
23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 1/44

Getting to Know grid Graphics

Paul Murrell, The University of Auckland, December 2017
An overview of the short course

Getting to Know grid Graphics

Introduction

For the book "London: The Information Capital", each infographic was begun in R and then
"finished off" in Adobe Illustrator. This sort of thing bugs me because I have a deep need to do all
of my drawing in code (for keeping a record and for replication and for sharing, among other
things).

http://theinformationcapital.com/coder-designer/

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 2/44

Introduction

One of the distinguishing features of the R graphics system, and the 'grid' graphics system in
particular, is that it allows you fine control over details, including access to more advanced
graphical features and details. As a "dramatic" demonstration of this idea, the image on this slide
was generated completely in R. This course will try to reveal how 'grid' works so that you can do
this sort of thing yourself.

Where is grid ?

grDevices

grid

graphics

lattice ggplot2 ...

plotrix maps ...

SVG PNG PDF

The 'grid' package provides an ALTERNATIVE graphics system to the 'graphics' package ("base"
graphics). Many packages define plotting functions based on 'graphics', but there are some
important ones based on 'grid', such as 'lattice' and 'ggplot2'.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 3/44

Where is grid ?

 library(lattice)

 xyplot(mpg ~ disp, mtcars)

When you draw a plot with 'lattice' or 'ggplot2', the actual drawing is being done by 'grid'.

Exploring grid Grobs

 library(grid)

 grid.ls()

 plot_01.background

 plot_01.xlab

 plot_01.ylab

 plot_01.ticks.top.panel.1.1

 plot_01.ticks.left.panel.1.1

 plot_01.ticklabels.left.panel.1.1

 plot_01.ticks.bottom.panel.1.1

 plot_01.ticklabels.bottom.panel.1.1

 plot_01.ticks.right.panel.1.1

 plot_01.xyplot.points.panel.1.1

 plot_01.border.panel.1.1

When you draw something with 'grid', a record is kept of the objects that are drawn. 'grid' calls
these objects "grobs" (graphical objects). The grid.ls() function can be used to list the grobs on
the current page.

Exploring grid Grobs

Some other functions that help with exploring grobs:

grid.grep(path)Search for a grob that matches 'path'.
showGrob(gPath)Highlight grob that matches 'gPath'.
grobBrowser() SVG version with grob names as tooltips

 (from the 'gridDebug' package).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 4/44

grid Viewports

 xyplot(mpg ~ disp, mtcars)

When you draw something with 'grid', a record is also kept of any "viewports" that were created.
A viewport is a rectangular sub-region on the page.

Exploring grid Viewports

 grid.ls(viewports=TRUE, grobs=FALSE)

 ROOT

 plot_01.toplevel.vp

 plot_01.xlab.vp

 plot_01.ylab.vp

 plot_01.figure.vp

 plot_01.panel.1.1.vp

 plot_01.strip.1.1.off.vp

 plot_01.strip.left.1.1.off.vp

 plot_01.panel.1.1.off.vp

The grid.ls() function can also be used to list the viewports on the current page. (The output on
this slide has been trimmed and tidied to fit on one slide.)

Exploring grid Viewports

 grid.ls(viewports=TRUE, fullNames=TRUE)

 viewport[ROOT]

 rect[plot_01.background]

 viewport[plot_01.toplevel.vp]

 viewport[plot_01.xlab.vp]

 text[plot_01.xlab]

 upViewport[1]

 viewport[plot_01.ylab.vp]

 text[plot_01.ylab]

 upViewport[1]

 viewport[plot_01.figure.vp]

This is the first few lines of the complete output from grid.ls() that shows both viewports and
grobs (and therefore the nesting of grobs within viewports).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 5/44

Exploring grid Viewports

Some other functions that help with exploring viewports:

showViewport(vp) Highlight viewport that matches 'vp'.
current.viewport()Returns the current viewport.

Ideally, a package will document the naming scheme that it uses for grobs and viewports. Ideally,
a package will have a naming scheme!

