

i
i

Data Crunching 265

R> head(candy)
●

1
2
3

●

a
b
c

●

F
T
F

shape pattern shade count
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3
4 round plain light 1
5 oval plain light 3
6 long plain light 2

11.5.6 Flashback: Numbers in computer memory

In Section 7.2.3, we discussed how numbers are stored in computer memory.
That discussion took place in the context of storing data in a file on a
persistent storage medium such as a hard disk or CD.

We are now in a different context. When we work with data in R, data values
need to be represented in “resident” computer memory, in the computer’s
RAM (Random Access Memory). We need the data to be stored within the
computer memory that is being used by R.

This means that we have the same issues as before with representing text
and numbers as series of binary digits. In particular, there are limits to
the precision with which numeric values can be represented in computer
memory.

11.5.7 Case study: Network packets (continued)

The network packet data set described in Section 7.2.4 contains measure-
ments of the time that a packet of information arrives at a location in a
network. These measurements are the number of seconds since January 1st

1970 and are recorded to the nearest 10,000th of a second, so they are very
large and very precise numbers. For example, one time measurement from
2006 was 1156748010.47817 seconds.

What happens if we try to enter numbers like these into R?

R> 1156748010.47817

1
2
3

[1] 1156748010

The result looks worse than it is. It appears that R has only read in the value
up to the decimal point. However, this illustrates an important conceptual
distinction between how R stores values and how R prints values. R has

“itdt” — 2008/5/19 — 14:15 — page 266 — #292i
i

i
i

i
i

i
i

266 Introduction to Data Technologies

stored the value with full precision, but it does not print numeric values to
full precision by default. The number of significant digits printed by R is
controlled via the options() function. This function can be used to view
and control global settings for an R session. For example, we can ask R to
print numbers with full precision as follows.

R> options(digits=15)
R> 1156748010.47817

1
2
3

[1] 1156748010.47817

The default is to print only seven significant digits, though the option value
is only approximate and will not be obeyed exactly in all cases.

R> options(digits=7)

Section 11.8 has more information about how to display numbers with pre-
cise control.

Comparisons between real values must be performed with care because of
the inaccuracy inherent in a real value that is stored in computer memory
(see page 111).

In particular, the function all.equal() is useful for determining whether
two real values are (approximately) equivalent.

“itdt” — 2008/5/19 — 14:15 — page 267 — #293i
i

i
i

i
i

i
i

Data Crunching 267

11.5.8 Case study: The greatest equation ever

A protrait of Leonhard Euler by
Emanuel Handmann, 1753.9

Euler’s identity is one of the most famous and admired equations in math-
ematics. It holds such an exalted status because it uses the fundamental
mathematical operations of addition, multiplication, and exponentiation ex-
actly once and it relates several fundamental mathematical constants: 0, 1,
π, e, and i (the square root of minus one; the imaginary unit).

eiπ + 1 = 0

Unfortunately, R does not appear to have such a high opinion of Euler’s
identity. In fact, R thinks that Euler is wrong!

R> exp(pi*1i) + 1 == 0 + 0i

F
T
F

[1] FALSE

What is going on? The problem is that it is not sensible to compare real
values for equality. In this case, we are comparing complex values, but that
boils down to comparing the real components and the real coefficients of
the imaginary components. The problem is that the imaginary component
of the left-hand side of the equation is very close to, but not quite exactly
0i.

9Source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Leonhard_Euler_3.jpg

This image is in the Public Domain.

http://commons.wikimedia.org/wiki/Image:Leonhard_Euler_3.jpg

“itdt” — 2008/5/19 — 14:15 — page 268 — #294i
i

i
i

i
i

i
i

268 Introduction to Data Technologies

R> exp(pi*complex(im=1)) + 1

1
2
3

[1] 0+1.224606e-16i

This is an example where the all.equal() function can be used to compare
real values and ignore tiny differences at the level of the precision of the
computer.

R> all.equal(exp(pi*complex(im=1)) + 1, 0 + 0i)

F
T
F

[1] TRUE

Hooray! Euler’s identity is saved!

11.6 Data import/export

Almost all of the examples to this point have used data that is typed explic-
itly as R expressions. In practice, data usually reside in one or more files of
various formats. This section looks at R functions that can be used to read
data into R from external files.

We will also look at some functions to go the other way and write data from
within an R session to an external format.

11.6.1 Specifying files

The first thing we need to be able to do is specify which file we want to work
with. Any function that works with a file requires a precise description of
the name of the file and the location of the file.

A file name is just a string, e.g., "pointnemotemp.txt", but specifying
the location of a file can involve a path, which describes a location on a
persistent storage medium, such as a hard drive.

The best way to specify a path in R is via the file.path() function because
this avoids the differences between path descriptions on different operating
systems. For example, the following code generates a path to a file within
a directory:10

R> file.path("LAS", "pointnemotemp.txt")

[1] "LAS/pointnemotemp.txt"

10The result shown is appropriate for a Linux system.

“itdt” — 2008/5/19 — 14:15 — page 269 — #295i
i

i
i

i
i

i
i

Data Crunching 269

The file.choose() function can be used to allow interactive selection of a
file. This is particularly effective on Windows because it provides a familiar
file selection dialog box.

11.6.2 Text files

A very common format in which to receive a data set is just as a plain text
file.

R has functions for reading in the standard types of plain text formats (see
Section 7.3), each of which creates a data frame from the contents of the
text file:

• read.table() for data in a delimited format (by default, the delimiter
is white space).

• read.fwf() for data in a fixed-width format.
• read.csv() for CSV files.

There is also a function readLines() that creates a character vector from
a text file, where each line of the text file becomes a separate element of
the vector. This is useful for processing the text within a file that does not
have a standard format (see Section 11.8).

11.6.3 Case Study: Point Nemo (continued)

The temperature data obtained from NASA’s Live Access Server for the
Pacific Pole of Inaccessibility (see Section 1.1) was delivered in a plain text
format (see Figure 11.7, which reproduces Figure 1.2 for convenience). How
can we load this temperature information into R?

One way to view the format of the file in Figure 11.7 is that the data start
on line 9 and data values are separated by whitespace. We will use the
read.table() function to read the Point Nemo temperature information
and create a data frame.

“itdt” — 2008/5/19 — 14:15 — page 270 — #296i
i

i
i

i
i

i
i

270 Introduction to Data Technologies

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 11.7: The first few lines of output from the Live Access Server for the

surface temperature at Point Nemo. This is a reproduction of Figure 1.2.

R> pointnemotemp <-
read.table("pointnemotemp.txt", skip=8)

R> head(pointnemotemp)

V1 V2 V3 V4 V5
1 16-JAN-1994 0 / 1: 278.9
2 16-FEB-1994 0 / 2: 280.0
3 16-MAR-1994 0 / 3: 278.9
4 16-APR-1994 0 / 4: 278.9
5 16-MAY-1994 0 / 5: 277.8
6 16-JUN-1994 0 / 6: 276.1

By default, read.table() assumes that the text file contains a data set
with one case on each row and that each row contains multiple values, with
each value separated by white space (one or more spaces or tabs). The skip
argument is used to ignore the first few lines of a file when, for example,
there is header information or metadata at the start of the file before the
actual data values.

A data frame is produced with a variable for each column of values in the
text file. The types of variables are determined automatically; if a column
only contains numbers, the variable is numeric, otherwise, the variable is a
factor.

The names of the variables in the data frame can be read from the file, or

“itdt” — 2008/5/19 — 14:15 — page 271 — #297i
i

i
i

i
i

i
i

Data Crunching 271

specified explicitly in the call to read.table(). Otherwise, as in this case,
R will generate a unique name for each column.

The result in this case is not perfect because we end up with several columns
of junk that we do not want. We can use a few more arguments to read.table()
to improve things greatly.

R> pointnemotemp <-
read.table("pointnemotemp.txt", skip=8,

colClasses=c("character",
"NULL", "NULL", "NULL",
"numeric"),

col.names=c("date", "", "", "", "temp"))
R> head(pointnemotemp)

date temp
1 16-JAN-1994 278.9
2 16-FEB-1994 280.0
3 16-MAR-1994 278.9
4 16-APR-1994 278.9
5 16-MAY-1994 277.8
6 16-JUN-1994 276.1

The colClasses argument allows us to control the types of the variables
explicitly. In this case, we have forced the first variable to be just text (these
values are dates, not categories). There are five columns of values in the
text file (treating white space as a column break), but we are not interested
in the middle three, so we use "NULL" to indicate that these columns should
not be included in the data frame.

It is common for the names of the variables to be included as the first line
of a text file (the header argument can be used to read variable names from
such a file). In this case, we provide the variable names explicitly, using the
col.names argument.

The read.table() function is quite flexible and can be used for a variety
of plain text formats. If the format is too complex for read.table() to
handle, the scan() function may be able to help; this function is also useful
for reading in very large text files because it is faster than read.table().

Reading a fixed-width format

Another way to view the Point Nemo text file is as a fixed-width format
file. For example, the date data always resides in the first 11 characters of

“itdt” — 2008/5/19 — 14:15 — page 272 — #298i
i

i
i

i
i

i
i

272 Introduction to Data Technologies

each line. This means that we could also read the file using read.fwf().

R> pointnemotemp <-
read.fwf("pointnemotemp.txt", skip=8,

widths=c(12, -10, 6),
colClasses=c("character", "numeric"),
col.names=c("date", "temp"))

R> head(pointnemotemp)

date temp
1 16-JAN-1994 278.9
2 16-FEB-1994 280.0
3 16-MAR-1994 278.9
4 16-APR-1994 278.9
5 16-MAY-1994 277.8
6 16-JUN-1994 276.1

The widths argument specifies how wide each column of data is, with neg-
ative values used to ignore the specified number of characters.

One thing that should be disturbing about the previous examples is that
they have just completely ignored all of the metadata in the head of the file.
This information is also very important and we would like to have some way
to access it.

The readLines() function can help us here, at least in terms of getting raw
text into R. The following code reads the first 8 lines of the text file into a
character vector.

R> readLines("pointnemotemp.txt", n=8)

[1] " VARIABLE : Mean TS from clear sky composite (kelvin)"

[2] " FILENAME : ISCCPMonthly_avg.nc"

[3] " FILEPATH : /usr/local/fer_dsets/data/"

[4] " SUBSET : 93 points (TIME)"

[5] " LONGITUDE: 123.8W(-123.8)"

[6] " LATITUDE : 48.8S"

[7] " 123.8W "

[8] " 23"

Section 11.8 will describe some tools that could be used to extract the
metadata values from this text.

“itdt” — 2008/5/19 — 14:15 — page 273 — #299i
i

i
i

i
i

i
i

Data Crunching 273

date,temp

16-JAN-1994,278.9

16-FEB-1994,280

16-MAR-1994,278.9

16-APR-1994,278.9

16-MAY-1994,277.8

16-JUN-1994,276.1

16-JUL-1994,276.1

16-AUG-1994,275.6

...

Figure 11.8: The first few lines of the surface temperature at Point Nemo in a

cleaned up CSV format.

Writing a CSV format

As a simple demonstration of the use of functions that can write plain text
files, we can export the R data frame containing the Point Nemo values in
a CSV format using write.csv() (see Figure 11.8).

R> write.csv(pointnemotemp, "pointnemoplain.csv",
quote=FALSE, row.names=FALSE)

The quote argument controls whether quote-marks are printed around text
values and the row.names argument controls whether an extra column of
unique names is printed at the start of each line.

We will continue to use the Point Nemo data set, in various formats through-
out the rest of this section.

11.6.4 XML

It is possible to import data from an XML document into R using a standard
function like readLines() because XML is just text. However, extracting
the information from the text is not trivial because it requires knowledge of
XML.

Fortunately, there is an R package called XML that contains functions for
reading and extracting data from XML files into R.

The R objects that are generated from reading XML files are complex list
structures and should be worked with using the functions provided by the
XML package.

“itdt” — 2008/5/19 — 14:15 — page 274 — #300i
i

i
i

i
i

i
i

274 Introduction to Data Technologies

<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

Figure 11.9: The first few lines of the surface temperature at Point Nemo in two

formats: plain text and XML. This is a reproduction of the top half of Figure 7.7.

On the other hand, these objects are excellent examples of data structures
with a specific class, so there are also a number of familiar generic functions
that will work appropriately with objects generated by the XML pacakage.

The following case study demonstrates some of the functions from the XML
package.

The Point Nemo temperature data (see Section 1.1) were originally obtained
in a plain text format (see Figure 11.7). Figure 11.9 shows one possible XML
format for the same information.

Using the xmlTreeParse() function from the XML package, this file can be
read into R quite easily.

R> library(XML)

R> nemoDoc <-
xmlTreeParse(file.path("LAS",

"pointnemotemp.xml"))

However, the nemoDoc object is relatively complex so we must use special
functions to extract information from it. For example, the xmlRoot() func-

“itdt” — 2008/5/19 — 14:15 — page 275 — #301i
i

i
i

i
i

i
i

Data Crunching 275

tion extracts the “root” or top-most element from the document.

For each element, it is simple to extract the name of the element us-
ing xmlName(). In our example, the root element of the document is a
temperatures element.

R> nemoDocRoot <- xmlRoot(nemoDoc)
R> xmlName(nemoDocRoot)

[1] "temperatures"

The root element is itself quite complex; in particular, it is hierarchical to
reflect the nested nature of the XML elements in the original document.
However, normal R subsetting operations can be used to extract child ele-
ments of the root element.

For example, the first child element is a variable element describing the
variable that is stored in the data set.
R> nemoDocRoot[[1]]

<variable>Mean TS from clear sky composite (kelvin)</variable>

Because XML elements all have names, elements can also be extracted using
text indices.
R> nemoDocRoot[["variable"]]

<variable>Mean TS from clear sky composite (kelvin)</variable>

The values of attributes or the contents of individual elements can be ob-
tained using the functions xmlAttrs() and xmlValue().

R> xmlValue(nemoDocRoot[["variable"]])

[1] "Mean TS from clear sky composite (kelvin)"

Where there are several elements with the same name, subsetting will return
only the first element with the appropriate name. Here we extract the
temperature value from the first case element (note that it is a text value!).

R> xmlGetAttr(nemoDocRoot[["case"]], "temperature")

[1] "278.9"

Single-square brackets, plus additional all argument can be used to return

“itdt” — 2008/5/19 — 14:15 — page 276 — #302i
i

i
i

i
i

i
i

276 Introduction to Data Technologies

all elements with a particular name. The result in this case is a list of XML
elements.
R> head(nemoDocRoot["case", all=TRUE])

$case
<case date="16-JAN-1994" temperature="278.9"/>

$case
<case date="16-FEB-1994" temperature="280"/>

$case
<case date="16-MAR-1994" temperature="278.9"/>

$case
<case date="16-APR-1994" temperature="278.9"/>

$case
<case date="16-MAY-1994" temperature="277.8"/>

$case
<case date="16-JUN-1994" temperature="276.1"/>

Some of the concepts from Section 11.7 for working with list objects will
be needed to become fully proficient with the XML package. For example, ex-
tracting all of the temperature data values requires calling the xmlGetAttr()
function on each case element of the document root.
R> nemoDocTemps <-

as.numeric(sapply(nemoDocRoot["case", all=TRUE],
xmlGetAttr, "temperature"))

R> nemoDocTemps

[1] 278.9 280.0 278.9 278.9 277.8 276.1 276.1 275.6 275.6
[10] 277.3 276.7 278.9 281.6 281.1 280.0 278.9 277.8 276.7
[19] 277.3 276.1 276.1 276.7 278.4 277.8 281.1 283.2 281.1
[28] 279.5 278.4 276.7 276.1 275.6 275.6 276.1 277.3 278.9
[37] 280.5 281.6 280.0 278.9 278.4 276.7 275.6 275.6 277.3
[46] 276.7 278.4 279.5

Another way to extract elements from an XML object is to make use of
the XPath language that was described in Section 9.3.1. The XML doc-
ument must be read into R in a slightly different manner (to avoid wast-
ing memory) and then the xpathApply() function can be used to extract
elements, attribute, and their values. In the following example, we ex-

“itdt” — 2008/5/19 — 14:15 — page 277 — #303i
i

i
i

i
i

i
i

Data Crunching 277

tract the temperature attribute values from all case elements. The XPath
"/temperatures/case/@temperature" selects all of the temperature at-
tributes of the case elements within the root temperatures element.

R> nemoInternalDoc <-
xmlTreeParse(file.path("LAS",

"pointnemotemp.xml"),
useInternalNodes=TRUE)

R> nemoDocTemps <-
as.numeric(

unlist(
xpathApply(

nemoInternalDoc,
"/temperatures/case/@temperature",
xmlValue)))

R> free(nemoInternalDoc)

Again, a complete understanding of this code may only come after a greater
familiarity with list-handling functions has been achieved.

11.6.5 Binary files

As discussed in Section 7.5, it is only possible to extract data from a binary
file with an appropriate piece of software.

This obstacle is less of a problem for binary formats that are publicly doc-
umented because it is then possible (at least in principle) to write software
that can read the format. In some cases, such software has already been
written and made available to the public. An example is the NetCDF soft-
ware library.11

A number of R packages exist for reading particular formats. For example,
the foreign package contains functions for reading files produced by other
popular statistics software systems, such as SAS, SPSS, Systat, Minitab,
and Stata. The ncdf package provides functions for reading NetCDF files.

We will look again at the Point Nemo temperature data (see Section 1.1)
to demonstrate a simple use of the ncdf package. Yet another format for
the Point Nemo temperature data is as a NetCDF file. Figure 11.10 shows
both a structured and an unstructured view of the raw binary file.

A NetCDF file has a flexible structure, but it is self-describing. This means
that we must read the file in stages. First of all, we open the file and inspect

11http://www.unidata.ucar.edu/software/netcdf/

http://www.unidata.ucar.edu/software/netcdf/

“itdt” — 2008/5/19 — 14:15 — page 278 — #304i
i

i
i

i
i

i
i

278 Introduction to Data Technologies

0 : 43 44 46 01 00 00 | CDF...
6 : 00 00 00 00 00 0a |
12 : 00 00 00 01 00 00 |
18 : 00 04 54 69 6d 65 | ..Time
24 : 00 00 00 5d 00 00 | ...]..
30 : 00 00 00 00 00 00 |
36 : 00 00 00 0b 00 00 |
42 : 00 02 00 00 00 04 |
48 : 54 69 6d 65 00 00 | Time..
54 : 00 01 00 00 00 00 |
...

=========magicNumber
0 : 43 44 46 01 | CDF.

=========numRecords
4 : 00 00 00 00 | 0

=========dimensionArrayFlag
8 : 00 00 00 0a | 10

=========dimensionArraySize
12 : 00 00 00 01 | 1

=========dim1NameSize
16 : 00 00 00 04 | 4

=========dim1Name
20 : 54 69 6d 65 | Time

=========dim1Size
24 : 00 00 00 5d | 93

...

Figure 11.10: The first few bytes of the surface temperature at Point Nemo in a

NetCDF format. The top view shows the unstructures bytes and the lower view

shows a more meaningful interpretation of the first few components of the file.

The latter reveals that there is a single dimension variable in the NetCDF file,

which is named Time and has 93 values.

“itdt” — 2008/5/19 — 14:15 — page 279 — #305i
i

i
i

i
i

i
i

Data Crunching 279

the contents.

R> library(ncdf)

R> nemonc <- open.ncdf("pointnemotemp.nc")
R> nemonc

file pointnemotemp.nc has 1 dimensions:
Time Size: 93

file pointnemotemp.nc has 1 variables:
float Temperature[Time] Longname:Temperature

Having seen that the file contains a single variable called Temperature, we
extract that variable from the file with a separate function call.

R> nemoTemps <- get.var.ncdf(nemonc, "Temperature")
R> nemoTemps

[1] 278.9 280.0 278.9 278.9 277.8 276.1 276.1 275.6 275.6
[10] 277.3 276.7 278.9 281.6 281.1 280.0 278.9 277.8 276.7
[19] 277.3 276.1 276.1 276.7 278.4 277.8 281.1 283.2 281.1
[28] 279.5 278.4 276.7 276.1 275.6 275.6 276.1 277.3 278.9
[37] 280.5 281.6 280.0 278.9 278.4 276.7 275.6 275.6 277.3
[46] 276.7 278.4 279.5 282.2 281.6 281.6 280.0 278.9 277.3
[55] 276.7 276.1 276.1 276.1 277.8 277.3 278.4 284.2 279.5
[64] 277.3 278.4 275.0 275.6 274.4 275.6 276.7 276.1 278.4
[73] 279.5 279.5 278.9 277.8 277.8 275.6 275.6 275.0 274.4
[82] 275.6 277.3 278.4 281.1 283.2 281.1 279.5 277.3 276.7
[91] 275.6 274.4 275.0

In most cases, where a function exists to read a particular binary format,
there will also be a function to write data out in that format.

11.6.6 Spreadsheets

When data is stored in a spreadsheet, one common approach is to save the
data in a text format as an intermediate step and then read the text file
into another program.

This makes the data easy to share, because text formats are very portable,
but it has the disadvantage that another copy of the data is created.

This is less efficient in terms of storage space and it creates issues if the

itdt -- 2008/5/19 -- 14:15 -- page 280 -- #306i
i

i
i

i
i

i
i

280 Introduction to Data Technologies

Figure 11.11: The Point Nemo data stored as an Excel spreadsheet.

original spreadsheet is updated.

If changes are made to the original spreadsheet, at best, there is extra work
to be done to update the text file as well. At worst, the text file is forgotten
and the update does not get propagated to other places.

There are several packages that provide ways to directly read data from
a spreadsheet into R. One example is the (Windows only) xlsReadWrite
package, which includes the read.xls() function.

Figure 11.11 shows a screen shot of the Point Nemo temperature data (see
Section 1.1) stored in a Microsoft Excel spreadsheet.

These data can be read into R using the following code.

“itdt” — 2008/5/19 — 14:15 — page 281 — #307i
i

i
i

i
i

i
i

Data Crunching 281

> library(xlsReadWrite)

> read.xls("temperatures.xls", colNames=FALSE)
V1 V2

1 34350 278.9
2 34381 280.0
3 34409 278.9
4 34440 278.9
5 34470 277.8
6 34501 276.1
...

Notice that the date information has come across as numbers (specifically,
the number of days since the 1st of January 1900).

11.6.7 Large data sets

Very large data sets are often stored in relational database management sys-
tems. Again, a simple approach to extracting information from the database
is to simply export it as text files and work with the text files. This is an even
worse option for databases than it was for spreadsheets because it is more
common to extract just part of a database, rather than an entire spread-
sheet. This can lead to several different text files from a single database
and these are even harder to maintain if the database changes.

There are packages for connecting directly to several major database man-
agement systems. Two main approaches exist, one based on the DBI package
and one based on the RODBC package.

The DBI package defines a set of standard (generic) functions for commu-
nicating with a database and a number of other packages, e.g., RMySQL and
RSQLite, build on that to provide functions specific to a particular database
system. The important functions to know about with this approach are:

dbDriver()
to create a “device driver” for the relevant database system.

dbConnect()
to connect to the database.

dbGetQuery()
to send an SQL statement to the database and receive a result, as a
data frame.

“itdt” — 2008/5/19 — 14:15 — page 282 — #308i
i

i
i

i
i

i
i

282 Introduction to Data Technologies

dbDisconnect()
to sever the connection with the database and release resources.

The RODBC package defines functions for communicating with any ODBC
(Open Database Connectivity) compliant software. This allows connections
with many different types of software, including, but not limited to, most
database management systems. The important functions to know about
with this approach are:

odbcConnect()
to connect to the ODBC application.

sqlQuery()
to send an SQL statement to the database and receive a result, as a
data frame.

odbcClose()
to sever the ODBC connection and release resources.

The simplest approach is provided by the RSQLite package because it in-
cludes the complete SQLite application, so no other software needs to be
installed.

11.6.8 Case Study: The Data Expo (continued)

The Data Expo data set (see Section 7.3.6) contains several different atmo-
spheric measurements, all measured at 72 different time periods and 576
different locations. These data have been stored in an SQLite database,
with a table for location information, a table for time period information,
and a table of the atmospheric measurements (see Section 9.2.2).

The following code extracts the average surface temperature across all lo-
cations and times.

R> library(RSQLite)

R> con <- dbConnect(dbDriver("SQLite"),
dbname="NASA/dataexpo")

R> result <-
dbGetQuery(con,

"SELECT AVG(surftemp) avgtemp
FROM measure_table")

R> dbDisconnect(con)

“itdt” — 2008/5/19 — 14:15 — page 283 — #309i
i

i
i

i
i

i
i

Data Crunching 283

R> result

avgtemp
1 296.2311

11.6.9 Basic file manipulations

Some data management tasks do not involve the contents of files at all, but
are only concerned with reorganising entire sets of files. Examples include
moving files between directories and renaming files.

These are tasks that are commonly performed via a GUI that is provided by
the operating system, for example, Windows Explorer on Windows or the
Finder on a Macintosh. However, as with most tasks we have discussed, if
a large number of files are involved it is much more efficient and much less
error-prone to perform these tasks by writing a script.

On the other hand, these operations do require more caution than usual
because, if a command is entered incorrectly, the effect is felt on the file
system, rather than just within the current R session, so mistakes are much
harder to recover from.

R provides functions for basic file manipulation, including list.files()
for listing the files in a directory, file.copy() for moving files between
directories, and file.rename() for renaming files.

11.6.10 Case study: Digital photography

Digital camera.12

Digital cameras have revolutionised photography.

No longer are we restricted to a mere 26 shots per film; it is now common

12Source: OpenClipart Library
http://openclipart.org/clipart//computer/hardware/digital-camera_aj_
ashton_01.svg
This image is in the Public Domain.

http://openclipart.org/clipart//computer/hardware/digital-camera_aj_ashton_01.svg
http://openclipart.org/clipart//computer/hardware/digital-camera_aj_ashton_01.svg

“itdt” — 2008/5/19 — 14:15 — page 284 — #310i
i

i
i

i
i

i
i

284 Introduction to Data Technologies

to be able to take hundreds of photographs on a basic camera. No longer
do we have to process a film in order to find out whether we have captured
the perfect shot; we can preview photographs instantly and photos can be
viewed in all their glory with a simple download to a computer. Print-
ing photographs is instantaneous and sharing photographs with friends and
family is almost too easy.

Unfortunately, digital cameras have also created a serious headache for many
amateur snappers.

Every digital camera owner has now acquired the task of storing and main-
taining thousands of computer files. Keeping track of this many files is a
novel, often unpleasant, and occasionally hair-raising experience for unso-
phisticated computer users.

As an example, we will look at a small subset of digital camera files that
have been stored in a directory called "Photos". Every time photos were
downloaded from the camera, they were stored in a separate directory, which
was named after the date of the download. The list.files() function can
be used to show the names of these directories:
R> directories <- list.files("Photos")
R> directories

[1] "061111" "061118" "061119" "061207" "061209"
[6] "061216" "061219" "061231" "06Nov05" "06Oct05"
[11] "06Oct15" "06Oct28" "06Sep17" "070103" "070105"
[16] "070107" "070108" "070113" "070114" "070117"
[21] "070202" "070218" "070223" "070303" "070331"

We can also list the individual files within each of the directories. The
following code shows that 11 files were downloaded on the 11th of November
2006:
R> list.files(file.path("Photos", "061111"),

pattern=".jpg")

[1] "061111 001.jpg" "061111 002.jpg" "061111 005.jpg"
[4] "061111 009.jpg" "061111 013.jpg" "061111 016.jpg"
[7] "061111 021.jpg" "061111 022.jpg" "061111 025.jpg"
[10] "061111 026.jpg" "061111 028.jpg"

Going back to the list of directories we can see that, unfortunately, the
naming of these directories has been a little undisciplined. Many of the
directories are named using a YYMMDD format where year, month, and day are
all represented by two-digit integers. However, some of the earlier directories

“itdt” — 2008/5/19 — 14:15 — page 285 — #311i
i

i
i

i
i

i
i

Data Crunching 285

used a slightly different format: YYmmmDD, where year and day are two-digit
integers, but month is a three-character abbreviated name.

There are two problems here: first, the YYMMDD can be ambiguous because
in a number of cases it is indistinguishable from YYDDMM (among others);
second, inconsistency in the naming scheme can become a major headache
when dealing with the photos later on. It would be much nicer if the direc-
tories had a consistent, unambiguous naming scheme.

The international standard for expressing dates (ISO 8601) specifies a YYYY-MM-DD
format (four-digit year, two-digit month, and two-digit day). Our task will
be to rename the directories to an ISO 8601 format.

One way to perform this task would be via a GUI, such as Windows Ex-
plorer, but it should be clear by now that writing code to perform the task
instead will be faster, more accurate, and more fun.

The first part of the task is to conver the directory names to the ISO 8601
format. The following code uses the sub() function to replace "Nov" with
"11", "Oct" with 10, and so on, in all directory names.13

R> newDirs <- sub("Nov", "11", directories)
R> newDirs <- sub("Oct", "10", newDirs)
R> newDirs <- sub("Sep", "09", newDirs)
R> newDirs

[1] "061111" "061118" "061119" "061207" "061209" "061216"
[7] "061219" "061231" "061105" "061005" "061015" "061028"
[13] "060917" "070103" "070105" "070107" "070108" "070113"
[19] "070114" "070117" "070202" "070218" "070223" "070303"
[25] "070331"

Now that the directory names are all in the same YYMMDD format, we can
easily convert them to dates.

R> dateDirs <- as.Date(newDirs, format="%y%m%d")
R> dateDirs

[1] "2006-11-11" "2006-11-18" "2006-11-19" "2006-12-07"
[5] "2006-12-09" "2006-12-16" "2006-12-19" "2006-12-31"
[9] "2006-11-05" "2006-10-05" "2006-10-15" "2006-10-28"
[13] "2006-09-17" "2007-01-03" "2007-01-05" "2007-01-07"
[17] "2007-01-08" "2007-01-13" "2007-01-14" "2007-01-17"
[21] "2007-02-02" "2007-02-18" "2007-02-23" "2007-03-03"
[25] "2007-03-31"

13Section 11.8 contains many more examples of this sort of text manipulation.

“itdt” — 2008/5/19 — 14:15 — page 286 — #312i
i

i
i

i
i

i
i

286 Introduction to Data Technologies

Now we can loop over the directory names and change the original name to
one based on the date in a standard format. This is the crucial step in this
task; writing R code to perform file renaming automatically, rather than
doing it by hand via a GUI.

R> numDirs <- length(directories)
R> for (i in 1:n) {

file.rename(file.path("Photos", directories[i]),
file.path("Photos", dateDirs[i]))

}

The files are all now in a common, standard format.

R> list.files("Photos")

[1] "2006-09-17" "2006-10-05" "2006-10-15" "2006-10-28"
[5] "2006-11-05" "2006-11-11" "2006-11-18" "2006-11-19"
[9] "2006-12-07" "2006-12-09" "2006-12-16" "2006-12-19"
[13] "2006-12-31" "2007-01-03" "2007-01-05" "2007-01-07"
[17] "2007-01-08" "2007-01-13" "2007-01-14" "2007-01-17"
[21] "2007-02-02" "2007-02-18" "2007-02-23" "2007-03-03"
[25] "2007-03-31"

One final word of warning: it is important to remember that file manipu-
lations like this are a one-way trip. The original file names are lost. At a
minimum, If we ever need to be able to go back to the original file names,
for example, if we want to match the new directories with old versions of
the directories from a backup, we should keep a record of how the files got
their new names. One simple way to do this is to make sure that we store
the R code that we used in a file and that we store that file in the "Photos"
directory. In other words, we use the code as documentation of what we
did.

11.7 Data manipulation

This section describes a number of techniques for rearranging objects in R,
particularly larger data structures, such as data frames, matrices, and lists.

11.7.1 Sorting

One of the simplest manipulations that we can perform is to sort a set of
values into ascending or descending order.

“itdt” — 2008/5/19 — 14:15 — page 287 — #313i
i

i
i

i
i

i
i

Data Crunching 287

In R, the function sort() can be used to arrange a vector of values in order,
but of more general use is the order() function, which returns the indices
of the sorted values. An example will demonstrate the difference.

11.7.2 Case study: Counting Candy (continued)

The candy data frame (see Section 11.3.1) contains a record of the number
of candies of various different types that appear in a simple counting puzzle.
The full candy data frame is reproduced below.

R> candy

shape pattern shade count
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3
4 round plain light 1
5 oval plain light 3
6 long plain light 2
7 round pattern dark 9
8 oval pattern dark 0
9 long pattern dark 2
10 round plain dark 1
11 oval plain dark 11
12 long plain dark 2

We can use the sort() function to arrange the counts of the different types
of candies in ascending or descending order.

R> sort(candy$count)

[1] 0 0 1 1 2 2 2 2 3 3 9 11

R> sort(candy$count, decreasing=TRUE)

[1] 11 9 3 3 2 2 2 2 1 1 0 0

However, this result is of limited use because we have lost the crucial connec-
tion between the counts and the type of candy that each count corresponds
to.

This is where the order() function may be more useful. The result below
shows the order in which the values of the count variable need to be used
so that they are arranged in ascending order.

“itdt” — 2008/5/19 — 14:15 — page 288 — #314i
i

i
i

i
i

i
i

288 Introduction to Data Technologies

R> order(candy$count)

[1] 2 8 4 10 1 6 9 12 3 5 7 11

These values can be used, via subsetting, to arrange the entire candy data
set by ascending values of the count variable, while still keeping the con-
nection between types of candy and the appropriate count.

R> candy[order(candy$count),]

shape pattern shade count
2 oval pattern light 0
8 oval pattern dark 0
4 round plain light 1
10 round plain dark 1
1 round pattern light 2
6 long plain light 2
9 long pattern dark 2
12 long plain dark 2
3 long pattern light 3
5 oval plain light 3
7 round pattern dark 9
11 oval plain dark 11

11.7.3 The “apply” functions

The basic operation that underlies almost all of these techniques involves
performing some task on each sub-component or sub-group of a larger struc-
ture. A very simple example is the task of subtracting the mean from each
of a set of numbers, as shown below.

R> sample <- sample(1:10, 5)
R> sample

[1] 2 1 9 8 3

R> sampleMean <- mean(sample)
R> sampleMean

[1] 4.6

“itdt” — 2008/5/19 — 14:15 — page 289 — #315i
i

i
i

i
i

i
i

Data Crunching 289

R> sample - sampleMean

[1] -2.6 -3.6 4.4 3.4 -1.6

For each value in sample, we subtract the value 4.6.

The traditional approach to this problem in a general-purpose language is to
perform a loop (see Section 11.2.5), but, as the code above shows, this can
often be avoided because R automatically performs operations element-wise
and because R provides several functions that automatically perform a task
once for each sub-component of a larger data structure.

The idea of the set of “apply” functions in R is to allow us to call a function
for each row or column of a matrix, or for each component of a list.

We will use the candy data frame again to demonstrate some uses of the
“apply” functions.

Given a data frame like this, we might be interested in checking what sort
of variables are in the data frame. The class() function provides the
information we need; for example, the following code shows us that the
shape variable is a factor.

R> class(candy$shape)

[1] "factor"

What we want to do is to repeat this code for each variable in the data set.
This is possible by typing a similar expression for each variable in the data,
but we can do it much more simply using a function called lapply().

The idea of this function is that it will call a given function for each compo-
nent of a list. We have a data frame, not a list, but automatic type coercion
will take care of that problem for us (see Section 11.5.1).

The following code calls the function class() for each variable in the data
frame candy.

“itdt” — 2008/5/19 — 14:15 — page 290 — #316i
i

i
i

i
i

i
i

290 Introduction to Data Technologies

R> lapply(candy, class)

$shape
[1] "factor"

$pattern
[1] "factor"

$shade
[1] "factor"

$count
[1] "numeric"

The result, which is a list, shows us that the first three variables in the data
frame are factors, and the last variable is numeric (integer).

When the results of each function call are very simple, like in this case,
it is useful to know about a very similar function called sapply(). This
function does the same thing as lapply(), but tries to simplify the result
to a vector rather than a list if it can. In this example, the result can be
more succinctly represented as a character vector.

R> sapply(candy, class)

shape pattern shade count
"factor" "factor" "factor" "numeric"

We will now look at a more sophisticated use of lapply().

The data frame candy provides a somewhat abbreviated form for the data,
because it records only the number of occurrences of each possible combi-
nation of candy characteristics. Another way to represent the data is as a
case per candy, with three variables giving the pattern, shade, and shape of
each piece of candy (see Figure 11.12).

The following code produces what we want for the shape variable. We
repeat each of the values in the shape variable the appropriate number of
times, as given by the count variable.

“itdt” — 2008/5/19 — 14:15 — page 291 — #317i
i

i
i

i
i

i
i

Data Crunching 291

R> rep(candy$shape, candy$count)

[1] round round long long long round oval oval oval
[10] long long round round round round round round round
[19] round round long long round oval oval oval oval
[28] oval oval oval oval oval oval oval long long
Levels: round oval long

We could perform this operation on each variable and explicitly glue the
new variables back together, as follows.

R> candyCases <-
data.frame(shape=rep(candy$shape, candy$count),

pattern=rep(candy$pattern, candy$count),
shade=rep(candy$shade, candy$count))

This is a feasible approach for a small number of variables, but for larger
data sets, and for pure elegance, we will demonstrate how to do it using
lapply().

R> candyCasesList <- lapply(candy[, 1:3], rep, candy$count)
R> candyCases <- data.frame(candyCasesList)

Three important details in this code are worth noting. First, we do not
send the entire data frame to lapply(); instead, we use subsetting to send
just the first three variables. Second, we have supplied three arguments to
lapply(): the data frame to work with; the function to call, in this case,
the rep() function; and an argument which is passed on as an argument to
the calls to rep(). The result is the same as if we had written the following
code:

list(shape=rep(candy[, 1], candy$count),
pattern=rep(candy[, 2], candy$count),
shade=rep(candy[, 3], candy$count))

The final detail is that the result of lapply() is a list, so we need to explic-
itly convert it back into a data frame. The end result is shown in Figure
11.12.

Before we leave this example, we will also use it to demonstrate the apply()
function.

The apply() function works on matrices or arrays, rather than lists. It
allows us to call a function for each column (or for each row) of a matrix.
For this example, we can treat the first three variables of the candy data set

“itdt” — 2008/5/19 — 14:15 — page 292 — #318i
i

i
i

i
i

i
i

292 Introduction to Data Technologies

R> candyCases

shape pattern shade
1 round pattern light
2 round pattern light
3 long pattern light
4 long pattern light
5 long pattern light
6 round plain light
7 oval plain light
8 oval plain light
9 oval plain light
10 long plain light
11 long plain light
12 round pattern dark
13 round pattern dark
14 round pattern dark
15 round pattern dark
16 round pattern dark
17 round pattern dark
18 round pattern dark
19 round pattern dark
20 round pattern dark
21 long pattern dark
22 long pattern dark
23 round plain dark
24 oval plain dark
25 oval plain dark
26 oval plain dark
27 oval plain dark
28 oval plain dark
29 oval plain dark
30 oval plain dark
31 oval plain dark
32 oval plain dark
33 oval plain dark
34 oval plain dark
35 long plain dark
36 long plain dark

Figure 11.12: The candy data set in a case-per-candy format; each row describes

the shape, pattern, and shade characteristics of a single piece of candy from the

picture on page 246.

“itdt” — 2008/5/19 — 14:15 — page 293 — #319i
i

i
i

i
i

i
i

Data Crunching 293

as a matrix (of strings) with three columns, and apply the rep() function
to each column (see Figure 11.12).

R> candyCasesMatrix <- apply(candy[,1:3], 2, rep, candy$count)
R> candyCases <- data.frame(candyCasesMatrix, row.names=NULL)

The second argument to apply() specifies whether to call the function for
each row of the matrix (1) or for each column of the matrix (2). The result
of apply() is a matrix, so we use data.frame() to turn the final result
back into a data frame.

A number of other apply functions exist (see Section 12.4.7), but we will
only mention one other at this stage called tapply().

The idea of tapply() is to call a function once for each of a set of cat-
egories. We supply a variable that will be sliced into separate groups, a
categorical variable that indicates which group each observation belongs to,
and a function to call for each group.

For example, we can use this function to sum up the total number of light
and dark candies in the candy data set. The count variable provides us with
the counts to sum up, the shade variable indicates which counts correspond
to light candies and which to dark, and the sum() function can do the
summation. The appropriate call to tapply() is shown below.