Exercise

The purpose of this exercise is to make use of the grid.ls() function.
The following code creates a 'lattice' scatterplot:

library(lattice)

xyplot(mpg ~ disp, mtcars, main="Fast Cars")

1. What is the name of the grob that represents the main title on the scatterplot?

2. What is the name of the viewport that the main title is drawn within?

Why Grobs ?

library(lattice)

barchart(Party ~ Amount_Donated, sortedTotals)

Total Donated

United Future

Independent

Green Party

Democrats for Social Credit

Focus New Zealand

New Zealand First Party

ACT New Zealand

Conservative

MANA Movement

Māori Party

Internet Party

Labour Party

National Party

0 500000 1000000

One benefit of having access to the low-level 'grid' grobs is that we can make detailed
customisations to a plot that was drawn with a high-level function where the high-level function
does not provide control over enough of the details. In this case, I want to remove the border
around the lattice panel.

Why Grobs ?

library(grid)

grid.ls()

 plot_01.background

 plot_01.xlab

 plot_01.ticks.top.panel.1.1

 plot_01.ticklabels.left.panel.1.1

 plot_01.ticks.bottom.panel.1.1

 plot_01.ticklabels.bottom.panel.1.1

 plot_01.abline.v.panel.1.1

 plot_01.barchart.abline.v.panel.1.1

 plot_01.barchart.rect.panel.1.1

 plot_01.border.panel.1.1

If I can find out what the grob is called ...

http://lattice.r-forge.r-project.org/Vignettes/src/naming-scheme/namingScheme.pdf

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 6/44

Why Grobs ?

library(grid)

grid.remove("plot_01.border.panel.1.1")

Total Donated

United Future

Independent

Green Party

Democrats for Social Credit

Focus New Zealand

New Zealand First Party

ACT New Zealand

Conservative

MANA Movement

Māori Party

Internet Party

Labour Party

National Party

0 500000 1000000

... then I can remove it with grid.remove().

Working With Grobs

Functions that can be used to access grobs:

grid.remove()Remove a grob.
grid.edit() Modify a grob component.
grid.get() Get a copy of a grob component.
grid.set() Replace a grob component.

Each function takes the name of a grob as its first argument. The name argument can be a
regular expression, if you specify 'grep=TRUE'. You can work with more than one grob at once if
you specify 'global=TRUE'.

Modifying Grobs

library(grid)

t <- grid.get("plot_01.ticklabels.bottom.panel.1.1")

names(t)

 [1] "label" "x" "y" "just"

 [5] "hjust" "vjust" "rot" "check.overlap"

 [9] "name" "gp" "vp"

t$just

 [1] "centre" "top"

Grobs are just lists with components.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 7/44

Modifying Grobs

library(grid)

grid.edit("plot_01.ticklabels.bottom.panel.1.1",

 just=c("left", "top"))

Total Donated

United Future

Independent

Green Party

Democrats for Social Credit

Focus New Zealand

New Zealand First Party

ACT New Zealand

Conservative

MANA Movement

Māori Party

Internet Party

Labour Party

National Party

0 500000 1000000

We can use grid.edit() to change the value of a component.

However, we may NOT edit 'name' or 'vp' components of a grob.

Modifying Grobs

library(grid)

gpar(col="blue", lwd=3, lty="dashed")

 $col

 [1] "blue"

 $lwd

 [1] 3

 $lty

 [1] "dashed"

The value of the 'gp' component of a grob is created with the gpar() function.

Modifying Grobs

Common gpar() settings:

col (border) colour.
fill fill colour.
lty line type.
lwd line width.
cex text size multiplier.

The other gpar() settings:

fontsize The size of text (in points).
lineheightVertical height of a line of text (multiplier). For vertical positioning of multi-line text.
fontface "plain", "bold", "italic", or "bolditalic".
fontfamily "sans", "serif", "mono", or the name of a font family that makes sense on the current

graphics device.
lineend "round", "square", or "butt". The shape used at the end of lines.
linejoin "round", "mitre", "bevel". The shape used at line corners.
linemitre Number used to decide when mitre joins become bevel joins.
lex Line expansion multiplier (affects line width).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 8/44

Modifying Grobs

library(grid)

grid.edit("plot_01.ticklabels.bottom.panel.1.1",

 gp=gpar(col="grey"))

Total Donated

United Future

Independent

Green Party

Democrats for Social Credit

Focus New Zealand

New Zealand First Party

ACT New Zealand

Conservative

MANA Movement

Māori Party

Internet Party

Labour Party

National Party

0 500000 1000000

Modifying the 'gp' component of a grob ONLY changes the gpar() settings that are given new
values.