R> tapply(candy$count, candy$shade, sum)

light dark
11 25

Further examples of the use of the apply functions appear in many of the
examples and case studies throughout the rest of this chapter.

11.7.4 Tables of Counts

In the previous section, we saw an example where a data set was transformed
from a table of counts into a row-per-case format (see page 290). The reverse
operation is also common: given one or more categorical variables, collapse
the data into a simple count of the number of times each possible category
occurs.

Using the candy data set in a case-per-candy format (see Figure 11.12), we
will explore the standard functions for generating a table of counts.

First up is the table() function, which produces counts for each combina-

“itdt” — 2008/5/19 — 14:15 — page 294 — #320i
i

i
i

i
i

i
i

294 Introduction to Data Technologies

tion of the levels of the factors it is given.

R> candyTable <- table(candyCases)
R> candyTable

, , shade = dark

pattern
shape pattern plain
long 2 2
oval 0 11
round 9 1

, , shade = light

pattern
shape pattern plain
long 3 2
oval 0 3
round 2 1

The ftable() function produces the same result, but as a“flat”(2-dimensional)
contingency table, which can be easier to read.

R> candyFTable <- ftable(candyCases)
R> candyFTable

shade dark light
shape pattern
long pattern 2 3

plain 2 2
oval pattern 0 0

plain 11 3
round pattern 9 2

plain 1 1

The results of these functions are arrays or matrices, but they can easily be
converted back to a data frame, like the one we originally entered in Section
11.3.1.

“itdt” — 2008/5/19 — 14:15 — page 295 — #321i
i

i
i

i
i

i
i

Data Crunching 295

R> as.data.frame(candyTable)

shape pattern shade Freq
1 long pattern dark 2
2 oval pattern dark 0
3 round pattern dark 9
4 long plain dark 2
5 oval plain dark 11
6 round plain dark 1
7 long pattern light 3
8 oval pattern light 0
9 round pattern light 2
10 long plain light 2
11 oval plain light 3
12 round plain light 1

The function xtabs() produces the same result as table(), but provides a
formula interface for specifying the factors to tabulate.

R> candyXTable <- xtabs(~ shape + pattern + shade, candyCases)
R> candyXTable

, , shade = dark

pattern
shape pattern plain
long 2 2
oval 0 11
round 9 1

, , shade = light

pattern
shape pattern plain
long 3 2
oval 0 3
round 2 1

This function can also be used to create a frequency table from data which
has been entered as counts, by specifying the variable containing the counts
on the left-hand side of the formula. This means that we can create the
table of counts from the original candy data frame.

R> candyXTable <- xtabs(count ~ shape + pattern + shade, candy)

“itdt” — 2008/5/19 — 14:15 — page 296 — #322i
i

i
i

i
i

i
i

296 Introduction to Data Technologies

11.7.5 Aggregation

Another way to collapse groups of observations into summary values (in this
case counts) is to use the aggregate() function.

R> aggregate(candy["count"],
list(shape=candy$shape, pattern=candy$pattern),
sum)

shape pattern count
1 round pattern 11
2 oval pattern 0
3 long pattern 5
4 round plain 2
5 oval plain 14
6 long plain 4

One advantage of this function is that any summary function can be used
(e.g., mean() instead of sum()). Another advantage is that the result of
the function is a data frame, not a contingency table like from table() or
xtabs().

The aggregate() function is also like tapply() (see Section 11.7.3) because
it calls a function for each sub-group of observations within a variable. The
difference again is that the format of the result, a data frame, may be more
convenient.
R> aggregate(candy["count"], list(shade=candy$shade), sum)

shade count
1 light 11
2 dark 25

R> tapply(candy$count, candy$shade, sum)

light dark
11 25

11.7.6 Merging data sets

The functions cbind() and rbind() can be used to append data frames
together—cbind() adds two sets of variables on common cases (a “column”
bind) and rbind() adds two sets of cases on common variables (a “row”

“itdt” — 2008/5/19 — 14:15 — page 297 — #323i
i

i
i

i
i

i
i

Data Crunching 297

bind).

For example, the following code creates a new data frame, moreCandy, with
a single variable, propn, that contains the percentage of candies of each
type.

R> moreCandy <- data.frame(propn=round(candy$count /
sum(candy$count), 2))

R> moreCandy

propn
1 0.06
2 0.00
3 0.08
4 0.03
5 0.08
6 0.06
7 0.25
8 0.00
9 0.06
10 0.03
11 0.31
12 0.06

This data frame has the same number of rows as the candy data frame, so
the two can be combined using cbind().

R> cbind(candy, moreCandy)

shape pattern shade count propn
1 round pattern light 2 0.06
2 oval pattern light 0 0.00
3 long pattern light 3 0.08
4 round plain light 1 0.03
5 oval plain light 3 0.08
6 long plain light 2 0.06
7 round pattern dark 9 0.25
8 oval pattern dark 0 0.00
9 long pattern dark 2 0.06
10 round plain dark 1 0.03
11 oval plain dark 11 0.31
12 long plain dark 2 0.06

The merge() function can be used to perform the equivalent of a database
join (see Section 9.2.3) with two data frames.

“itdt” — 2008/5/19 — 14:15 — page 298 — #324i
i

i
i

i
i

i
i

298 Introduction to Data Technologies

As a simple example, consider the following data frame, which contains
information about the two companies that produced the candies that we
have been counting.

R> candyCompany <- data.frame(pattern=c("pattern", "plain"),
company=c("SuperChoc", "Chocs-R-Us"))

R> candyCompany

pattern company
1 pattern SuperChoc
2 plain Chocs-R-Us

All patterned candies were made by a company called SuperChoc and all
plain candies were made by Chocs-R-Us.

We would like to combine this information with the information about how
many of each type of candy there is. In other words, we want to add a new
variable to the candy data frame with the value "Superchoc" wherever the
pattern variable has the value "pattern", and "Chocs-R-Us" wherever the
pattern is "plain".

This task is achieved via the following call to the merge() function.

R> merge(candy, candyCompany)

pattern shape shade count company
1 pattern round light 2 SuperChoc
2 pattern oval light 0 SuperChoc
3 pattern long light 3 SuperChoc
4 pattern oval dark 0 SuperChoc
5 pattern long dark 2 SuperChoc
6 pattern round dark 9 SuperChoc
7 plain long light 2 Chocs-R-Us
8 plain round light 1 Chocs-R-Us
9 plain oval light 3 Chocs-R-Us
10 plain round dark 1 Chocs-R-Us
11 plain oval dark 11 Chocs-R-Us
12 plain long dark 2 Chocs-R-Us

The merge() function needs a column on which to match the rows of the
two data sets, but if the data frames share a variable with the same name
(as in this case) the function will automatically match on that column. The
following code makes the matching column explicit.

R> merge(candy, candyCompany, by="pattern")

“itdt” — 2008/5/19 — 14:15 — page 299 — #325i
i

i
i

i
i

i
i

Data Crunching 299

11.7.7 Reshaping

For multivariate data sets, where a single individual is measured several
times, there are two common formats for storing the data.

The so-called “wide” format uses a separate variable for each measurement.
For example, the candyCases data frame (see the left-hand box in Figure
11.13) is in wide format because it has a row for each candy and a column
for each measurement made on each candy (what shape is the candy? what
shade is the candy? and does the candy have a pattern?). There are three
obervations on each row.

The “long” format for these data has a single observation on each row (see
the right-hand box in Figure 11.13). In this format, there are three rows for
each candy, with the variable column indicating which measure is being
recorded on each row.

There is a function called reshape() to perform the transformation between
wide and long formats in R, but we will focus on the reshape package
because it provides a wider range of options.

The two main functions in this package are called melt() and cast(). The
melt() function converts a data frame into long format and the cast()
function can then be used to reshape the data into a variety of other forms.

For example, the following code creates the long format version of the case-
per-candy data set (see the right-hand box in Figure 11.13). First, we add a
unique identifier for each candy to the candyCases data frame (see Figure
292), then we use melt() to create the long format for the data.

R> library(reshape)
R> wideCandy <- cbind(candy=1:36, candyCases)
R> longCandy <- melt(wideCandy, measure=2:4)

The measure argument to melt() is used to specify which variables in the
data frame are measurements. All other variables are treated as“identifiers”;
fixed values that characterise the context of the measurements.

There is also an id argument to specify identifier variables, so the following
call to melt() would produce the same result.

R> melt(wideCandy, id=1)

The wide format of the data can be reconstructed using cast(), as follows:

R> cast(longCandy, candy ~ variable)

“itdt” — 2008/5/19 — 14:15 — page 300 — #326i
i

i
i

i
i

i
i

300 Introduction to Data Technologies

R> wideCandy

candy shape pattern shade
1 1 round pattern light
2 2 round pattern light
3 3 long pattern light
4 4 long pattern light
5 5 long pattern light
6 6 round plain light
7 7 oval plain light
8 8 oval plain light
9 9 oval plain light
10 10 long plain light
11 11 long plain light
12 12 round pattern dark
13 13 round pattern dark
14 14 round pattern dark
15 15 round pattern dark
16 16 round pattern dark
17 17 round pattern dark
18 18 round pattern dark
19 19 round pattern dark
20 20 round pattern dark
21 21 long pattern dark
22 22 long pattern dark
23 23 round plain dark
24 24 oval plain dark
25 25 oval plain dark
26 26 oval plain dark
27 27 oval plain dark
28 28 oval plain dark
29 29 oval plain dark
30 30 oval plain dark
31 31 oval plain dark
32 32 oval plain dark
33 33 oval plain dark
34 34 oval plain dark
35 35 long plain dark
36 36 long plain dark

R> head(longCandy, n=40)

candy variable value

1 1 shape round

2 2 shape round

3 3 shape long

4 4 shape long

5 5 shape long

6 6 shape round

7 7 shape oval

8 8 shape oval

9 9 shape oval

10 10 shape long

11 11 shape long

12 12 shape round

13 13 shape round

14 14 shape round

15 15 shape round

16 16 shape round

17 17 shape round

18 18 shape round

19 19 shape round

20 20 shape round

21 21 shape long

22 22 shape long

23 23 shape round

24 24 shape oval

25 25 shape oval

26 26 shape oval

27 27 shape oval

28 28 shape oval

29 29 shape oval

30 30 shape oval

31 31 shape oval

32 32 shape oval

33 33 shape oval

34 34 shape oval

35 35 shape long

36 36 shape long

37 1 pattern pattern

38 2 pattern pattern

39 3 pattern pattern

40 4 pattern pattern

Figure 11.13: The case-per-candy data set in a wide format (left) and a long

format (right). Only the first 40 rows of the long format are shown.

“itdt” — 2008/5/19 — 14:15 — page 301 — #327i
i

i
i

i
i

i
i

Data Crunching 301

The second argument to cast() is a formula. Variables on the left-hand
side of this formula are used to form the rows of the result and variables on
the right-hand side are used to form columns. In the above example, there
is a row for each candy and a column for each different measurement.

The following code uses a different formula to demonstrate the power that
cast() provides for reshaping data. In this case, the data set is arranged in
a format so that each candy is represented by a single column and each row
of the data frame gives the measurements for a single variable (for reasons
of space, only the first 6 candies are shown).

R> cast(longCandy, variable ~ candy)

variable 1 2 3 4 5 6 ...
1 shape round round long long long round ...
2 pattern pattern pattern pattern pattern pattern plain ...
3 shade light light light light light light ...

11.7.8 Case study: Rothamsted moths

Despite the clear distinction
that exists in popular culture,
there is still controversy amongst
taxonomists over how best to dis-
tinguish between butterfly species
and moth species. The image
to the left is “Farfallo contorno”
(butterfly silhouette) by Architetto
Francesco Rollandin.14

Rothamsted is a very large and very old agricultural research centre situated
in Hertfordshire in the United Kingdom. One of its long term research
projects is the Rothamsted Insect Survey, part of which involves the daily
monitoring of nearly 100“light traps” in order to count the number of moths
of different species at various locations around the UK. The oldest light traps
date back to 1933.

14Image source: Open Clip Art Library
http://openclipart.org/clipart//animals/bugs/farfalla_contorno_archit_01.svg

This image is in the Public Domain.

http://openclipart.org/clipart//animals/bugs/farfalla_contorno_archit_01.svg

“itdt” — 2008/5/19 — 14:15 — page 302 — #328i
i

i
i

i
i

i
i

302 Introduction to Data Technologies

This example deals with a subset of the Rothamsted moth data in the form
of two CSV format text files. One file contains 14 years worth of total
yearly counts for a limited range of moth species. The first row of the file
contains the species label and each subsequent row contains the counts of
each species for a single year:

sp117,sp120,sp121,sp125,sp126,sp139,sp145,sp148,sp154, ...
2,1,1,0,0,1,0,3,0,1,3,4,4,0,0,9,2,6,0,0,0,16,31,2,40, ...
3,1,1,0,0,1,0,1,0,2,11,4,8,0,0,19,2,1,0,0,0,20,11,1, ...
2,0,3,6,0,1,0,1,0,1,9,1,18,0,0,15,15,0,1,0,0,14,12,5, ...
5,0,2,2,0,2,1,2,1,0,3,2,17,0,0,17,23,1,0,2,1,14,22,2, ...
...

Another file contains the species labels for the full set of 263 moth species
for which counts exist, with one label per row. Notice that there are species
labels in this file that do not appear in the file of counts (e.g., sp108, sp109,
sp110, and sp111).

"x"
"sp108"
"sp109"
"sp110"
"sp111"
"sp117"
"sp120"
...

We can read in the counts using read.csv() to produce a data frame and
we can read in the names using scan() to produce a simple character vector.

R> mothCounts <- read.csv(file.path("Rothamsted",
"mothcounts.csv"))

R> mothCounts

sp117 sp120 sp121 sp125 sp126 sp139 sp145 sp148 sp154 ...
1 2 1 1 0 0 1 0 3 0 ...
2 3 1 1 0 0 1 0 1 0 ...
3 2 0 3 6 0 1 0 1 0 ...
4 5 0 2 2 0 2 1 2 1 ...
...

R> mothNames <- scan(file.path("Rothamsted",
"mothnames.csv"),

what="character", skip=1)
R> mothNames

itdt -- 2008/5/19 -- 14:15 -- page 303 -- #329i
i

i
i

i
i

i
i

Data Crunching 303

[1] "sp108" "sp109" "sp110" "sp111" "sp117" "sp120" ...

Our goal in this data manipulation example is to produce a single data set
containing the count data from the file mothCounts.csv plus empty columns
for all of the species for which we do not have counts. The end result will
be a data frame as shown below, with columns of NAs where a species label
occurs in mothNames, but not in mothCounts, and all other columns filled
with the appropriate counts from mothCounts:

sp108 sp109 sp110 sp111 sp117 sp120 sp121 sp125 sp126 ...
1 NA NA NA NA 2 1 1 0 0 ...
2 NA NA NA NA 3 1 1 0 0 ...
3 NA NA NA NA 2 0 3 6 0 ...
4 NA NA NA NA 5 0 2 2 0 ...
...

We will look at solving this problem in two ways. The first approach involves
building up a large empty data set and then inserting the counts we know.

The first step is to create an empty data frame of the appropriate size.
The matrix() function can create a matrix of the appropriate size and
the as.data.frame() function converts it to a data frame. The function
colnames() is used to give the columns of the data frame the appropriate
names.
R> allMoths <- as.data.frame(matrix(NA,

ncol=length(mothNames),
nrow=14))

R> colnames(allMoths) <- mothNames
R> allmoths

sp108 sp109 sp110 sp111 sp117 sp120 sp121 sp125 sp126 ...
1 NA NA NA NA NA NA NA NA NA ...
2 NA NA NA NA NA NA NA NA NA ...
3 NA NA NA NA NA NA NA NA NA ...
4 NA NA NA NA NA NA NA NA NA ...
...

Now we just fill in the columns where we know the moth counts. This is
done simply using indexing; each column in the mothCounts data frame is
assigned to the column with the same name in the allMoths data frame.

R> allMoths[, colnames(mothCounts)] <- mothCounts
R> allMoths

“itdt” — 2008/5/19 — 14:15 — page 304 — #330i
i

i
i

i
i

i
i

304 Introduction to Data Technologies

sp108 sp109 sp110 sp111 sp117 sp120 sp121 sp125 sp126 ...
1 NA NA NA NA 2 1 1 0 0 ...
2 NA NA NA NA 3 1 1 0 0 ...
3 NA NA NA NA 2 0 3 6 0 ...
4 NA NA NA NA 5 0 2 2 0 ...
...

An alternative approach to the problem is to treat it like a database join.
This time we start with a data frame that has a variable for each moth
species, but no rows. The list() function creates a list with a zero-length
vector, and the rep() function replicates that an appropriate number of
times. The data.frame() function turns the list into a data frame (with
zero rows).

R> emptyMoths <- data.frame(rep(list(numeric(0)),
length(mothNames)))

R> colnames(emptyMoths) <- mothNames
R> emptyMoths

[1] sp108 sp109 sp110 sp111 sp117 sp120 sp121 sp125 sp126 ...
<0 rows> (or 0-length row.names) ...

Now we get the final data frame by joining this data frame with the data
frame containing moth counts; we perform an outer join to retain rows
where there is no match between the data frames (in this case, all rows
in mothCounts). The merge() function does the join, automatically de-
tecting the columns to match on by the columns with common names
in the two data frames. There are no matching rows between the data
frames (emptyMoths has no counts), but the outer join retains all rows of
mothCounts and adds missing values in columns which are in emptyMoths,
but not in mothCounts (all.x=TRUE). In this code, we have been careful to
retain the original order of the rows (sort=FALSE) and the original order of
the columns ([,mothNames]).

R> mergeMoths <- merge(mothCounts, emptyMoths,
all.x=TRUE, sort=FALSE)[,mothNames]

R> allmoths

sp108 sp109 sp110 sp111 sp117 sp120 sp121 sp125 sp126 ...
1 NA NA NA NA 2 1 1 0 0 ...
2 NA NA NA NA 3 1 1 0 0 ...
3 NA NA NA NA 2 0 3 6 0 ...
4 NA NA NA NA 5 0 2 2 0 ...
...

“itdt” — 2008/5/19 — 14:15 — page 305 — #331i
i

i
i

i
i

i
i

Data Crunching 305

11.7.9 Case study: Utilities

A compact fluorescent light bulb.15 This
sort of light bulb lasts up to 16 times longer
and consumes about one quarter of the
power of a comparable incandescent light
bulb.

A resident of Baltimore, Maryland in the United States collected data from
his residential gas and electricity power bills over 8 years. The data are
in a text file called baltimore.txt and include the start date for the bill,
the number of therms of gas used and the amount charged, the number of
kilowatt hours of electricity used and the amount charged, the average daily
outdoor temperature (as reported on the bill), and the number of days in
the billing period.

Several events of interest occurred in the household over this time period
and the aim of the analysis was to determine whether any of these events
had any effect on the energy consumption of the household. The events
were:

• An additional resident moved in on July 31st 1999.
• Two storm windows were replaced on April 22nd 2004.
• Four storm windows were replaced on September 1st 2004.
• An additional resident moved in on December 18th 2005.

Figure 11.14 shows the first few lines of the data file. This sort of text
file can be read conveniently using the read.table() function, with the
header=TRUE argument specified to use the variable names on the first line
of the file. We also use as.is=TRUE to keep the dates as strings for now.

15Source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Spiralformige_Energiesparlampe_quadr.

png

This image is in the Public Domain.

http://commons.wikimedia.org/wiki/Image:Spiralformige_Energiesparlampe_quadr.png
http://commons.wikimedia.org/wiki/Image:Spiralformige_Energiesparlampe_quadr.png

“itdt” — 2008/5/19 — 14:15 — page 306 — #332i
i

i
i

i
i

i
i

306 Introduction to Data Technologies

start therms gas KWHs elect temp days

10-Jun-98 9 16.84 613 63.80 75 40

20-Jul-98 6 15.29 721 74.21 76 29

18-Aug-98 7 15.73 597 62.22 76 29

16-Sep-98 42 35.81 460 43.98 70 33

19-Oct-98 105 77.28 314 31.45 57 29

17-Nov-98 106 77.01 342 33.86 48 30

17-Dec-98 200 136.66 298 30.08 40 33

19-Jan-99 144 107.28 278 28.37 37 30

18-Feb-99 179 122.80 253 26.21 39 29

...

Figure 11.14: The first few lines of the utilities data set.

R> utilities <- read.table("baltimore.txt",
header=TRUE, as.is=TRUE)

R> head(utilities)

start therms gas KWHs elect temp days
1 10-Jun-98 9 16.84 613 63.80 75 40
2 20-Jul-98 6 15.29 721 74.21 76 29
3 18-Aug-98 7 15.73 597 62.22 76 29
4 16-Sep-98 42 35.81 460 43.98 70 33
5 19-Oct-98 105 77.28 314 31.45 57 29
6 17-Nov-98 106 77.01 342 33.86 48 30

The first thing we want to do is to convert the first variable into actual
dates. This will allow us to perform calculations and comparisons on the
date values.
R> utilities$start <- as.Date(utilities$start,

"%d-%b-%y")
R> head(utilities)

start therms gas KWHs elect temp days
1 1998-06-10 9 16.84 613 63.80 75 40
2 1998-07-20 6 15.29 721 74.21 76 29
3 1998-08-18 7 15.73 597 62.22 76 29
4 1998-09-16 42 35.81 460 43.98 70 33
5 1998-10-19 105 77.28 314 31.45 57 29
6 1998-11-17 106 77.01 342 33.86 48 30

The five significant events can be used to break the data set into five different
time periods; we will be interested in the average daily charges for each of

“itdt” — 2008/5/19 — 14:15 — page 307 — #333i
i

i
i

i
i

i
i

Data Crunching 307

these periods.

The first problem is that none of these events coincide with the start of a
billing period, so we need to split some of the bills into two separate pieces
in order to obtain data for each of the time periods we are interested in.

We could do this by hand, but by now it should be clear that there are good
reasons to write code to perform the task instead. This will reduce the
chance of silly errors and make it a trivial task to repeat the calculations if,
for example, we discover that one of the event dates needs to be corrected,
or a new event is discovered. The code will also serve as documentation of
the steps we have taken in preparing the data set for analysis.

What we need to do is to discover which period each event occurred in and
how far through the relevant period the event occurred. We can then split
the single billing period into two billing periods.16

How do we determine which period an event occurred in? This provides a
nice example of working with dates in R. The code below creates a vector
of dates for the events.
R> events <- as.Date(c("1999-07-31", "2004-04-22",

"2004-09-01", "2005-12-18"))

One thing we can do with dates is subtract one from another; the result in
this case is a number of days between the dates. We can do the subtraction
for all events at once using the outer() function. This will subtract each
event date from each billing period start date and produce a matrix of the
differences, where column i of the matrix shows the differences between the
event i and the start of each billing period. A subset of the rows of this
matrix are shown below. For example, the first column gives the number of
days between the first event and the start of each billing period; negative
values indicate that the billing period began before the first event.

16The result will not be ideal because a proportional split assumes that the event has
no effect on energy usage. However, we will pursue this as a first approximation anyway.

“itdt” — 2008/5/19 — 14:15 — page 308 — #334i
i

i
i

i
i

i
i

308 Introduction to Data Technologies

R> dayDiffs <- outer(utilities$start, events, "-")
R> dayDiffs[10:15,]

Time differences in days
[,1] [,2] [,3] [,4]

[1,] -106 -1833 -1965 -2438
[2,] -74 -1801 -1933 -2406
[3,] -44 -1771 -1903 -2376
[4,] -11 -1738 -1870 -2343
[5,] 18 -1709 -1841 -2314
[6,] 48 -1679 -1811 -2284

For each event, we want the billing period where the difference is closest to
zero and non-positive. This is the billing period in which the event occurred.
First, we can set all of the positive differences to large negative ones, then the
problem simply becomes finding the maximum of the differences. Rather
than overwrite the original data, we will work with a new copy. This is
generally a safer technique, if there is enough computer memory to allow it.

R> nonNegDayDiffs <- dayDiffs
R> nonNegDayDiffs[dayDiffs > 0] <- -9999
R> nonNegDayDiffs[10:15,]

Time differences in days
[,1] [,2] [,3] [,4]

[1,] -106 -1833 -1965 -2438
[2,] -74 -1801 -1933 -2406
[3,] -44 -1771 -1903 -2376
[4,] -11 -1738 -1870 -2343
[5,] -9999 -1709 -1841 -2314
[6,] -9999 -1679 -1811 -2284

The function which.max() returns the index of the maximum value in a
vector. We can use the apply() function to calculate this index for each
event (i.e., for each column of the matrix of differences).

R> eventPeriods <- apply(nonNegDayDiffs, 2, which.max)
R> eventPeriods

[1] 13 68 72 79

The eventPeriods variable now contains the row numbers for the billing
periods that we want to split. These billing periods are shown below.

“itdt” — 2008/5/19 — 14:15 — page 309 — #335i
i

i
i

i
i

i
i

Data Crunching 309

R> utilities[eventPeriods,]

start therms gas KWHs elect temp days
13 1999-07-20 6 15.88 723 74.41 77 29
68 2004-04-16 36 45.58 327 29.99 65 31
72 2004-08-18 7 19.13 402 43.00 73 31
79 2005-12-15 234 377.98 514 43.55 39 33

This may seem a little too much work for something which on first sight
appears much easier to do “by eye”, because the data appear to be in date
order. The problem is that it is very easy to be seduced into thinking that
the task is simple, whereas a code solution like we have developed is harder
to fool. In this case, a closer inspection reveals that the data are not as
orderly as we first thought. Shown below are the last 10 rows of the data
set, which reveal a change in the ordering of the dates during 2005 (look at
the start variable), so it was just as well that we used a code solution.17

R> tail(utilities, n=10)

start therms gas KWHs elect temp days
87 2005-04-18 65 80.85 220 23.15 58 29
88 2005-03-16 126 141.82 289 27.93 49 30
89 2005-02-15 226 251.89 257 25.71 36 29
90 2006-02-14 183 257.23 332 30.93 41 30
91 2006-03-16 115 146.31 298 28.56 51 33
92 2006-04-18 36 54.55 291 28.06 59 28
93 2006-05-17 22 37.98 374 40.55 68 34
94 2006-06-19 7 20.68 614 83.19 78 29
95 2006-07-18 6 19.94 746 115.47 80 30
96 2006-08-17 11 26.08 534 84.89 72 33

Now that we have identified which billing periods the events occurred in,
the next step is to split each billing period that contains an event into two
new periods, with energy consumptions and charges divided proportionally
between them. The proportion will depend on where the event occurred
within the billing period and that information is nicely represented by the
differences in the matrix dayDiffs, which was created on page 307. The
differences we want are in the rows corresponding to the billing periods
containing events, as shown below. The difference on row 1 of column 1 is
the number of days from the start of billing period 13 to the first event. The
difference on row 2 of column 2 is the number of days between the start of
billing period 68 and the second event.

17If you are like me, it will still take you a little while to see the problem, which just
reinforces why it is best to leave this sort of thing to the computer!

“itdt” — 2008/5/19 — 14:15 — page 310 — #336i
i

i
i

i
i

i
i

310 Introduction to Data Technologies

R> dayDiffs[eventPeriods,]

Time differences in days
[,1] [,2] [,3] [,4]

[1,] -11 -1738 -1870 -2343
[2,] 1721 -6 -138 -611
[3,] 1845 118 -14 -487
[4,] 2329 602 470 -3

The differences we want lie on the diagonal of this sub-matrix and these can
be extracted using the diag() function.

R> eventDiffs <- diag(dayDiffs[eventPeriods,])
R> eventDiffs

[1] -11 -6 -14 -3

We want to convert the differences in days into a proportion of the billing
period. The proportions are these differences divided by the number of days
in the billing period, which is stored in the days variable.

R> proportions <- -eventDiffs/utilities$days[eventPeriods]
R> proportions

[1] 0.3793103 0.1935484 0.4516129 0.0909091

The modified periods are the original billing periods multiplied by these
proportions. We want to mutiply all values in the data set except the start
variable (hence the -1 below).

R> modifiedPeriods <- utilities[eventPeriods, -1]*proportions
R> modifiedPeriods$start <- utilities$start[eventPeriods]
R> modifiedPeriods

therms gas KWHs elect temp days start

13 2.275862 6.023448 274.24138 28.224483 29.206897 11 1999-07-20

68 6.967742 8.821935 63.29032 5.804516 12.580645 6 2004-04-16

72 3.161290 8.639355 181.54839 19.419355 32.967742 14 2004-08-18

79 21.272727 34.361818 46.72727 3.959091 3.545455 3 2005-12-15

We also need new periods representing the remainder of the original billing
periods. The start dates for these new periods are the dates on which the
events occurred.
R> newPeriods <- utilities[eventPeriods, -1]*(1 - proportions)
R> newPeriods$start <- events
R> newPeriods

“itdt” — 2008/5/19 — 14:15 — page 311 — #337i
i

i
i

i
i

i
i

Data Crunching 311

therms gas KWHs elect temp days start

13 3.724138 9.856552 448.7586 46.18552 47.79310 18 1999-07-31

68 29.032258 36.758065 263.7097 24.18548 52.41935 25 2004-04-22

72 3.838710 10.490645 220.4516 23.58065 40.03226 17 2004-09-01

79 212.727273 343.618182 467.2727 39.59091 35.45455 30 2005-12-18

Finally, we combine the unchanged billing periods with the periods that we
have split in two. When the data frames being combined have exactly the
same set of variables, the rbind() function can be used to combine them.18

R> periods <- rbind(utilities[-eventPeriods,],
modifiedPeriods,
newPeriods)

We should check that our new data frame has the same basic properties as
the original data frame. The code below simply calculates the sum of each
variable in the data set (other than the start dates).

R> apply(utilities[, -1], 2, sum)

therms gas KWHs elect temp days
8899.00 9342.40 41141.00 4058.77 5417.00 2929.00

R> apply(periods[, -1], 2, sum)

therms gas KWHs elect temp days
8899.00 9342.40 41141.00 4058.77 5417.00 2929.00

Now that we have the data in a format where the significant events occur at
the start of a billing period, the last step is to calculate average daily usage
and costs in the time periods between the events. To do this, we need a
new variable phase that will identify the“time phase” for each billing period
(between which events did the billing period occur).

This will demonstrate a use of the cut() function.

18Section 11.7.8 provides an example of combining data frames for the case where only
some variables are in common.

“itdt” — 2008/5/19 — 14:15 — page 312 — #338i
i

i
i

i
i

i
i

312 Introduction to Data Technologies

R> periods$phase <- cut(periods$start,
c(as.Date("1900-01-01"),
events,
as.Date("2008-01-01")),

labels=FALSE)
R> periods$phase

[1] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[28] 2
[55] 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 5 4 4 4 4 4 4
[82] 4 4 4 4 5 5 5 5 5 5 5 1 2 3 4 2 3 4 5

Now we can sum usage and costs for each phase, then divide by the number
of days to obtain averages that can be compared between phases.

R> phases <- aggregate(periods[c("therms", "gas", "KWHs",
"elect", "days")],

list(phase=periods$phase), sum)
R> phases

phase therms gas KWHs elect days
1 1 871.27586 693.4134 5434.241 556.6545 388
2 2 5656.69188 5337.3285 24358.049 2291.1400 1664
3 3 53.19355 103.1574 1648.258 170.8748 132
4 4 1528.11144 2017.5025 5625.179 551.8997 470
5 5 789.72727 1190.9982 4075.273 488.2009 275

R> phaseAvgs <-
phases[c("therms", "gas", "KWHs", "elect")]/phases$days

For inspecting these values, it helps if we round the values to two significant
figures.

R> signif(phaseAvgs, 2)

therms gas KWHs elect
1 2.2 1.80 14 1.4
2 3.4 3.20 15 1.4
3 0.4 0.78 12 1.3
4 3.3 4.30 12 1.2
5 2.9 4.30 15 1.8

The last step above works because when a data frame is divided by a vector,
each variable in the data frame gets divided by the vector. This is not nec-
essarily obvious from the code; a more explicit way to perform the operation

“itdt” — 2008/5/19 — 14:15 — page 313 — #339i
i

i
i

i
i

i
i

Data Crunching 313

is to use the sweep() function, which forces us to explicitly state that, for
each row of the data frame (MARGIN=1), we are dividing (FUN="/") by the
corresponding value from a vector (STAT=phase$days).

R> phaseSweep <- sweep(phases[c("therms", "gas",
"KWHs", "elect")],

MARGIN=1, STAT=phases$days, FUN="/")

Looking at the average daily energy values for each phase, the values that
stand out are the gas usage and cost during phase 3 (after the first two storm
windows were replaced, but before the second set of four storm windows were
replaced). The naive interpretation is that the first two storm windows were
incredibly effective, but the second four storm windows actually made things
worse again!

At first sight this appears strange, but it is easily explained by the fact that
phase 3 coincided with summer months, as shown below using the table()
function.
R> table(months(periods$start), periods$phase)[month.name,]

1 2 3 4 5
January 1 5 0 1 1
February 1 5 0 1 1
March 0 5 0 1 1
April 1 5 1 1 1
May 1 3 1 1 1
June 2 4 1 1 1
July 2 5 1 1 1
August 1 5 1 1 1
September 1 5 0 3 0
October 1 5 0 2 0
November 1 4 0 2 0
December 1 5 0 2 1

The function months() extracts the names of the months from the dates
in the start variable. Subsetting the resulting table by month.name just
rearranges the order of the rows of the table; this ensures that the months
are reported in calendar order rather than alphabetical order.

We would expect the gas usage (for heating) to be a lot lower during summer.
This is confirmed by calculating the daily average usages and costs for each
month. Again we must take care to get the answer in calendar order; this
time we do that by aggregating over a factor that is based on the extracting
the months from the start variable, with the order of the levels of the factor

“itdt” — 2008/5/19 — 14:15 — page 314 — #340i
i

i
i

i
i

i
i

314 Introduction to Data Technologies

●
●

●

●

●

●
● ● ●

●

●

●

●
●

D
ec

em
be

r

Ja
nu

ar
y

F
eb

ru
ar

y

M
ar

ch

A
pr

il

M
ay

Ju
ne

Ju
ly

A
ug

us
t

S
ep

te
m

be
r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

0

2

4

6

8

●
●

●
●

●

●

●

●

●

●

●

●
●

●
12

14

16

18

20

22

G
as

 U
sa

ge
 (

th
er

m
s)

●

●

E
le

ct
ric

ity
 U

sa
ge

 (
K

W
H

s)

●

●

Figure 11.15: The average daily energy usage and costs for each month from the

Utilities data set.

explicitly set to be month.name. These results are presented graphically in
Figure 11.15.

R> months <- aggregate(periods[c("therms", "gas", "KWHs",
"elect", "days")],

list(month=factor(months(periods$start),
levels=month.name)),

sum)
R> cbind(month=months$month,

signif(months[c("therms", "gas",
"KWHs", "elect")]/months$days,

2))

month therms gas KWHs elect
1 January 7.80 7.50 13 1.2
2 February 5.90 5.90 11 1.0
3 March 3.90 4.00 12 1.1
4 April 1.70 1.90 11 1.0
5 May 0.65 0.99 12 1.3
6 June 0.22 0.57 16 1.8
7 July 0.21 0.59 22 2.3
8 August 0.24 0.60 17 1.9
9 September 1.10 1.30 14 1.3
10 October 3.40 3.50 12 1.1
11 November 5.40 5.50 14 1.2
12 December 7.20 7.10 13 1.2

This example has demonstrated a number of data manipulation techniques

“itdt” — 2008/5/19 — 14:15 — page 315 — #341i
i

i
i

i
i

i
i

Data Crunching 315

in a more realistic setting. The simple averages that we have calculated serve
to show that any attempt to determine whether the significant events lead
to a significant change in energy consumption and cost for this household is
clearly going to require careful analysis. Fortunately, having prepared the
data, our work is done, and we will leave the difficult part to those who
follow.

11.8 Text processing

Plain text is a very common format for storing information, so it is very
useful to be able to manipulate text. It may be necessary to convert a data
set from one text format to another. It is also common to search for and
extract important keywords or specific patterns of characters from within a
large set of text.

This section describes some important functions for working with text in R.

11.8.1 Case study: The longest placename

One of the longest placenames
in the world, with a total of 85
characters, is the Maori name for a
hill in the Hawkes Bay region, on
the east coast of the North Island
of New Zealand.

One of the longest place names in the world is attributed to a hill in the
Hawke’s Bay region of New Zealand. The name (in Maori) is:

Taumatawhakatangihangakoauauotamateaturipukakapikimaungahoronukupokaiwhenuakitanatahu

which means “The hilltop where Tamatea with big knees, conqueror of
mountains, eater of land, traveller over land and sea, played his koauau
[flute] to his beloved.”

Children at an Auckland primary school were set a homework assignment
that included counting the number of letters in this name. This task of
counting the number of characters in a string is a simple example of what
we will call text processing and is the sort of task that often comes up

“itdt” — 2008/5/19 — 14:15 — page 316 — #342i
i

i
i

i
i

i
i

316 Introduction to Data Technologies

when working with data that has been stored in a text format.

Counting the number of characters in a string is something that any general
purpose language will do. Assuming that the name has been saved into a
text file called placename.txt, here is how to use the scan() function to
read the name into R, as a character vector of length 1.

R> placename <- scan(file.path("Placename", "placename.txt"),
"character")

We can now use the nchar() function to count the number of characters in
this text.
R> nchar(placename)

[1] 85

Counting characters is a very simple text processing task, though even with
something that simple, performing the task using a computer is much more
likely to get the right answer. We will now look at some more complex text
processing tasks.

The homework assignment went on to say that, in Maori, the combinations
‘ng’ and ‘wh’ can be treated as a single letter. Given this, how many letters
are in the place name? There are two possible approaches: convert every
‘ng’ and ‘wh’ to a single letter, or count the number of ‘ng’s and ‘wh’s and
subtract that from the total number of characters. We will consider both
approaches because they illustrate two different text processing tasks.

For the first approach, we could try counting all of the ‘ng’s and ‘wh’s as
single letters by searching through the string and converting all of the ‘ng’s
and ‘wh’s into single characters and then redoing the count. In R, we can
perform this search-and-replace task this task using the gsub() function,19

which takes three arguments: a pattern to search for, a replacement value,
and the string to search within. The result is a string with the pattern
replaced. Because we are only counting letters, it does not matter what
letter we choose as a replacement. First, we replace occurrences of ‘ng’ with
a full stop.

R> replacengs <- gsub("ng", ".", placename)
R> replacengs

[1] "Taumatawhakata.iha.akoauauotamateaturipukakapikimau.ahoronukupokaiwhenuakitanatahu"

19The sub() function is similar, but only replaces the first match in the string. There
is also a function chartr() for converting a single letter to another single letter, and
tolower() and toupper() for converting between cases, see for example, page 319.

“itdt” — 2008/5/19 — 14:15 — page 317 — #343i
i

i
i

i
i

i
i

Data Crunching 317

Next, we replace the occurrences of ‘wh’ with a full stop.

R> replacewhs <- gsub("wh", ".", replacengs)
R> replacewhs

[1] "Taumata.akata.iha.akoauauotamateaturipukakapikimau.ahoronukupokai.enuakitanatahu"

Finally, we count the number of letters in the resulting string.

R> nchar(replacewhs)

[1] 80

The alternative approach involves just finding out how many ‘ng’s and ‘wh’s
are in the string and subtracting that number from the original count. This
simple step of searching within a string for a pattern is yet another common
text processing task. There are several R functions that perform variations
on this task20, but for this example we need the function gregexpr() be-
cause it returns all of the matches within a string. This function takes two
arguments: a pattern to search for and the string to search within. The
return value gives a vector of the starting positions of the pattern within
the string plus an attribute that gives the lengths of each match.

R> ngmatches <- gregexpr("ng", placename)[[1]]
R> ngmatches

[1] 15 20 54
attr(,"match.length")
[1] 2 2 2

This shows that the pattern ‘ng’ occurs three times in the place name,
starting at character positions 15, 20, and 54, respectively, and that the
length of the match is 2 characters in each case. Here is the result of
searching for occurrences of ‘wh’:

R> whmatches <- gregexpr("wh", placename)[[1]]
R> whmatches

[1] 8 70
attr(,"match.length")
[1] 2 2

The return value of gregexpr() is a list to allow for more than one string

20charmatch(), match(), pmatch().