Exercise

The purpose of this exercise is to make use of the grid.edit() and grid.remove() functions.
The following code creates a 'lattice' scatterplot:

library(lattice)

xyplot(mpg ~ disp, mtcars, main="Fast Cars")

1. Change the colour of the main title to red.

2. Remove the main title from the plot.

Exercise

This is the result you are looking for (before you remove the title):

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 9/44

Why Viewports ?

Credit: John G. Bullock, Yale University.

John Bullock made use of the 'lattice' viewports that were created in this multi-panel plot to centre
the text below each row of plots. (He did not use the 'xlab' argument to xyplot() because he
wanted greater control over the vertical placement of the text.)

Why Viewports ?

Credit: John G. Bullock, Yale University.

John could do this because it is possible to revisit the viewports that are created when a plot is
drawn with 'grid'.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 10/44

Navigating Viewports

xyplot(mpg ~ disp, mtcars)

When you draw something with 'grid', a record is kept of any "viewports" that were created. A
viewport is a rectangular sub-region on the page.

Navigating Viewports

 grid.ls(viewports=TRUE, fullNames=TRUE)

 viewport[ROOT]

 rect[plot_01.background]

 viewport[plot_01.toplevel.vp]

 viewport[plot_01.xlab.vp]

 text[plot_01.xlab]

 upViewport[1]

 viewport[plot_01.ylab.vp]

 text[plot_01.ylab]

 upViewport[1]

 viewport[plot_01.figure.vp]

Viewports can be nested within each other.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 11/44

Navigating Viewports

Viewports can be nested within each other.

Navigating Viewports

downViewport("plot_01.toplevel.vp")

grid.rect(gp=gpar(col=NA, fill=rgb(0,1,0,.5)))

It is possible to revisit the viewports that a plot has created with the downViewport() function (and
the name of the viewport we want to visit).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 12/44

Navigating Viewports

downViewport("plot_01.panel.1.1.vp")

grid.rect(gp=gpar(col=NA, fill=rgb(1,0,0,.5)))

It is possible to revisit the viewports that a plot has created with the downViewport() function (and
the name of the viewport we want to visit).

NOTE that drawing occurs relative to the viewport that we are currently in (by default, grid.rect()
fills the entire viewport).

Navigating Viewports

upViewport()

grid.rect(gp=gpar(col=NA, fill=rgb(0,0,1,.5)))

We can navigate up the viewport tree as well, using the upViewport() function.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 13/44

Exercise

The purpose of this exercise is to make use of the downViewport() function.
The following code creates a 'lattice' scatterplot:

library(lattice)

xyplot(mpg ~ disp, mtcars, main="Fast Cars")

1. Navigate to the viewport that the main title was drawn in and draw a rectangle to show that you
are in the right place.

Exercise

This is the result you are looking for:

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 14/44

Why Viewports ?

Credit: Pascal A. Niklaus, University of Zurich.

Pascal Niklaus wanted to add letter labels in the top-left corner of each of his plots.

Why Viewports ?

Credit: Pascal A. Niklaus, University of Zurich.

These letter labels are difficult to position using the coordinate system provided by the scales on
the plot axes.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 15/44

Why Viewports ?

Credit: Brad Boehmke.

Here is a similar example, with more elaborate text annotations, this time on a 'ggplot2' plot.

Viewport Coordinates

xyplot(mpg ~ disp, mtcars)

downViewport("plot_01.panel.1.1.vp")

Every 'grid' viewport has several coordinate systems associated with it.

http://rpubs.com/bradleyboehmke/weather_graphic

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 16/44

Viewport Coordinates

grid.text("native",

 x=unit(300, "native"), y=unit(30, "native"),

 just=c("left", "bottom"))

The unit() function associates a value with a coordinate system.

"Native" coordinates are relative to the 'xscale' and 'yscale' on the viewport.