“itdt” — 2008/5/19 — 14:15 — page 318 — #344i
i

i
i

i
i

i
i

318 Introduction to Data Technologies

to be searched at once. In this case, we are only searching a single string,
so we just need the first component of the result.

We can use the length() function to count how many matches there were
in the string.

R> length(ngmatches)

[1] 3

R> length(whmatches)

[1] 2

The final answer is simple arithmetic.

R> nchar(placename) -
(length(ngmatches) + length(whmatches))

[1] 80

For the final question in the homework assignment, the students had to
count how many times each letter appeared in the place name (treating
‘wh’ and ‘ng’ each as two separate letters each again).

One way to do this in R is by breaking the place name into individual
characters and creating a table of counts. Once again, we have a standard
text processing task: breaking a single string into multiple pieces. The
strsplit() function performs this task in R. It takes two arguments: the
string to break up and a pattern which is used to decide where to split the
string. If we give a zero-length pattern, the string is split at each character.

R> nameLetters <- strsplit(placename, NULL)[[1]]
R> nameLetters

[1] "T" "a" "u" "m" "a" "t" "a" "w" "h" "a" "k" "a" "t" "a"
[15] "n" "g" "i" "h" "a" "n" "g" "a" "k" "o" "a" "u" "a" "u"
[29] "o" "t" "a" "m" "a" "t" "e" "a" "t" "u" "r" "i" "p" "u"
[43] "k" "a" "k" "a" "p" "i" "k" "i" "m" "a" "u" "n" "g" "a"
[57] "h" "o" "r" "o" "n" "u" "k" "u" "p" "o" "k" "a" "i" "w"
[71] "h" "e" "n" "u" "a" "k" "i" "t" "a" "n" "a" "t" "a" "h"
[85] "u"

Again, the result is a list to allow for breaking up multiple strings at once.
In this case, bceause we only have one string, we are only interested in the
first component of the list. One minor complication is that we want the

“itdt” — 2008/5/19 — 14:15 — page 319 — #345i
i

i
i

i
i

i
i

Data Crunching 319

uppercase ‘T’ to be counted as a lowercase ‘t’. The function tolower()
performs this task.

R> lowerNameLetters <- tolower(nameLetters)
R> lowerNameLetters

[1] "t" "a" "u" "m" "a" "t" "a" "w" "h" "a" "k" "a" "t" "a"
[15] "n" "g" "i" "h" "a" "n" "g" "a" "k" "o" "a" "u" "a" "u"
[29] "o" "t" "a" "m" "a" "t" "e" "a" "t" "u" "r" "i" "p" "u"
[43] "k" "a" "k" "a" "p" "i" "k" "i" "m" "a" "u" "n" "g" "a"
[57] "h" "o" "r" "o" "n" "u" "k" "u" "p" "o" "k" "a" "i" "w"
[71] "h" "e" "n" "u" "a" "k" "i" "t" "a" "n" "a" "t" "a" "h"
[85] "u"

Now it is a simple matter of calling the table function to produce a table
of counts of the letters.
R> letterCounts <- table(lowerNameLetters)
R> letterCounts

lowerNameLetters
a e g h i k m n o p r t u w
22 2 3 5 6 8 3 6 5 3 2 8 10 2

As well as pulling strings apart into smaller pieces as we have done so far,
we also need to be able to put strings together to make larger strings. In
R, this can done with the paste() function. For example, in the following
code we will build a text statement about the most commonly occurring
letter in the placename.

First of all, we need to identify which letter occurred most often. The
which.max() function is useful here.

R> which.max(letterCounts)

a
1

Now the letter itself is determined with the following code.

R> mostCommon <- names(letterCounts)[which.max(letterCounts)]
R> mostCommon

[1] "a"

The complete text is constructed by concatenating different strings together

“itdt” — 2008/5/19 — 14:15 — page 320 — #346i
i

i
i

i
i

i
i

320 Introduction to Data Technologies

using paste(). Notice the implicit coercion of the numeric value to a string
and the use of the sep argument to specify that no extra characters need
to be placed between the strings that we are concatenating.

R> paste("The letter ", mostCommon, " occurs ",
max(letterCounts), " times.",
sep="")

[1] "The letter a occurs 22 times."

This section has introduced a number of functions for counting letters in
text, transforming strings, breaking strings apart, and putting them back
together again. More examples of the use of these functions are given in
the next section and in case studies later on. Section 12.4.11 also provides
more information on these functions.

11.8.2 Regular expressions

Two of the tasks we looked at when working with the long Maori place name
involved treating both ‘ng’ and ‘wh’ as if they were a single letter, either
counting the number of occurrences of these character pairs, or replacing
them both with full stops. In each case, we performed the task in two steps,
one for ‘ng’ and one for ‘wh’. For example, when converting to full stops, we
performed the following two steps: convert all occurrences of ‘ng’ to a full
stop; convert all occurrences of ‘wh’ to a full stop. Conceptually, it would
be simpler, and more efficient, to perform the task in a single step: convert
all occurrences of ‘ng’ or ‘wh’ to a full stop. Regular expressions allow us
to do this.

With the place name in the variable called placename, converting both ‘ng’
and ‘wh’ to full stops in a single step is achieved as follows:

R> gsub("ng|wh", ".", placename)

[1] "Taumata.akata.iha.akoauauotamateaturipukakapikimau.ahoronukupokai.enuakitanatahu"

A similar approach allows us to count the number of occurrences of either
‘ng’ or ‘wh’ in the place name in a single step.

R> gregexpr("ng|wh", placename)[[1]]

[1] 8 15 20 54 70
attr(,"match.length")
[1] 2 2 2 2 2

“itdt” — 2008/5/19 — 14:15 — page 321 — #347i
i

i
i

i
i

i
i

Data Crunching 321

The regular expression we are using, ng|wh, describes a pattern: the char-
acter ‘n’ followed by the character ‘g’ or the character ‘w’ followed by the
character ‘h’. The vertical bar, |, is a metacharacter. It does not have
its normal meaning, but instead denotes an optional pattern; a match will
occur if the string contains either the pattern to the left of the vertical bar
or the pattern to the right of the vertical bar. The characters ‘n’, ‘g’, ‘w’,
and ‘h’ are all literals; they have their normal meaning.

Regular expressions provide a very powerful way to describe general pat-
terns in text. The next case study looks at some more complex uses and
provides some more examples. Chapter 13 describes several other important
metacharacters that can be used to build more complex regular expressions.

11.8.3 Case study: Rusty wheat

Cereal crops account for almost half of global food
production. Maize, rice, and wheat make up almost
90% of that production, with barley (pictured)
fourth on the list.21

As part of a series of field trials conducted by the Institut du Végétal in
France,22 data were gathered on the effect of the disease Septoria tritici on
wheat. The amount of disease on individual plants was recorded using data
collection forms that were filled in by hand by researchers in the field.

In 2007, due to unusual climatic conditions, two other diseases, Puccinia
recondita (“brown rust”) and Puccinia striiformis (“yellow rust”) were also
observed to be quite prevalent. The data collection forms had no specific
field for recording the amount of rust on each wheat plant, so data were
recorded ad hoc in a general area for “diverse observations”. These data
were transcribed verbatim into a plain text file (see Figure 11.16).

Unsurprisingly, the rust data that was recorded was relatively untidy. It

21Image source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Usda_rachis_barley.jpg

This image is in the Public Domain.
22Thanks to David Gouache, Arvalis - Institut du Végétal

http://commons.wikimedia.org/wiki/Image:Usda_rachis_barley.jpg

“itdt” — 2008/5/19 — 14:15 — page 322 — #348i
i

i
i

i
i

i
i

322 Introduction to Data Technologies

lema, rb 2%

rb 2%

rb 3%

rb 4%

rb 3%

rb 2%,mineuse

rb

rb

rb 12

rb

rj 30%

rb

rb

rb 25%

rb

rb

rb

rj 10, rb 4

Figure 11.16: Data recording the occurrence of brown or yellow rust diseases on

wheat plants. Each line represents one wheat plant.

included other comments unrelated to rust and there were variations in
how the rust data was expressed by different researchers. Fortunately, for
the purposes of recovering these results, some basic features of the data were
consistent.

Each line of data represents one wheat plant. If brown rust was present,
the line contains the letters rb, followed by a space, followed by a number
indicating the percentage of the plant affected by the rust (possibly with a
percentage sign). If the plant was afflicted by yellow rust, the same pattern
applies except that the letters rj are used.23 It is possible for both diseases
to be present on the same plant (see the last line of data in Figure 11.16).

The task of recovering the rust data from these recordings will provide us
with several more examples of the use of regular expressions.

The first step is to get the data into R, which is just a call to readLines().

23The abbreviations rb and rj were used because the French common names for the
diseases are rouille brune and rouille jaune.

“itdt” — 2008/5/19 — 14:15 — page 323 — #349i
i

i
i

i
i

i
i

Data Crunching 323

R> wheat <- readLines(file.path("Wheat", "wheat.txt"))
R> wheat

[1] "lema, rb 2%" "rb 2%" "rb 3%"
[4] "rb 4%" "rb 3%" "rb 2%,mineuse"
[7] "rb" "rb" "rb 12"
[10] "rb" "rj 30%" "rb"
[13] "rb" "rb 25%" "rb"
[16] "rb" "rb" "rj 10, rb 4"

What we want to end up with are two variables, one recording the amount
of brown rust on each plant and one recording the amount of yellow rust.

Starting with brown rust, the first thing we could do is find out which plants
have any brown rust on them. The following code does this using the grep()
function. The result is a vector of indices that tells us which lines contain
the pattern we are searching for.

R> rbLines <- grep("rb [0-9]+", wheat)
R> rbLines

[1] 1 2 3 4 5 6 9 14 18

The regular expression in this call demonstrates two more important metachar-
acters. The brackets, [and], are used to describe a character set that
will be matched. Within the brackets we can specify individual characters
or, as in this case, ranges of characters; 0-9 means any character between
0 and 9.

The + is also a metacharacter, known as a modifier. It says that whatever
immediately precedes the + in the regular expression can repeat several
times. In this case, [0-9]+ will match one or more digits.

The letters r, b, and the space are all literal, so the entire regular expression
will match the letters rb, followed by a space, followed by one or more digits.
In other words, this will only match rows on which brown rust has been
observed on the wheat plant.

Having found which lines contain information about brown rust, we want
to extract the information from those lines. The indices from the call to
grep() can be used to subset out just the relevant lines of data.

“itdt” — 2008/5/19 — 14:15 — page 324 — #350i
i

i
i

i
i

i
i

324 Introduction to Data Technologies

R> wheat[rbLines]

[1] "lema, rb 2%" "rb 2%" "rb 3%"
[4] "rb 4%" "rb 3%" "rb 2%,mineuse"
[7] "rb 12" "rb 25%" "rj 10, rb 4"

We will extract just the brown rust information from these lines in two steps,
partly so that we can explore more about regular expressions, and partly
because we have to in order to cater for plants that have been afflicted by
both brown and yellow rust.

The first step is to reduce the line down to just the information about brown
rust. In other words, we want to discard everything except the pattern we
are looking for. The following code performs this step.

R> rbOnly <- gsub("^.*(rb [0-9]+).*$", "\\1",
wheat[rbLines])

R> rbOnly

[1] "rb 2" "rb 2" "rb 3" "rb 4" "rb 3" "rb 2" "rb 12"
[8] "rb 25" "rb 4"

Again, we have some new metacharacters to explain. First up is the “hat”
character, ^, which matches the start of the line (or the start of the string).
Next is the full stop, .. This will match any single character, no matter
what it is. The * character is similar to the +; it modifies the immediately-
preceding part of the expression and allows for zero or more occurrences.
An expression like ^.* allows for any number of characters at the start of
the string (including zero characters, or an empty string).

The parentheses, (and), are used to create sub-patterns within a regular
expression. In this case, we are isolating the pattern rb [0-9]+, which
matches the brown rust information that we are looking for. Parentheses
are useful if we want a modifier, like + or *, to effect a whole sub-pattern
rather than a single character and they can be useful when specifying the
replacement text in a search-and-replace operation, as we will see below.

After the parenthesized sub-pattern, we have another .* expression to allow
for any number of additional characters then, finally, a dollar sign, $. The
latter is the counterpart to ^; it matches the end of a line (or the end of a
string).

So the complete regular expression explicitly matches an entire string that
contains information on brown rust. Why do we want to do this? Because
we are going to replace the entire string with only the piece that we want to

“itdt” — 2008/5/19 — 14:15 — page 325 — #351i
i

i
i

i
i

i
i

Data Crunching 325

keep. That is the purpose of the funny-looking replacement text "\\1".

The text used to replace a matched pattern in gsub() is mostly just literal
text. The one exception is that we can refer to sub-patterns within the reg-
ular expression that was used to find a match. By specifying "\\1", we are
saying reuse whatever matched the sub-pattern within the first set of paren-
theses in the regular expression. If there were a second set of parentheses,
we could refer to that sub-pattern as "\\2".

The overall meaning of the gsub() call is therefore to replace the entire
string with just the part of the string that contains the information about
brown rust.

The final step we have to perform is to extract just the numeric data from
the brown rust information. We will do this in three ways in order to
demonstrate several different techniques.

One approach is to take the strings that contain just the brown rust infor-
mation and throw away everything except the numbers. The following code
does this using a regular expression.

R> gsub("[^0-9]", "", rbOnly)

[1] "2" "2" "3" "4" "3" "2" "12" "25" "4"

The point about this regular expression is that it uses ^ as the first char-
acter within the square brackets. This has the effect of negating the set of
characters within the brackets, so [^0-9] means any character that is not
a digit. The effect of the complete gsub() call is to replace anything that
is not a digit with the empty string, so only the digits remain.

An alternative approach is to recognize that the strings we are dealing with
have a very regular structure. In fact, all we need to do is drop the first three
characters from each string. The following code does this with a simple call
to substring(). The second argument to the function says which character
to start with; in this case, the first character we want is character 4. There
is an optional third argument that specifies which character to stop at, but
if, as in this example, the third argument is not specified, then we keep
going to the end of the string.

R> substring(rbOnly, 4)

[1] "2" "2" "3" "4" "3" "2" "12" "25" "4"

The final approach that we will consider works with the entire original
string, wheat[rbLines], and uses a regular expression containing an extra

“itdt” — 2008/5/19 — 14:15 — page 326 — #352i
i

i
i

i
i

i
i

326 Introduction to Data Technologies

set of parentheses to isolate just the numeric content of the brown rust
information as a sub-pattern of its own. The replacement text just refers to
this second sub-pattern to perform the extraction in a single step.

R> gsub("^.*(rb ([0-9]+)).*$", "\\2", wheat[rbLines])

[1] "2" "2" "3" "4" "3" "2" "12" "25" "4"

We are not quite finished because we want to produce a variable that con-
tains the brown rust information for all plants. We will just use NA for plants
that were not afflicted.

A simple way to do this is to create a vector of NAs and then fill in the rows
for which we have brown rust information. The other important detail in
the following code is the conversion of the textual information into numeric
values using as.numeric().

R> rb <- rep(NA, length(wheat))
R> rb[rbLines] <- as.numeric(gsub("^.*(rb ([0-9]+)).*$",

"\\2", wheat[rbLines]))
R> rb

[1] 2 2 3 4 3 2 NA NA 12 NA NA NA NA 25 NA NA NA 4

To complete the exercise, we need to repeat the process for yellow rust.
Rather than repeat the approach used for brown rust, we will investigate
a different solution, which will again allow us to demonstrate more text
processing techniques.

This time, we will use regexpr() rather than grep() to find the lines that
we want, which are now the lines containing yellow rust data.

R> rjData <- regexpr("rj [0-9]+", wheat)
R> rjData

[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1
attr(,"match.length")
[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 5

The result is a numeric vector with a positive number for lines that contain
yellow rust data and -1 otherwise. The number indicates the character
where the data start. There are only two lines containing data and, in both
cases, the data starts at the first character.

The result also has an attribute called match.length which contains the
number of characters that produced the match with the regular expression

“itdt” — 2008/5/19 — 14:15 — page 327 — #353i
i

i
i

i
i

i
i

Data Crunching 327

that we were searching for. In both cases, the pattern matched a total of 5
characters, the letters r and j, followed by a space, followed by two digits.
This length information is particularly useful because it will allow us to
extract the yellow rust data immediately using substring(). This time we
specify both a start and an end character for the substring.

R> rjText <- substring(wheat, rjData,
attr(rjData, "match.length"))

R> rjText

[1] "" "" "" "" "" "" ""
[8] "" "" "" "rj 30" "" "" ""
[15] "" "" "" "rj 10"

Obtaining the actual numeric data can be carried out using any of the
techniques we described above for the brown rust case.

The following code produces the final result, including both brown and
yellow rust as a data frame.

R> rj <- as.numeric(substring(rjText, 4))
R> data.frame(rb=rb, rj=rj)

rb rj
1 2 NA
2 2 NA
3 3 NA
4 4 NA
5 3 NA
6 2 NA
7 NA NA
8 NA NA
9 12 NA
10 NA NA
11 NA 30
12 NA NA
13 NA NA
14 25 NA
15 NA NA
16 NA NA
17 NA NA
18 4 10

“itdt” — 2008/5/19 — 14:15 — page 328 — #354i
i

i
i

i
i

i
i

328 Introduction to Data Technologies

11.8.4 Case study: Crohn’s disease

Crohn’s disease is an inflammation
of the small intestine of the diges-
tive tract. (the thicker lines in the
diagram to the left).24

Genetic data consists of (usually large amounts of) information on the geno-
types of individuals—which alleles do people have at particular loci on their
chromosomes. Genetics is a very fast-moving field, with many new meth-
ods being developed for collecting genetic data and a number of specialized
software systems for performing analyses. One of the problems that ge-
netics researchers face is the difficulty of dealing with many different data
formats. The various methods for collecting genetic data produce a variety
of raw formats and some of the analysis software requires the data to be in
a very specific format for processing.

We will consider an example of this problem, using data from a study of
Crohn’s disease (an inflammatory bowel disease).25 The data were originally
obtained in a format appropriate for analysis using the software package
called LINKAGE,26 but the analysis was performed using software called
PHASE,27 which requires an entirely difference format for the data.

The original LINKAGE format looks like this:

24Image source: Wikimedia Commons
http://commons.wikimedia.org/wiki/Image:Stomach_colon_rectum_diagram.svg

This image is in the Public Domain.
25

26http://linkage.rockefeller.edu/soft/linkage/
27http://www.stat.washington.edu/stephens/software.html

http://commons.wikimedia.org/wiki/Image:Stomach_colon_rectum_diagram.svg
http://linkage.rockefeller.edu/soft/linkage/
http://www.stat.washington.edu/stephens/software.html

“itdt” — 2008/5/19 — 14:15 — page 329 — #355i
i

i
i

i
i

i
i

Data Crunching 329

PED054 430 0 0 1 0 1 3 3 1 4 1 4 2 2 ...
PED054 412 430 431 2 2 1 3 1 3 4 1 4 ...
PED054 431 0 0 2 0 3 3 3 3 1 1 2 2 1 ...
PED058 438 0 0 1 0 3 3 3 3 1 1 2 2 1 ...
PED058 470 438 444 2 2 3 3 3 3 1 1 2 ...
PED058 444 0 0 2 0 3 3 3 3 1 1 2 2 1 ...
...

Each line in the file represents one individual. On each row, the first value
is a pedigree label (all individuals who are related to each other are grouped
into a single pedigree), the second value is the individual’s unique identifier,
and the third and fourth values identify the individual’s genetic parents (if
they exist within the data set). The fifth value on each row indicates gender
(1 is male, 2 is female) and the sixth value indicates whether the individual
has Crohn’s disease (1 is no disease, 2 is disease, 0 is unknown). From the
first three lines of the data file we can see that individual 412 is the child
of individuals 430 (the father) and 431 (the mother), she is female, and she
has Crohn’s disease. We do not know whether either of her parents have
the disease.

The remainder of each line, after the sixth value, consists of pairs of values,
where each pair gives the alleles for the individual at a particular locus. For
example, individual 412 has alleles 1 and 3 at locus 1, 1 and 3 at locus 2,
and 4 and 1 at locus 3.

We want to convert the data to the following format:

430
1 3 4 4 2 3 2 3 3 4 4 2 2 3 2 2 3 3 1 3 1 2 3 1 2 ...
3 1 1 2 1 1 4 2 3 2 2 1 1 1 2 2 3 2 1 3 1 2 3 1 2 ...
412
1 1 4 4 2 3 4 3 3 2 2 2 1 1 2 2 3 ? 1 3 1 2 3 1 2 ...
3 3 1 2 1 1 2 2 3 4 4 1 2 3 2 2 3 ? 1 3 1 2 3 1 2 ...
431
3 3 1 2 1 1 2 2 3 4 4 ? 2 3 2 2 3 3 1 3 1 2 3 1 2 ...
3 3 1 2 1 1 2 2 3 4 4 ? 2 3 2 2 3 3 1 3 1 2 3 1 2 ...
...

In this format, the information for each individual is stored on three lines.
The first line gives the individual’s unique identifier, the second line gives
the first allele at each locus, and the third line gives the second allele at
each locus. Instead of alleles being in pairs of columns, they are in pairs
of rows. Furthermore, any zeroes in the original allele information, which
indicate missing values, must be encoded as question marks (e.g., individual

“itdt” — 2008/5/19 — 14:15 — page 330 — #356i
i

i
i

i
i

i
i

330 Introduction to Data Technologies

412 has missing values at the 18th locus).

There are many ways that we could perform this transformation, but we
will use an approach that involves a number of the file handling, data ma-
nipulation and text processing tools that we have discussed.

The first step is to read the original file into R. We keep all values as strings
so that we can work with the data as one large matrix. The read.table()
function conveniently splits the data into separate values for us. We also
calculate the number of individuals in the data set (there are 387).

R> crohn <- as.matrix(read.table(file.path("Crohns",
"Dalydata.txt"),

colClasses="character"))
R> ncase <- nrow(crohn)
R> crohn

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 ...
[1,] "PED054" "430" "0" "0" "1" "0" "1" "3" "3" "1" ...
[2,] "PED054" "412" "430" "431" "2" "2" "1" "3" "1" "3" ...
[3,] "PED054" "431" "0" "0" "2" "0" "3" "3" "3" "3" ...
[4,] "PED058" "438" "0" "0" "1" "0" "3" "3" "3" "3" ...
[5,] "PED058" "470" "438" "444" "2" "2" "3" "3" "3" "3" ...
[6,] "PED058" "444" "0" "0" "2" "0" "3" "3" "3" "3" ...
...

It is a simple matter to extract the unique identifiers for the individuals
from this matrix. These are just the second column of the matrix.

R> ids <- crohn[, 2]
R> ids

[1] "430" "412" "431" "438" "470" "444" "543" "516" "513" ...

These identifiers represent the first, fourth, seventh, etc line of the final
format. We can generate an empty object with the apropriate number of
lines and start to fill in the lines that we know.
R> crohnPHASE <- vector("character", 3*ncase)
R> crohnPHASE[seq(by=3, length.out=ncase)] <- ids
R> crohnPHASE

[1] "430" "" "" "412" "" "" "431" "" "" ...

“itdt” — 2008/5/19 — 14:15 — page 331 — #357i
i

i
i

i
i

i
i

Data Crunching 331

The genotype information (the pairs of alleles) requires considerable rear-
rangement. To make it easy to see what we are doing, we will just extract
that part of the data set and take a note of how many genotypes we have
(there are 103).

R> genotypes <- crohn[, -(1:6)]
R> ngenotype <- ncol(genotypes)/2
R> genotypes

V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 ...
[1,] "1" "3" "3" "1" "4" "1" "4" "2" "2" "1" ...
[2,] "1" "3" "1" "3" "4" "1" "4" "2" "2" "1" ...
[3,] "3" "3" "3" "3" "1" "1" "2" "2" "1" "1" ...
...

What we want to do is take the odd alleles for an individual and put them
together in a single row. We can extract the odd alleles using simple index-
ing:

R> allele1 <- genotypes[, seq(by=2, length.out=ngenotype)]
R> allele1

V7 V9 V11 V13 V15 V17 V19 V21 V23 V25 ...
[1,] "1" "3" "4" "4" "2" "3" "2" "3" "3" "4" ...
[2,] "1" "1" "4" "4" "2" "3" "4" "3" "3" "2" ...
[3,] "3" "3" "1" "2" "1" "1" "2" "2" "3" "4" ...
...

Each row of this matrix contains the information we need for one row of the
final format. We can combine all of the strings on each row of the matrix
into a single string by using apply() to call the paste() function on each
row of the matrix.
R> alleleLine1 <- apply(allele1, 1, paste, collapse=" ")
R> alleleLine1

[1] "1 3 4 4 2 3 2 3 3 4 4 2 2 3 2 2 3 3 1 3 1 2 3 ...
[2] "1 1 4 4 2 3 4 3 3 2 2 2 1 1 2 2 3 0 1 3 1 2 3 ...
[3] "3 3 1 2 1 1 2 2 3 4 4 0 2 3 2 2 3 3 1 3 1 2 3 ...
...

These strings now represent the second, fifth, eighth, etc rows of the final
format, so we can fill in more of the crohnPHASE object. At this point, we
also do the conversion of 0 values to ? symbols.

“itdt” — 2008/5/19 — 14:15 — page 332 — #358i
i

i
i

i
i

i
i

332 Introduction to Data Technologies

R> crohnPHASE[seq(2, by=3, length.out=ncase)] <-
gsub("0", "?", alleleLine1)

R> crohnPHASE

[1] "430"
[2] "1 3 4 4 2 3 2 3 3 4 4 2 2 3 2 2 3 3 1 3 1 2 3 ...
[3] ""
[4] "412"
[5] "1 1 4 4 2 3 4 3 3 2 2 2 1 1 2 2 3 ? 1 3 1 2 3 ...
[6] ""
...

The same series of steps can be carried out for the even allele values to
generate the third, sixth, ninth, etc lines of the final format.

R> allele2 <- genotypes[, seq(2, by=2, length.out=ngenotype)]
R> alleleLine2 <- apply(allele2, 1, paste, collapse=" ")
R> crohnPHASE[seq(3, by=3, length.out=ncase)] <-

gsub("0", "?", alleleLine2)
R> crohnPHASE

[1] "430"
[2] "1 3 4 4 2 3 2 3 3 4 4 2 2 3 2 2 3 3 1 3 1 2 3 ...
[3] "3 1 1 2 1 1 4 2 3 2 2 1 1 1 2 2 3 2 1 3 1 2 3 ...
[4] "412"
[5] "1 1 4 4 2 3 4 3 3 2 2 2 1 1 2 2 3 ? 1 3 1 2 3 ...
[6] "3 3 1 2 1 1 2 2 3 4 4 1 2 3 2 2 3 ? 1 3 1 2 3 ...
...

The final step is to write the new format to a file. Because we have the data
in a character vector, with each string representing one line of the new file
format, this is just a matter of calling the writeLines() function.

R> writeLines(crohnPHASE, "DalydataPHASE.txt")

“itdt” — 2008/5/19 — 14:15 — page 333 — #359i
i

i
i

i
i

i
i

Data Crunching 333

VARIABLE : Mean Near-surface air temperature (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.1 270.3 270.3 270.9 271.5 275.6 278.4 ...

33.8N / 50: 282.2 282.2 272.7 272.7 271.5 280.0 281.6 ...

31.2N / 49: 285.2 285.2 276.1 275.0 278.9 281.6 283.7 ...

28.8N / 48: 290.7 286.8 286.8 276.7 277.3 283.2 287.3 ...

26.2N / 47: 292.7 293.6 284.2 284.2 279.5 281.1 289.3 ...

23.8N / 46: 293.6 295.0 295.5 282.7 282.7 281.6 285.2 ...

...

Figure 11.17: The first few lines of output from the Live Access Server for the

near-surface air temperature of the Earth for January 1995, over a coarse 24 by

24 grid of locations covering central America.

11.8.5 Flashback: Regular expressions in HTML Forms

11.8.6 Flashback: Regular expressions in SQL

11.9 Writing Functions

It is quite straightforward to create new functions in R.

In this section, we will look at why it is useful and sometimes necessary to
write our own functions.

11.9.1 Case Study: The Data Expo (continued)

The data for the 2006 JSM Data Expo (Section 7.3.6) were obtained from
NASA’s Live Access Server as a set of 505 text files (see Section 1.1).

Seventy-two of those files contain near-surface air temperature measure-
ments, with one file for each month of recordings. Each file contains average
temperatures for the relevant month at 576 different locations. Figure 11.17
shows the first few lines of the temperature file for the first month, January
1995.

The complete set of 72 file names for the files containing temperature record-

“itdt” — 2008/5/19 — 14:15 — page 334 — #360i
i

i
i

i
i

i
i

334 Introduction to Data Technologies

ings can be obtained by the following code (only the first fifteen file names
are shown):

R> nasaAirTempFiles <- list.files(file.path("NASA", "Files"),
pattern="^temperature",
full.names=TRUE)

R> head(nasaAirTempFiles, n=15)

[1] "NASA/Files/temperature10.txt"
[2] "NASA/Files/temperature11.txt"
[3] "NASA/Files/temperature12.txt"
[4] "NASA/Files/temperature13.txt"
[5] "NASA/Files/temperature14.txt"
[6] "NASA/Files/temperature15.txt"
[7] "NASA/Files/temperature16.txt"
[8] "NASA/Files/temperature17.txt"
[9] "NASA/Files/temperature18.txt"
[10] "NASA/Files/temperature19.txt"
[11] "NASA/Files/temperature1.txt"
[12] "NASA/Files/temperature20.txt"
[13] "NASA/Files/temperature21.txt"
[14] "NASA/Files/temperature22.txt"
[15] "NASA/Files/temperature23.txt"

This code assumes that the files are stored in a local directory NASA/Files.
Notice also that we are using a regular expression to specify the pattern of
the filenames that we want; we have selected all file names that start with
temperature.28

The file names are in an awkward order because of the default alphabet-
ical ordering of the names;29 the data for the first month are in the file
temperature1.txt, but this is the eleventh file name. We can ignore this
problem for now, but we will come back to it later.

We will conduct a simple task with these data: calculating the near-surface
air temperature for each month, averaged over all locations. In other words,
we will calculate a single average temperature from each file. The result will
be a vector of 72 monthly averages.

28For Linux users who are used to using file name globs with the ls shell command,
this use of regular expressions for file name patterns can cause confusion. Such users may
find the glob2rx() function helpful.

29The default ordering is dependent on the operating system and the locale, so the
result may differ if this code is run on a non-Linux machine and/or in a non-english
locale.

“itdt” — 2008/5/19 — 14:15 — page 335 — #361i
i

i
i

i
i

i
i

Data Crunching 335

The following code reads in the data using the first file name, temperature10.txt,
and averages all of the temperatures in the file.

R> mean(as.matrix(read.fwf(nasaAirTempFiles[1],
skip=7,
widths=c(-12, rep(7, 24)))))

[1] 298.0564

The call to read.fwf() ignores the first 7 lines of the file and the first 12
characters on the remaining lines of the file. This just leaves the temperature
values, which are converted into a matrix so that the mean() function can
calculate the average across all of the values.

We want to perform this calculation for each of the air temperature files.
Conceptually, we want to perform a loop, once for each file name. Indeed,
we can write code to perform the task with an explicit loop.

R> avgTemp <- numeric(72)
R> for (i in 1:72) {

avgTemp[i] <-
mean(as.matrix(read.fwf(nasaAirTempFiles[i],

skip=7,
widths=c(-12,
rep(7, 24)))))

}
R> avgTemp

[1] 298.0564 296.7019 295.9568 295.3915 296.1486 296.1087
[7] 297.1007 298.3694 298.1970 298.4031 295.1849 298.0682
[13] 298.3148 297.3823 296.1304 295.5917 295.5562 295.6438
[19] 296.8922 297.0823 298.4793 295.3175 299.3575 299.7984
[25] 299.7314 299.6090 298.4970 297.9872 296.8453 296.9569
[31] 296.9354 297.0240 296.3335 298.0668 299.1821 300.7290
[37] 300.6998 300.3715 300.1036 299.2269 297.8642 297.2729
[43] 296.8823 296.9587 297.4288 297.5762 298.2859 299.1076
[49] 299.1938 299.0599 299.5424 298.9135 298.2849 297.0981
[55] 297.7286 296.2639 296.1943 296.5868 297.5510 298.6106
[61] 299.7425 299.5219 299.7422 300.3411 299.5781 298.5809
[67] 298.6965 297.0830 296.3813 299.1863 299.0660 298.4634

That is the vector of 72 monthly averages that we require.

However, as we saw in Section 11.7.3, it is more natural in R to use a
function like sapply() to perform this sort of task, rather than using an

“itdt” — 2008/5/19 — 14:15 — page 336 — #362i
i

i
i

i
i

i
i

336 Introduction to Data Technologies

explicit loop.

What we want to do is use sapply() to call a function once for each of the
file names in the vector nasaAirTempFiles.

There is a small problem because nasaAirTempFiles is a vector amd sapply()
works with a list. However, it is not difficult to coerce the vector of file names
into a list; in fact, sapply() will do that coercion automatically for us.

A larger problem in this case is that there is no existing function to per-
form the task that we need to perform for each file name. That is, we have
no ready-made function that will read in the file, discard all but the tem-
perature values, generate a matrix of the values, and calculate an overall
mean.

Fortunately, it is very easy to define such a function ourselves. Here is code
that defines a function called monthAvg() to perform this task.

R> monthAvg <- function(filename) {
mean(as.matrix(read.fwf(filename,

skip=7,
widths=c(-12, rep(7, 24)))))

}

The object monthAvg is a function object that can be used like any other R
function. This function has a single argument called filename. When the
monthAvg() function is called, the filename argument must be specified
and, within the function, the symbol filename contains the value specified
as the first argument in the function call.

The value returned by a function is the value of the last expression within
the function. In this case, the return value is the result of the call to the
mean() function.

As a simple example, the following two pieces of code produce exactly the
same result; they both calculate the overall average temperature from the
contents of the file temperature10.txt.

R> mean(as.matrix(read.fwf(nasaAirTempFiles[1],
skip=7,
widths=c(-12, rep(7, 24)))))

R> monthAvg(nasaAirTempFiles[1])

[1] 298.0564

With this function defined, it is now possible to calculate the monthly av-

“itdt” — 2008/5/19 — 14:15 — page 337 — #363i
i

i
i

i
i

i
i

Data Crunching 337

erages from all of the temperature files using sapply(). We supply the
vector of file names and sapply() automatically converts this to a list of
file names. We also supply our new monthAvg() function and sapply() calls
that function for each file name. We specify USE.NAMES=FALSE in this call
because otherwise each element of the result would have the corresponding
filename as a label, which looks messy.

R> sapply(nasaAirTempFiles, monthAvg, USE.NAMES=FALSE)

[1] 298.0564 296.7019 295.9568 295.3915 296.1486 296.1087
[7] 297.1007 298.3694 298.1970 298.4031 295.1849 298.0682
[13] 298.3148 297.3823 296.1304 295.5917 295.5562 295.6438
[19] 296.8922 297.0823 298.4793 295.3175 299.3575 299.7984
[25] 299.7314 299.6090 298.4970 297.9872 296.8453 296.9569
[31] 296.9354 297.0240 296.3335 298.0668 299.1821 300.7290
[37] 300.6998 300.3715 300.1036 299.2269 297.8642 297.2729
[43] 296.8823 296.9587 297.4288 297.5762 298.2859 299.1076
[49] 299.1938 299.0599 299.5424 298.9135 298.2849 297.0981
[55] 297.7286 296.2639 296.1943 296.5868 297.5510 298.6106
[61] 299.7425 299.5219 299.7422 300.3411 299.5781 298.5809
[67] 298.6965 297.0830 296.3813 299.1863 299.0660 298.4634

This is the same result as we got from an explicit loop (see page 335), but
it uses only a single call to sapply().

In order to show another example of writing our own functions, we will try
to solve an outstanding issue with this result: the fact that these results are
not actually in chronological order.

Recall that the file names are ordered alphabetically, so the answer for the
first month is actually the eleventh average in the result above. We will
now develop a different function so that we can get the averages in the right
order.

The idea of this new function is that, instead of taking a file name as an
argument, it takes an integer as its argument and it calculates a file name
based on that integer. This will allow us to control the order of the file
names by controlling the order of the integers. The new function is called
ithAvg().

R> ithAvg <- function(i=1) {
monthAvg(file.path("NASA", "Files",

paste("temperature", i,
".txt", sep="")))

}

“itdt” — 2008/5/19 — 14:15 — page 338 — #364i
i

i
i

i
i

i
i

338 Introduction to Data Technologies

This function has a single argument called i. The value of this argument is
combined with the path to the file to produce a complete file name and the
file name is then passed to the monthAvg() function.

One difference between this function and the previous monthAvg() function
is that, when this function is called, the first argument, i, is optional. The
function definition provides a default value, 1, for the argument i. This
means that if the function is called with no arguments, i will have the
value 1 and the function will calculate the average temperature for the file
temperature1.txt.

R> ithAvg()

[1] 295.1849

With this function defined, we can calculate the monthly average tempera-
tures in a chronological order.

R> sapply(1:72, ithAvg, USE.NAMES=FALSE)

[1] 295.1849 295.3175 296.3335 296.9587 297.7286 298.5809
[7] 299.1863 299.0660 298.4634 298.0564 296.7019 295.9568
[13] 295.3915 296.1486 296.1087 297.1007 298.3694 298.1970
[19] 298.4031 298.0682 298.3148 297.3823 296.1304 295.5917
[25] 295.5562 295.6438 296.8922 297.0823 298.4793 299.3575
[31] 299.7984 299.7314 299.6090 298.4970 297.9872 296.8453
[37] 296.9569 296.9354 297.0240 298.0668 299.1821 300.7290
[43] 300.6998 300.3715 300.1036 299.2269 297.8642 297.2729
[49] 296.8823 297.4288 297.5762 298.2859 299.1076 299.1938
[55] 299.0599 299.5424 298.9135 298.2849 297.0981 296.2639
[61] 296.1943 296.5868 297.5510 298.6106 299.7425 299.5219
[67] 299.7422 300.3411 299.5781 298.6965 297.0830 296.3813

These are the same values as before, just in a different order.

11.9.2 Flashback: Writing functions and the DRY Prin-
ciple

The previous example demonstrates that it is useful to be able to define our
own functions for use with functions like apply(), lapply(), and sapply().
However, there are many other good reasons for being able to write func-
tions. In particular, functions are useful for organising code, simplifying
code, and for making it easier to maintain code.

“itdt” — 2008/5/19 — 14:15 — page 339 — #365i
i

i
i

i
i

i
i

Data Crunching 339

For example, we could also use the monthAvg() and ithAvg() functions
that we defined, to make the explicit for loop solution to our task (see page
335) much simpler and easier to read.

R> avgTemp <- numeric(72)
R> for (i in 1:72) {

avgTemp[i] <- ithAvg(i)
}

This is an example of just making our code tidier, which is just an extension
of the ideas of laying out and documenting code for the benefit of human
readers. A further advantage that we obtain from writing functions is the
ability to safely and efficiently reuse our code.

The ithAvg() function demonstrates the idea of code reuse. Here is the
function definition again:

R> ithAvg <- function(i=1) {
monthAvg(file.path("NASA", "Files",

paste("temperature", i,
".txt", sep="")))

}

The important feature of this function is that it calls our other function
monthAvg(). By way of contrast, consider the following alternative way
that we could define ithAvg().

R> ithAvgBad <- function(i=1) {
mean(
as.matrix(
read.fwf(file.path("NASA", "Files",

paste("temperature", i,
".txt", sep="")),

skip=7,
widths=c(-12, rep(7, 24)))))

}

What is wrong with this function? The problem is that it repeats almost
all of the code that is already in monthAvg() and this leads to a number of
familiar issues: there is obvious inefficiency because it is wasteful to type all
of that code again; what is worse, the code is harder to maintain because
there are two copies of the code—if any changes need to be made, they must
now be made in two places; worse still, we are now vulnerable to making
mistakes because we can change one copy of the code without changing the
other copy and thereby end up with two functions that behave differently
even though we think they are the same.

“itdt” — 2008/5/19 — 14:15 — page 340 — #366i
i

i
i

i
i

i
i

340 Introduction to Data Technologies

The merits of reusing our monthAvg() function in the ithAvg() function
should now be clear. The existence of the monthAvg() function means that
we only have one copy of the code used to read data from the Data Expo
files and that leads to greater efficiency and better accuracy.