Viewport Coordinates

grid.text("absolute",

 x=unit(1, "in"), y=unit(1, "cm"),

 just=c("left", "bottom"))

Absolute coordinates include "in", "cm", and "pt". All are measured from the bottom-left corner of
the viewport.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 17/44

Viewport Coordinates

grid.text("normalised",

 x=unit(.75, "npc"), y=unit(.5, "npc"),

 just=c("left", "bottom"))

Normalised ("npc") coordinates are 0-to-1 along each side of the viewport.

Viewport Coordinates

grid.text("normalised - absolute",

 x=unit(1, "npc") - unit(1, "cm"),

 y=unit(1, "npc") - unit(1, "cm"),

 just=c("right", "top"))

We can use simple arithmetic on units. In this case, we are positioning text a fixed amount in from
the top-right corner of a viewport.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 18/44

Drawing Grobs

Some basic shapes that 'grid' can draw:

grid.rect(x,y,w,h) rectangles.
grid.circle(x,y,r) circles.
grid.lines(x,y) straight lines through (x,y).
grid.segments(x0,y0,x1,y1) straight lines from (x0,y0) to (x1,y1).
grid.text(label,x,y) text.

The other "shapes" that 'grid' can draw:

grid.move.to(x,y) set current "pen" location.
grid.line.to(x,y) straight line from "pen" location to (x,y) (and set "pen" location to

(x,y)).
grid.polyline(x,y,id) straight lines through multiple sets of (x,y).
grid.xspline(x,y,shape) smooth curve relative to (x,y) control points.
grid.roundrect(x,y,w,h,r) rectangle with rounded corners.
grid.polygon(x,y) polygon defined by (x,y) (automatically closing last point to first

point).
grid.path(x,y,id) path (potentially defined by multiple polygons).
grid.raster(image,x,y,w,h) raster image.
grid.curve(x1,y1,x2,y2) smooth curve between two end points.
grid.points(x,y,pch) data symbols at (x,y) (default coordinate system is "native"!).

Drawing Grobs

grid.rect(x=unit(.2, "npc"), y=unit(100, "native"),

 width=unit(1, "in"), height=unit(1, "lines"))

Whenever we draw a grob, we can specify the position and size of the grob using any of the
available coordinate systems (the default is almost always "npc").

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 19/44

Drawing Grobs

grid.circle(x=1:5/6, y=.5, r=1:5/25)

For most grobs, the location and size specifications can be vectors so that a single call to a 'grid'
function can produce multiple shapes.

Exercise

The purpose of this exercise is to make use of the unit() function as well as 'grid' functions that
draw basic shapes.
The following code creates a 'lattice' scatterplot:

library(lattice)

xyplot(mpg ~ disp, mtcars, main="Fast Cars")

1. Navigate to the viewport that the data symbols were drawn in and draw a horizontal line at mpg
== 25.

2. Draw a label just above and to the right of the symbol for the "Pontiac Firebird" (disp=400,
mpg=19.2).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 20/44

Exercise

This is the result you are looking for:

Why Viewports ?

Credit: Tom Wright, affiliation unknown.

Tom Wright has a 'lattice' plot with too many empty panels.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 21/44

Why Viewports ?

We can do a little bit better if we draw separate 'lattice' plots in separate 'grid' viewports.

Why Viewports ?

This version of the "improved" plot has the 'grid' viewports highlighted by coloured rectangles.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 22/44

Starting a New Page

grid.newpage()

With raw 'grid', we have to explicitly call the grid.newpage() function to start a new page/screen.
All other 'grid' functions just add to the current page/screen.

'lattice' plotting functions, like xyplot(), automatically start a new page, unless you tell them not to
with something like print(xyplot(...), newpage=FALSE).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 23/44

Creating Viewports

vp <- viewport(width=.5, height=.5)

pushViewport(vp)

grid.rect(gp=gpar(col=NA, fill="grey80"))

We can create a new viewport description with the viewport() function. In this case, we are
describing a viewport that is half the width of the page and half the height of the page (the default
is to be centred on the middle of the page). The location and size of viewports are specified using
the unit() function, just like for grobs (and the default coordinate system is "npc").