11.10 Debugging

It is very easy to make a blanket statement that we should always use a
computer to perform menial and repetitive tasks because the computer will
make fewer stupid mistakes. However, this conveniently ignores the fact
that the computer has to be told, by a person, to do the right thing.

Writing a script to tell a computer how to do a task is just another op-
portunity to make a mistake. Also, while we only have to write one script,
rather than perform a menial task a thousand times, writing a script is a
much more complex task and so the chance of making a mistake is higher.
Even worse, the consequences of getting it wrong are greater. If our script
contains a mistake, we could massacre our entire data set.

The silver lining is that, if we get the script wrong, as long as we notice the
mistake and can fix it, it is trivial to repeat the data processing to fix it up.

The important thing is that we must acknowledge that there is a chance
that a script will contain mistakes. We must not assume that our script will
work; we should always check the results of a script (testing); and we must
be capable of determining the source of any errors (debugging).

11.11 Other software

There are two major disadvantages to working with data using R: R is an
interpreted language (as opposed to compiled languages such as C), which
means it can be relatively slow; and R holds all data in memory, so it cannot
perform tasks on very large data sets.

11.11.1 Perl

11.11.2 Calling other software from R

The system() function can be used to run other programs from R.

“itdt” — 2008/5/19 — 14:15 — page 341 — #367i
i

i
i

i
i

i
i

Data Crunching 341

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.7 270.9 270.9 269.7 273.2 275.6 277.3 ...

33.8N / 50: 279.5 279.5 275.0 275.6 277.3 279.5 281.6 ...

31.2N / 49: 284.7 284.7 281.6 281.6 280.5 282.2 284.7 ...

28.8N / 48: 289.3 286.8 286.8 283.7 284.2 286.8 287.8 ...

26.2N / 47: 292.2 293.2 287.8 287.8 285.8 288.8 291.7 ...

23.8N / 46: 294.1 295.0 296.5 286.8 286.8 285.2 289.8 ...

...

Figure 11.18: The first few lines of output from the Live Access Server for the

surface temperature of the Earth on January 16th 1995 over a coarse 24 by 24 grid

of locations covering central America.

11.11.3 Case Study: The Data Expo (continued)

The data for the 2006 JSM Data Expo (Section 7.3.6) were obtained from
NASA’s Live Access Server (see Section 1.1).

There were 505 files to download so, rather than use the web interface, the
data were downloaded using a command-line interface to the Live Access
Server. An example of a command used to download a file is shown below
and the resulting file is shown in Figure 11.18.

lasget.pl -x -115:-55 -y -22:37 -t 1995-Jan-16 \
-o surftemp.txt -f txt \
http://mynasadata.larc.nasa.gov/las-bin/LASserver.pl \
ISCCPMonthly_avg_nc ts

The data were downloaded with one file per month of observations, which
made for 504 files in total, so it was most efficient to write a script to perform
the downloads within two loops. The basic algorithm is this:

1 for each variable
2 for each month
3 download a file

“itdt” — 2008/5/19 — 14:15 — page 342 — #368i
i

i
i

i
i

i
i

342 Introduction to Data Technologies

The actual download can be performed from within R using the system()
function. For example, the one-off download shown above (to produce the
file shown in Figure 7.6) can be performed from R with the following code.

R> system("lasget.pl -x -115:-55 -y -22:37 -t 1995-Jan-16 \
-o surftemp.txt -f txt \
http://mynasadata.larc.nasa.gov/las-bin/LASserver.pl \
ISCCPMonthly_avg_nc ts")

More generally, we could write a function to perform the download for a
given variable and date and store the output in a file called filename.

R> lasget <- function(variable, date, filename) {
command <-
paste(
"lasget.pl -x -115:-55 -y -22:37 -t ",
date,
" -o ", filename, " -f txt ",
"http://mynasadata.larc.nasa.gov/las-bin/LASserver.pl ",
"ISCCPMonthly_avg_nc ", variable,
sep="")

system(command)
}

Now it is a simple matter to add a loop over the variables we want to
download and a loop over the months that we want to download.

R> variables <- list(c("ts", "surftemp"),
c("tsa_tovs", "temperature"),
c("ps_tovs", "pressure"),
c("o3_tovs", "ozone"),
c("ca_low", "cloudlow"),
c("ca_mid", "cloudmid"),
c("ca_high", "cloudhigh"))

R> dates <- seq(as.Date("1995/1/16"), by="month", length.out=72)
R> for (variable in variables) {

for (date in as.character(dates)) {
lasget(variable[1], date,

file.path("lasfiles", variable[2]))
}

}

I have chosen to enter the variables and filenames in a list because this
makes a strong connection between related variables and filenames and
makes maintaining the lists of variable names and file names more con-

“itdt” — 2008/5/19 — 14:15 — page 343 — #369i
i

i
i

i
i

i
i

Data Crunching 343

venient and accurate. This means that, for example, it is very unlikely that
I could accidentally associate the wrong filename with a variable and it is
very unlikely that I could accidentally remove one of the variables without
also removing the corresponding filename.

It is also worth mentioning that the download is creating files in a separate
directory, rather than cluttering up the current directory. This keeps things
orderly and makes it easy to clean up if things go haywire. The final file
name is generated using file.path() to make sure that the code will run
on any operating system.

The curious reader may be wondering about the double for loop in the
above code. Like all of the other examples, we can do this task without
loops, although we have to rearrange the data a little in order to do so.

First of all, we need to convert the variables list into a matrix. This will
allow us to address the information by column.

R> variableMatrix <- matrix(unlist(variables),
byrow=TRUE, ncol=2)

R> variableMatrix

[,1] [,2]
[1,] "ts" "surftemp"
[2,] "tsa_tovs" "temperature"
[3,] "ps_tovs" "pressure"
[4,] "o3_tovs" "ozone"
[5,] "ca_low" "cloudlow"
[6,] "ca_mid" "cloudmid"
[7,] "ca_high" "cloudhigh"

Next, we need to produce all possible combinations of variables and dates.

“itdt” — 2008/5/19 — 14:15 — page 344 — #370i
i

i
i

i
i

i
i

344 Introduction to Data Technologies

R> datesAndVariables <-
expand.grid(variable=variableMatrix[, 1],

month=dates)
R> head(datesAndVariables, n=10)

variable month
1 ts 1995-01-16
2 tsa_tovs 1995-01-16
3 ps_tovs 1995-01-16
4 o3_tovs 1995-01-16
5 ca_low 1995-01-16
6 ca_mid 1995-01-16
7 ca_high 1995-01-16
8 ts 1995-02-16
9 tsa_tovs 1995-02-16
10 ps_tovs 1995-02-16

The full variable information needs to be merged back together.

R> allCombinations <- merge(datesAndVariables, variableMatrix,
by.x="variable", by.y=1)

R> head(allCombinations[order(allCombinations$month),], n=10)

variable month V2
59 ca_high 1995-01-16 cloudhigh
74 ca_low 1995-01-16 cloudlow
153 ca_mid 1995-01-16 cloudmid
246 o3_tovs 1995-01-16 ozone
293 ps_tovs 1995-01-16 pressure
361 ts 1995-01-16 surftemp
483 tsa_tovs 1995-01-16 temperature
66 ca_high 1995-02-16 cloudhigh
73 ca_low 1995-02-16 cloudlow
160 ca_mid 1995-02-16 cloudmid

Now we can use the mapply() function to call our lasget() function on
each of these combinations:
R> mapply(lasget,

allCombinations[, 1],
allCombinations[, 2],
file.path("lasfiles", allCombinations[, 3]))

Another way to solve the problem makes use of the outer() function. To
do this, we need to write a function that takes an integer, representing the

“itdt” — 2008/5/19 — 14:15 — page 345 — #371i
i

i
i

i
i

i
i

Data Crunching 345

index of the variable that we want to download, and a date.

R> lasgeti <- function(i, date, variables) {
lasget(variables[[i]][1], date,

file.path("lasfiles", variables[[i]][2]))
}

Now we can call this function for all combinations of i and dates in a call
to outer().

R> outer(1:7, dates, lasgeti, variables)

11.12 Flashback: HTML forms and R

11.13 Literate data analysis

Summary

“itdt” — 2008/5/19 — 14:15 — page 346 — #372i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 347 — #373i
i

i
i

i
i

i
i

R

12
R Reference

The R language and environment for statistical computing and graphics is
an open source software project that runs on all major operating systems.
It is available as a standard Windows self-installer, as a universal binary
disk image for Mac OS X, and as an rpm or similar for the major Linux
distributions. Because it is open source, it is also possible to build R from
the source code on any platform.

R is used to describe both the language and the software package that is
used to run code written in the language.

The R language is a general-purpose computer language with excellent sup-
port for manipulating data sets. The R software provides an interactive
command-line interface plus, depending on the platform, various features
to support the development of R code.

The next section provides a brief introduction on how to use the R software
and subsequent sections provide details of the R language.

12.1 Using R

There are a number of graphical user interfaces for R, including the ba-
sic Windows default, the more sophisticated Mac OS X GUI, and several
independently-developed GUIs,1 but the canonical interface is an interactive
command line.

12.1.1 The command line

The R command line interface consists of a prompt, usually the > charac-
ter.2 The user can type commands or expressions, R echoes what is typed

1For example, John Fox’s R Commander, Simon Urbanek’s JGR, and Phillipe Gros-
jean’s SciViews-R.

2The R prompt is shown as R> in this section to distinguish it from the command-line
prompt of other software, especially the SQL code examples in Chapter 9.

“itdt” — 2008/5/19 — 14:15 — page 348 — #374i
i

i
i

i
i

i
i

348 Introduction to Data Technologies

and, at the end of each expression, R prints out a result. A very simple
interaction with R looks like this:
R> "hello R"

[1] "hello R"

A simple piece of text has been typed and the value of this sort of simple
expression is just the text itself.

Section 12.2 explains how to construct more complex R expressions.

12.1.2 Managing R Code

One way to write R code is simply to enter it interactively at the command
line as shown above. This interactivity is beneficial for experimenting with
a new function or expression, or for exploring a data in a casual manner.
For example, in order to find out the result of division-by-zero in R, the user
can quickly find out by trying it.

R> 1/0

[1] Inf

However, interactively typing code at the R command line is a very bad
approach from the perspective of recording and documenting code because
the code is lost when R is shut down. A superior approach in general is to
write R code in a file and get R to read the code from the file. This can
be performed in an ad-hoc way by simply cutting and pasting code from
a text editor into R. Alternatively, some editors can be associated with an
R session and allow submission of code chunks via a single key-stroke (the
Windows GUI provides a script editor with this facility). Another option
is to read an entire file of R code into R using the source() function (see
Section 12.4.10).

12.1.3 The working directory

Any files created during an R session are created in the current working
directory of the session, unless an explicit path or folder or directory is
specified. Similarly, when files are read into an R session they are read from
the current working directory.

On Linux, the working directory is the directory that the R session was

“itdt” — 2008/5/19 — 14:15 — page 349 — #375i
i

i
i

i
i

i
i

R Reference 349

R

started in. This means that the standard way to work on Linux is to create
a directory for a particular project, put any relevant files in that directory,
change into that directory, then start an R session.

On Windows, it is typical to start R by double-clicking a shortcut or by
selecting from the list of programs in the ‘Start’ menu. This approach will,
by default, set the working directory to one of the directories where R was
installed. This is a bad place to work, so it is a good idea to set the Start in
field on the properties dialog of the short cut or menu item. It may also be
necessary to use the setwd() function or the Change dir option on the File
menu to explicitly change the working directory to something appropriate.

12.1.4 Finding the exit

One of the most important things to learn when immersing oneself in a new
software environment is how to get out. In R, the expression q() quits the
session. R will ask whether the user wants to save the “workspace image”,
which means the results of any code that has been run during the session.
As mentioned already, it is better to keep a record of the R code that is
used in a session in a separate file, so it is safe to say “no” to this question.
Section 12.3.1 contains a broader discussion of this issue.

12.2 R syntax

A string value must be typed within double quotes, for example, "pointnemotemp.txt".
A number is anything made up of digits, plus possibly a decimal point, and
scientific notation is also accepted (e.g., 6e2 for 600).

12.2.1 Mathematical operators

R has all of the standard mathematical operators such as addition (+), sub-
traction (-), division (/), multiplication (*), and exponentation (^). R also
has operators for integer division (%/%) and remainder on integer division
(%%; also known as modulo arithmetic).

12.2.2 Logical operators

The comparison operators <, >, <=, >=, and == are used to determine whether
one value is larger or smaller or equal to another. The result of these

“itdt” — 2008/5/19 — 14:15 — page 350 — #376i
i

i
i

i
i

i
i

350 Introduction to Data Technologies

operatores is a logical value, TRUE or FALSE.

The logical operators || (or) and && (and) can be used to combine logical
values and produce another logical value as the result. These allow complex
conditions to be constructed.

12.2.3 Symbols and assignment

Anything not starting with a digit, that is not a special keyword, is treated
as a symbol. Values may be assigned to symbols using the <- operator,
otherwise any expression involving a symbol will produce the value that has
been assigned.

R> x <- 1:10

R> x

[1] 1 2 3 4 5 6 7 8 9 10

12.2.4 Loops

The general format of the for loop is shown below:

for (symbol in sequence) {
expressions

}

The expressions are run once for each element in the sequence, with the
relevant element of the sequence assigned to the symbol .

The while loop has the following general form:

while (condition) {
expressions

}

The while loop repeats until the condition is FALSE. The condition is an
expression that should produce a single logical value.

“itdt” — 2008/5/19 — 14:15 — page 351 — #377i
i

i
i

i
i

i
i

R Reference 351

R

12.2.5 Conditional statements

A conditional statement in R has the following form:

if (condition) {
expressions

}

The condition is an expression that should produce a single logical value.

The curly braces are not necessary, but it is good practice to always include
them; if the braces are omitted, only the first complete expression following
the condition is treated as the trueBody.

It is also possible to have an else clause.

if (condition) {
trueExpressions

} else {
falseExpressions

}

12.3 Data types and data structures

Inidividual values are either strings, numbers, or logical values (R also sup-
ports complex values with an imaginary component).

There is a distinction between integers and real values, but integer values
tend to be coerced to real values if anything is done to them. If an integer is
required it is best to ensure it by explicitly using a function that generates
integer values.

Chapter 7 discussed the amount of memory required to store various types
of values. For the specific case of R (on a 32-bit operating system), (ASCII)
text uses 1 byte per character. An integer uses 4 bytes, as does a logical
value, and a real number uses 8 bytes. The function object.size() returns
the approximate number of bytes used by an R object in memory.

R> object.size(1:1000)

[1] 4024

“itdt” — 2008/5/19 — 14:15 — page 352 — #378i
i

i
i

i
i

i
i

352 Introduction to Data Technologies

R> object.size(as.numeric(1:1000))

[1] 8024

The simplest data structure in R is a vector. Most operators and many
functions accept vector arguments and return a vector result. All elements
of a vector must have the same basic type.

Matrices and arrays are multidimensional analogues of the vector. All ele-
ments must have the same type.

Data frames are collections of vectors where each vector must have the same
length, but different vectors can have different types. This data structure
is the standard way to represent a data set in R.

Lists are like vectors that can have different types of object in each com-
ponent. In the simplest case, each component of a list may be vector of
values. Like the data frame, each component can be a vector of a different
basic type, but for lists there is no requirement that each component has the
same size. More generally, the components of a list can be more complex
objects, such as matrices, data frames, or even other lists. Lists can be used
to efficiently represent hierarchical data in R.

12.3.1 The workspace

When quitting R, the option is given to save the current workspace. The
workspace consists of all symbols that have been assigned a value during
the session.

The ls() function displays the names of all symbols that have been created
in the current session.

It is possible to save the value of only specific symbols using the save()
command. The load() function can be used to load objects from disk that
were created using save(). For very large objects, the save() function has
a compress argument.

It is possible to have R exit without asking whether to save the workspace
by supplying the argument --no-save when starting R.3

The workspace is saved as a file called .Rdata. When R starts up, it checks
for such a file in the current working directory and loads it automatically.

3On Linux, this means typing something like R --no-save from a shell. On Windows,
one way to do it is to create a shortcut to the Rgui.exe and modify the properties of that
shortcut to add the --no-save to the shortcut “Target”.

“itdt” — 2008/5/19 — 14:15 — page 353 — #379i
i

i
i

i
i

i
i

R Reference 353

R

Saving the R workspace is not the recommended approach. It is better
to save the original data set and R code, rather than saving intermediate
calculations, in order to avoid having multiple copies of the data set to
manage. In addition, the workspace, or any object stored using save()
produces a binary file, with all of the associated disadvantages (see Section
7.5). In particular, if a workspace is corrupted for some reason, it may be
impossible to recover the lost information.

12.4 Functions

A function call is an expression of the form:

functionName(arg1, arg2)

A function can have any number of arguments, including zero. Every ar-
gument has a name. Arguments can be specified by position or by name
(name overrides position). Arguments may have a default value, which they
will take if no value is supplied for the argument in the function call.

All of the following function calls give the same result:

seq(1, 10) # positional arguments
seq(from=1, to=10) # named arguments
seq(to=10, from=1) # names trump position
seq(1, 10, by=1) # ’by’ argument has default

This section provides a list of some of the functions that are useful for
working with data in R. The descriptions of these functions is very brief and
only some of the arguments to each function are mentioned. For a complete
description of the function and its arguments, the relevant function help
page should be consulted.

12.4.1 Generating vectors

c(...)
Concatenate or combine values (or vectors of values) to make a vector.
All values must be of the same type (or they will be coerced to the
same type). This function can be used to concatenate lists.

seq(from, to, by, length.out)
Generate a sequence of values from from to (not greater than) to in
steps of by for a total of length.out values.

“itdt” — 2008/5/19 — 14:15 — page 354 — #380i
i

i
i

i
i

i
i

354 Introduction to Data Technologies

rep(x, times)

rep(x, each)

rep(x, length.out)
Repeat all values in a vector times times, or each value in the vector
each times, or all values in the vector until the total number of values
is length.out.

12.4.2 Numeric functions

sum(..., na.rm=FALSE)
Sum the value of all arguments. Arguments should be vectors, but,
for example, matrices will be accepted. If NA values are included, the
result is NA (unless na.rm=TRUE). This function is generic.

max(..., na.rm=FALSE)
min(..., na.rm=FALSE)
range(..., na.rm=FALSE)

Calculate the minimum, maximum, or range of all values in all argu-
ments.

floor(x)
ceiling(x)
round(x, digits)

Round a numeric value to a number of digits or to an integer value.
floor() returns largest integer not greater than x and ceiling()
returns smallest integer not less than x.

12.4.3 Comparisons

identical(x, y)
Tests whether two objects are equivalent down to the binary storage
level.

all.equal(target, current, tolerance)
Tests whether two numeric values are effectively equal (i.e., only differ
by a tiny amount, as specified by tolerance).

“itdt” — 2008/5/19 — 14:15 — page 355 — #381i
i

i
i

i
i

i
i

R Reference 355

R

12.4.4 Subsetting

Subsetting is generally performed via the [operator (e.g., candyCounts[1:4]).
In general, the result is of the same class as the original object that is being
subsetted. The subset may be numerical indices, string names, or a logical
vector (the same length as the original object).

When subsetting objects with more than one dimension, e.g., data frames,
matrices or arrays, the subset may be several vectors, separated by commas
(e.g., candy[1:4, 4]).

The [[operator selects only one component of an object. This is typically
used to extract a component from a list.

subset(x, subset, select)
Extract the rows of the data frame x that satisfy the condition in
subset and the columns that are named in select. The advantage of
this over the normal subset syntax is that column names are searched
for within the data frame (i.e., you can use just count; no need for
candy$count).

12.4.5 Merging

rbind(...)
Create a new data frame by combining two or more data frames that
have the same columns. The result is the union of the rows of the
original data frames. This function also works for matrices.

cbind(...)
Create a new data frame by combining two or more data frames that
have the same number of rows. The result is the union of the columns
of the original data frames. This function also works for matrices.

merge(x, y)
Create a new data frame by combining two data frames in a database-
join operation. The two data frames will usually have different columns,
though they will typically share at least one column, which is used to
match the rows. Additional arguments allow the matching column to
be specified explicitly.
The default join is a natural join. Additional arguments allow for the
equivalent of inner joins and outer joins.

ifelse(test, yes, no)
Creates a vector consisting of the values in the vector yes wherever
test is TRUE and the values in no where test is FALSE.