We create a viewport on the page using the pushViewport() function. After the "push", all drawing
occurs within that viewport. In this case, we draw a rectangle that shows the extent of the
viewport that we have created.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 24/44

Creating Viewports

vp2 <- viewport(x=0, y=.5, width=.5, height=.5,

 just=c("left", "bottom"))

pushViewport(vp2)

grid.rect()

When we push a viewport, the viewport description is always relative to the current viewport. In
this case, we define and push a viewport that is in the top-left quarter of the current viewport. We
draw a rectangle to show the extent of this new viewport.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 25/44

Creating Viewports

grid.newpage()

pushViewport(vp)

print(xyplot(mpg ~ disp, mtcars), newpage=FALSE)

A 'lattice' plot is just a lot of pushing viewports and drawing shapes.

We can tell a 'lattice' plot to do its pushing of viewports and drawing of shapes in the current
viewport rather than starting a new page all for itself. We do this by explicitly calling print() on the
plot and setting the 'newpage' argument to FALSE.

Exercise

The purpose of this exercise is to make use of the viewport() and pushViewport() functions.
The following code creates a 'lattice' scatterplot:

library(lattice)

xyplot(mpg ~ disp, mtcars, main="Fast Cars")

1. Create a viewport in the bottom-right quarter of the page and draw the plot in that viewport.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 26/44

Exercise

This is the result you are looking for:

Summary

'lattice' plots create 'grid' grobs and viewports.

grid.ls() lists grobs and viewports.

grid.remove() and grid.edit() modify grobs.

downViewport() and upViewport() navigate between viewports.

grid.rect(), grid.text(), etc draw new grobs.

gpar() controls graphical parameters.

viewport() and pushViewport() create new viewports.

'lattice' plots can be drawn within any viewport.

Nuff said

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 27/44

Where is grid ?

library(ggplot2)

qplot(disp, mpg, data=mtcars, main="Fast Cars")

When you draw a plot with 'lattice' or 'ggplot2', the actual drawing is being done by 'grid'.

Exploring grid Grobs

grid.ls()

 layout

One difference between the grobs created by 'lattice' and the grobs created by 'ggplot2' is that
the latter produces a single grob that draws everything. To see all of the individual grobs that are
drawn, we need the grid.force() function.

Exploring grid Grobs

grid.force()

grid.ls()

 layout

 background.1-7-10-1

 panel.6-4-6-4

 grill.gTree.537

 panel.background..rect.528

 panel.grid.minor.y..polyline.530

 panel.grid.minor.x..polyline.532

 panel.grid.major.y..polyline.534

 panel.grid.major.x..polyline.536

 NULL

 geom_point.points.524

Another difference between the grobs created by 'lattice' and the grobs created by 'ggplot2' is that
the latter are arranged in a hierarchy. For example, there is a "panel" grob, with a "grill" as its
child, and various rectangles and polylines as children of that.

Yet another difference is that the 'ggplot2' naming scheme is less intuitive and less complete (and
undocumented).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 28/44

Modifying Grobs

grid.edit("title::text", grep=TRUE,

 gp=gpar(col="red"))

10

15

20

25

30

35

100 200 300 400

disp

m
pg

Fast Cars

We can use grid.edit() to change the value of a component just like with 'lattice' plots.

There are two extra complications here: first, we are using 'grep=TRUE' to use grob name pattern
matching; second, we are using a grob name *path* to specify a grob with "text" in its name that
is the child of a grob with "title" in its name.

Modifying Grobs

grid.remove("title.2-4-2-4")

10

15

20

25

30

35

100 200 300 400

disp

m
pg

We can use grid.remove() to remove grobs just like with 'lattice' plots.

Notice that removing a parent grob also removes its children.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 29/44

Navigating Viewports

qplot(disp, mpg, data=mtcars, main="Fast Cars")

grid.force()

grid.ls(viewports=TRUE, fullNames=TRUE)

 viewport[ROOT]

 viewport[layout]

 forcedgrob[layout]

 viewport[background.1-7-10-1]

 forcedgrob[background.1-7-10-1]

 upViewport[1]

 viewport[panel.6-4-6-4]

 forcedgrob[panel.6-4-6-4]

 gTree[grill.gTree.659]

 rect[panel.background..rect.650]

'ggplot2' creates viewports just like 'lattice'.