“itdt” — 2008/5/19 — 14:15 — page 356 — #382i
i

i
i

i
i

i
i

356 Introduction to Data Technologies

12.4.6 Summarizing and collapsing

aggregate(x, by, FUN)
Call the function FUN for each subset of x defined by the grouping
factors in the list by. It is possible to apply the function to multiple
variables (x can be a data frame) and it is possible to group by multiple
factors (the list by can have more than one component). The result is
a data frame. The names used in the by list are used for the relevant
columns in the result. If x is a data frame, then the names of the
variables in the data frame are used for the relevant columns in the
result.

sweep(x, MARGIN, STATS, FUN)
Take an array and add or subtract (more generally, apply the function
FUN) the STATS values from the rows or columns (depending on value
of MARGIN). For example, remove column means from all columns.

table(...)
Generate table of counts for one or more factors. The result is a
"table" object, with as many dimensions as there were arguments.

xtabs(formula, data)
Similar to table() except factors to cross-tabulate are expressed in
a formula. Symbols in the formula will be searched for in the data
frame given by the data argument.

ftable(...)
Similar to table() except that the result is always a two-dimensional
"ftable" object, no matter how many factors are cross-tabulated.
This makes for a more readable display.

12.4.7 The “apply” functions

apply(X, MARGIN, FUN, ...)
Call a function on each row or each column of a data frame or matrix.
The function FUN is called for each row of the matrix X (if MARGIN
equals 1; if MARGIN is 2, the function is called for each column of X).
All other arguments are passed as arguments to FUN.

The data structure that is returned depends on the value returned by
FUN. In the simplest case, where FUN returns a single value, the result
is a vector with one value per row (or column) of the original matrix
X.

“itdt” — 2008/5/19 — 14:15 — page 357 — #383i
i

i
i

i
i

i
i

R Reference 357

R

tapply(X, INDEX, FUN, ...)
Call a function once each subset of the vector X, where the subsets cor-
respond to unique values of the factor INDEX. The INDEX argument can
be a list of factors, in which case the subsets are unique combinations
of the levels of the factors.

The result depends on how many factors are given in INDEX. For the
simple case, where there is only one factor, and FUN returns a single
value, the result is a vector.

lapply(X, FUN, ...)
Call the function FUN once for each component of the list X. The result
is a list. Additional arguments are passed on to each call to FUN.

sapply(X, FUN, ...)
Similar to lapply(), but will simplify the result to a vector if possible
(e.g., if all components of X are vectors and FUN returns a single value).

mapply(FUN, ..., MoreArgs)
A“multivariate”apply. Similar to lapply(), but will call the function
FUN on the first element of each of the supplied arguments, then on
the second element of each argument, and so on. MoreArgs is a list of
arguments to pass to each call to FUN.

rapply(object, f)
A “recursive” apply. Calls the function f on each component of the
list object, but if a component is itself a list, then f is called on each
component of that list, and so on.

12.4.8 Reshaping

Functions from the reshape package.

melt(data, id.var, measure.var)

cast(data, formula)

12.4.9 Sorting

sort(x)
Put a vector in order. For sorting by more than one factor, see
order().

“itdt” — 2008/5/19 — 14:15 — page 358 — #384i
i

i
i

i
i

i
i

358 Introduction to Data Technologies

order(...)
Calculate an ordering of one or more vectors (all the same length).
The result is a numeric vector, which can be used, via subsetting, to
reorder another vector.

with(data, expr)
Run the code in expr and search within the variables of the data frame
specified by data for any symbols used in expr.

12.4.10 Data import/export

file.path(...)
Given the names of nested directories, combine them together using
an appropriate separator to form a path.

file.choose()
Interactively select a file (on Windows, using a dialog box interface).

readLines(con)
Read the text file specified by the file name and/or path in con. The
file can also be a URL. The result is a string vector with one element
for each line in the file.

read.table(file, header, skip, sep)
Read the text file specified by the string value in file, treating each
line of text as a case in a data set that contains values for each variable
in the data set, with values separated by the string value in sep. Ignore
the first skip lines in the file. If header is TRUE, treat the first line of
the file as variable names.

The result is a data frame.

read.fwf(file, widths)
Read a text file in fixed-width format. The name of the file is specified
by file and widths is a numeric vector specifying the width of each
column of values. The result is a data frame.

read.csv(file)
A front end for read.table() with default argument settings designed
for reading a text file in CSV format. The result is a data frame.

scan(file, what)
Read data from a text file and produce a vector of values. The type of
the value provided for the argument what determines how the values
in the text file are interpreted. If this argument is a list, then the

“itdt” — 2008/5/19 — 14:15 — page 359 — #385i
i

i
i

i
i

i
i

R Reference 359

R

result is a list of vectors, each of a type corresponding to the relevant
component of what.

This function is faster than read.table() and its kin.

save(..., file)
Save the symbols named in ... (and their values), in an R-secific
format, to the specified file.

load(file)
Load R symbols (and their values) from the specified file (which has
been created by a previous call to save()).

source(file)
Read a file containing R code and evaluate the R code.

12.4.11 Text processing

grep(pattern, x)
Search for the regular expression pattern in the string vector x and
return a vector of numbers, where each number is the index to a string
in x that matches pattern. If there are no matches, the result has
length zero.

gsub(pattern, replacement, x)
Search for the regular expression pattern in the character vector x
and replace all matches with the string value in replacement. The
result is a vector containing the modified strings.

substr(x, start, stop)
For each string in x, return a substring consisting of the characters
at positions start through stop inclusive. The first character is at
position 1.

strsplit(x, split)
For each string in x, break the string into separate strings, using split
as the delimiter. The result is a list, with one component for each
string in the original vector x.

paste(..., sep, collapse)
Combine strings together, placing the string sep in between. The re-
sult is a string vector the same length as the longest of the arguments,
so shorter arguments are recycled. If the collapse argument is not
NULL, the result vector is collapsed to a single string, with the string
collapse placed in between each element of the result.

“itdt” — 2008/5/19 — 14:15 — page 360 — #386i
i

i
i

i
i

i
i

360 Introduction to Data Technologies

Sys.sleep package:base R Documentation

Suspend Execution for a Time Interval

Description:

Suspend execution of R expressions for a given number of

seconds

Usage:

Sys.sleep(time)

Arguments:

time: The time interval to suspend execution for, in seconds.

Details:

Using this function allows R to be given very low priority

and hence not to interfere with more important foreground

tasks. A typical use is to allow a process launched from R

to set itself up and read its input files before R execution

is resumed.

Figure 12.1: The help page for the function Sys.sleep() as displayed in a Linux

system. This help page is displayed by the expression help(Sys.sleep).

12.4.12 Getting help

The help() function is special in that it provides information about other
functions. This function displays a help page, which is online documenta-
tion that describes what a function does. This includes an explanation of
all of the arguments to the function and a description of the return value
for the function. Figure 12.1 shows the beginning of the help page for the
Sys.sleep() function, which is obtained by typing help(Sys.sleep).

A special shorthand using the question mark character, ?, is provided for
getting the help page for a function. Instead of typing help(Sys.sleep) it
is also possible to simply type ?Sys.sleep.

Many help pages also have a set of examples to demonstrate the proper
use of the function and these examples can be run using the example()
function.

“itdt” — 2008/5/19 — 14:15 — page 361 — #387i
i

i
i

i
i

i
i

R Reference 361

R

12.4.13 Packages

There are many thousand R functions in existence. They are organised
into collections of functions called packages. A number of packages are
installed with R by default and several packages are loaded automatically in
every R session. The search() function shows which packages are currently
available, as shown below:

R> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

The top line of the help page for a function shows which package the function
comes from. For example, Sys.sleep() comes from the base package (see
Figure 12.1).

Other packages may be loaded using the library() function. For example,
the foreign package provides functions for reading in data sets that have
been stored in the native format of a different statistical software system.
In order to use the read.spss() function from this package, the foreign
package must be loaded as follows:

R> library(foreign)

The search() function confirms that the foreign package is now loaded
and all of the functions from that package are now available.

R> search()

[1] ".GlobalEnv" "package:foreign" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

There are usually 25 packages distributed with R. Over a thousand other
packages are available for download from the web via the Comprehen-
sive R Archive Network (CRAN).4 These packages must first be installed
before they can be loaded. A new package can be installed using the
install.packages() function.

4The main package repository is the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org.

http://cran.r-project.org

“itdt” — 2008/5/19 — 14:15 — page 362 — #388i
i

i
i

i
i

i
i

362 Introduction to Data Technologies

12.4.14 Searching for functions

Given the name of a function, it is not difficult to find out what that function
does and how to use the function by reading the function’s help page. A
more difficult job is to find the name of a function that will perform a
particular task.

The help.search() function can be used to search for functions relating
to a keyword within the current R installation and the RSiteSearch()
function performs a more powerful and comprehensive web-based search of
functions in almost all known R packages, R mailing list archives, and the
main R manuals.5 There is also a Google customised search available6 that
provides a convenient categorisation of the search results.

Another problem that arises is that, while information on a single function
is easy to obtain, it can be harder to discover how several related functions
work together. One way to get a broader overview of functions in a package
is to read a package vignette (see the vignette() function). There are
also overviews of certain areas of research or application provided by CRAN
Task Views (see http://cran.r-project.org) and there is a growing list
of books on R.

12.5 Further reading

5This is based on Jonathan Baron’s search site
http://finzi.psych.upenn.edu/search.html

6http://www.rseek.org which was set up and is maintained by Sasha Goodman.

http://cran.r-project.org
http://finzi.psych.upenn.edu/search.html
http://www.rseek.org

“itdt” — 2008/5/19 — 14:15 — page 363 — #389i
i

i
i

i
i

i
i

R
eg

ul
ar

E
xp

re
ss

io
ns

13
Regular Expressions
Reference

A regular expression consists of literal characters, which have their normal
meaning, and metacharacters that have a special meaning. The combi-
nation describes a pattern that can be used to find matches amongst text
values.

13.1 Metacharacters

^
The “hat” character matches the start of a string or the start of a line
of text.

$
The dollar character matches the end of a string or the end of a line
of text.

.
The full stop character matches any single character of any sort.

(and)
Parentheses can be used to define a subpattern within a regular ex-
pression. This is useful for applying a modifier to more than a single
character (see Section 13.1.2). This is also useful for retaining original
portions of a string when peforming a search-and-replace operation
(see Section 13.2).

In some implementations of regular expressions, parentheses are literal
and must be escaped in order to have their special meaning.

|
The vertical bar character subdivides a regular expression into alter-
native subpatterns. A match is made if either the pattern to the left
of the vertical bar or the pattern to the right of the vertical bar is
found.

“itdt” — 2008/5/19 — 14:15 — page 364 — #390i
i

i
i

i
i

i
i

364 Introduction to Data Technologies

Table 13.1: Some of the POSIX regular expression character classes.

[:alpha:] Alphabetic (only letters)
[:digit:] Digits
[:alnum:] Alphanumeric (letters and digits)
[:space:] White space
[:punct:] Punctuation

Pattern alternatives can be made a subpattern within a large regular
expression by enclosing the vertical bar and the alternatives within
parentheses.

13.1.1 Ranges

[and]
Square brackets in a regular expression are used to indicate a character
range. A character range will match any character in the range.

Within square brackets, common ranges may be specified by start and
end characters, with a dash in between (e.g., 0-9).

If a hat character appears as the first character within square brackets,
the range is inverted so that a match occurs if any character other than
the range specified within the square brackets is found.

Within square brackets, most metacharacters revert to their literal
meaning. For example, [.] means a literal full stop.

In POSIX regular expressions, common character ranges can be specified
using special character sequences of the form [:keyword:] (see Table 13.1).
The advantage of this approach is that the regular expression will work in
different languages. For example, [a-z] will not capture all characters in
languages that include accented characters, but [[:alpha:]] will.

13.1.2 Modifiers

Modifiers specify how many times a subpattern can occur at once. The
modifier relates to the subpattern that immediately precedes it in the reg-
ular expression. By default, this is just the previous character, but if the
preceding character is a closing parenthesis then the modifier relates to the
entire subpattern within the parentheses.

“itdt” — 2008/5/19 — 14:15 — page 365 — #391i
i

i
i

i
i

i
i

Regular Expressions Reference 365

R
eg

ul
ar

E
xp

re
ss

io
ns

?
The question mark means that the subpattern can be missing or it
can occur exactly once.

*
The asterisk character means that the subpattern can occur zero or
more times.

+
The plus character means that the subpattern can occur one or more
times.

13.2 Replacement text

When performing a search-and-replace operation, the text that is used to
replace a matched pattern is usually just literal text. However, it is also
possible to use a special escape sequence within the replacement text that
represents part of the matched pattern.

When parentheses are used in a pattern to delimit sub-patterns, each sub-
pattern may be referred to in the replacement text. The special escape
sequence \1 refers to the first sub-pattern (reading from the left); \2 refers to
the second sub-pattern, and so on. These are referred to as backreferences.

Within an R expression, the backslash character must be escaped as usual,
so the replacement text referring to the first sub-pattern would have to
written like this: "\\1".

Some examples of the use of backreferences are given in Section 11.8.3.

13.3 Further reading

“itdt” — 2008/5/19 — 14:15 — page 366 — #392i
i

i
i

i
i

i
i

“itdt” — 2008/5/19 — 14:15 — page 367 — #393i
i

i
i

i
i

i
i

14
Glossary

keyword
A word that has a special meaning within a computer language. The
main point is that we cannot use such words ourselves when choosing
names within our code. For example, in R code, the word for is a
keyword, so this cannot be used as a variable name; in SQL, CREATE
is a keyword, so this cannot be used for the name of a column or the
name of a table.

attribute
A piece of information about an object, e.g., a measurement made
on a person. In some uses, the term roughly corresponds to what
statisticians call a variable in a data set. The precise meaning depends
on the context.

In HTML, an attribute is additional information about an element.
In terms of syntax, the attribute occurs within the start tag of an
element. For example, in the element ,
the attribute part is src="picture.jpg". This is an attribute called
img, with the value "picture.jpg".

Attributes in XML are identical in syntax to HTML attributes, and
are often used to store the value of a single variable for a single case
from a data set.

In database terminology, the term attribute is used to describe infor-
mation about an entity and typically corresponds to a column within
a database table. Again, there is the correspondence to a variable
from a data set.

In R, an attribute is additional information about an object, supple-
mentary to the fundamental information stored in the object. For
example, an 3 × 2 matrix object contains 6 data values and also has
an attribute called dim that contains the number of rows and columns
in the matrix.

	Introduction
	Case Study: Point Nemo

	Writing computer code
	Case study: Point Nemo
	Syntax
	HTML syntax
	Escape sequences
	Checking syntax
	Checking HTML code
	Reading error information
	Reading documentation

	Semantics
	HTML semantics
	Running code
	Running HTML code
	Debugging code

	Writing for an audience
	Layout of code
	Indenting code
	Long lines of code
	White space
	Documenting code
	HTML comments

	The DRY principle
	Cascading Style Sheets

	Text editors
	Text editors are not word processors
	Important features of a text editor
	Text editor software

	Further reading

	HTML Reference
	HTML syntax
	HTML comments
	HTML entities

	HTML semantics
	Common HTML elements
	Common HTML attributes

	Further reading

	CSS Reference
	CSS syntax
	CSS selectors
	CSS properties
	Linking CSS to HTML
	CSS tips and tricks
	Further reading

	Data Entry
	Case study: I-94W
	Electronic forms
	HTML forms
	Other uses of electronic forms

	Electronic form components
	HTML form elements
	Radio buttons
	Check boxes
	Text fields
	Menus
	Sliders
	Buttons
	Labels

	Validating input
	JavaScript
	Other electronic forms technologies

	Submitting input
	HTML form submission
	Local HTML form submission

	HTML Forms Reference
	HTML form syntax
	HTML form semantics
	Common attributes
	HTML form elements

	HTML form submission
	HTML form scripts
	Validation scripts
	Submission scripts

	Further reading

	Data Storage
	Case study: YBC 7289
	Computer Memory
	Bits, bytes, and words
	Binary, Octal, and Hexadecimal
	Numbers
	Case study: Network traffic
	Text
	Data with units or labels

	Plain text files
	Case study: Point Nemo
	Flat files
	Advantages of plain text
	Disadvantages of plain text
	CSV files
	Case Study: The Data Expo

	XML
	XML syntax
	Advantages and disadvantages
	More XML syntax
	XML design
	XML Schema
	Case study: Point Nemo
	XML design for complex relationships

	Binary files
	Case study: Point Nemo
	NetCDF

	Spreadsheets
	The structure of spreadsheets
	Case study: Over the limit
	Flashback: Spreadsheets and data entry

	Databases
	Some terminology
	The structure of a database
	Data integrity
	Advantages and disadvantages
	Database notation
	Database design
	Flashback: The DRY Principle
	Case Study: The Data Expo
	Case study: Cod stomachs
	Flashback: Database design and XML design
	Case study: The Data Expo
	Database software

	Further reading

	XML Reference
	XML syntax
	Document Type Definitions
	Element declarations
	Attribute declarations
	Including a DTD

	Further reading

	Data Queries
	Case study: The Human Genome
	SQL
	The SELECT statement
	Case study: The Data Expo
	Querying several tables: Joins
	Case study: Commonwealth swimming
	Cross joins
	Inner joins
	Case study: The Data Expo
	Sub-queries
	Outer Joins
	Case study: Commonwealth swimming
	Self joins
	Case study: The Data Expo

	Other query languages
	XPath
	Case study: Point Nemo

	Further reading

	SQL Reference
	SQL syntax
	SQL queries
	Selecting columns
	Specifying tables: the FROM clause
	Selecting rows: the WHERE clause
	Sorting results: the ORDER BY clause
	Aggregating results: the GROUP BY clause
	Sub-queries

	Other SQL commands
	Defining tables
	Populating tables
	Modifying data
	Deleting data

	Further reading

	Data Crunching
	Case study: The Population Clock
	Estimating population growth

	The R language
	Constant values
	Arithmetic
	Function calls
	Symbols and assignment
	Control flow
	Flashback: Writing for an audience
	Naming variables

	Basic Data types and data structures
	Case study: Counting candy
	Vectors
	The recycling rule
	Factors
	Data Frames
	Accessing variables in a data frame
	Lists
	Matrices and arrays

	Subsetting
	Accessor functions
	Assigning to a subset

	More on Data Types
	Type coercion
	Attributes
	Classes
	Generic functions
	Exploring objects
	Flashback: Numbers in computer memory
	Case study: Network packets
	Case study: The greatest equation ever

	Data import/export
	Specifying files
	Text files
	Case Study: Point Nemo
	XML
	Binary files
	Spreadsheets
	Large data sets
	Case Study: The Data Expo
	Basic file manipulations
	Case study: Digital photography

	Data manipulation
	Sorting
	Case study: Counting Candy
	The ``apply'' functions
	Tables of Counts
	Aggregation
	Merging data sets
	Reshaping
	Case study: Rothamsted moths
	Case study: Utilities

	Text processing
	Case study: The longest placename
	Regular expressions
	Case study: Rusty wheat
	Case study: Crohn's disease
	Flashback: Regular expressions in HTML Forms
	Flashback: Regular expressions in SQL

	Writing Functions
	Case Study: The Data Expo
	Flashback: Writing functions and the DRY Principle

	Debugging
	Other software
	Perl
	Calling other software from R
	Case Study: The Data Expo

	Flashback: HTML forms and R
	Literate data analysis

	R Reference
	Using R
	The command line
	Managing R Code
	The working directory
	Finding the exit

	R syntax
	Mathematical operators
	Logical operators
	Symbols and assignment
	Loops
	Conditional statements

	Data types and data structures
	The workspace

	Functions
	Generating vectors
	Numeric functions
	Comparisons
	Subsetting
	Merging
	Summarizing and collapsing
	The ``apply'' functions
	Reshaping
	Sorting
	Data import/export
	Text processing
	Getting help
	Packages
	Searching for functions

	Further reading

	Regular Expressions Reference
	Metacharacters
	Ranges
	Modifiers

	Replacement text
	Further reading

	Glossary