Navigating Viewports

downViewport("panel.3-4-3-4")

grid.rect(gp=gpar(col=NA, fill=rgb(0,1,0,.5)))

It is possible to revisit the viewports that 'ggplot2' has created, just like with 'lattice'.

However, one difference is that the viewport representing the 'ggplot2' plot region does NOT have
a "native" scale corresponding to the axis scales.

Exercise

The purpose of this exercise is to make use of 'grid' functions with a 'ggplot2' plot.
The following code creates a 'ggplot2' scatterplot:

library(ggplot2)

qplot(disp, mpg, data=mtcars, main="Fast Cars")

1. Navigate to the viewport that the main title was drawn in and draw a rectangle to show the
extent of the viewport.

2. Edit the title grob to move it to the right-hand edge of the plot.

3. Remove the rectangle that you just drew.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 30/44

Exercise

This is the result you are looking for:

Where is grid ?

library(vcd)

mosaic(Titanic)

A number of other packages build on top of 'grid' (or 'lattice' or 'ggplot2'), but there is no
guarantee of a naming scheme for grobs and viewports.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 31/44

Exploring grid Grobs

grid.ls()

 GRID.lines.822

 GRID.lines.823

 disc:Class=1st,Sex=Male,Age=Child,Survived=No,

 circle:Class=1st,Sex=Male,Age=Child,Survived=No,

 rect:Class=1st,Sex=Male,Age=Child,Survived=Yes

 rect:Class=1st,Sex=Male,Age=Adult,Survived=No

 rect:Class=1st,Sex=Male,Age=Adult,Survived=Yes

 GRID.lines.824

 GRID.lines.825

 disc:Class=1st,Sex=Female,Age=Child,Survived=No,

Where is grid ?

grDevices

grid

graphics

lattice ggplot2 ...

plotrix maps ...

SVG PNG PDF

gridGraphics

gridSVG

The 'gridGraphics' package provides a way to convert plots drawn with the 'graphics' package
into identical plots drawn with 'grid'.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 32/44

Where is grid ?

plot(mpg ~ disp, mtcars, pch=16, main="Fast Cars")

library(gridGraphics)

grid.echo()

We can draw a plot based on 'graphics' then call grid.echo() to convert it into 'grid' grobs and
viewports.

Exploring grid Grobs

grid.ls()

 graphics-background

 graphics-plot-1-points-1

 graphics-plot-1-bottom-axis-line-1

 graphics-plot-1-bottom-axis-ticks-1

 graphics-plot-1-bottom-axis-labels-1

 graphics-plot-1-left-axis-line-1

 graphics-plot-1-left-axis-ticks-1

 graphics-plot-1-left-axis-labels-1

 graphics-plot-1-box-1

 graphics-plot-1-main-1

 graphics-plot-1-xlab-1

 graphics-plot-1-ylab-1

Navigating Viewports

grid.ls(viewports=TRUE, fullNames=TRUE)

 viewport[ROOT]

 rect[graphics-background]

 viewport[graphics-root]

 upViewport[1]

 downViewport[graphics-root]

 viewport[graphics-inner]

 upViewport[2]

 downViewport[graphics-root]

 downViewport[graphics-inner]

 viewport[graphics-figure-1]

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 33/44

Exercise

The purpose of this exercise is to make use of 'grid' functions with a 'graphics' plot.
The following code creates a 'graphics' scatterplot:

plot(mpg ~ disp, mtcars, pch=16, main="Fast Cars")

1. Convert the plot to an identical 'grid' plot, change the title to red.

2. Remove the title.

Exercise

This is the result you are looking for (before you delete the title):

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 34/44

Why grid ?

The concepts of viewports in the 'grid' package provide a better basis (than the 'graphics'
package) for producing complex plots like 'lattice' multi-panel conditioning plots.

For example, how does 'lattice' leave enough space for the axis labels and the plot legend, but
make the panels as large as possible ?

Why grid ?

Plots produced by 'ggplot2' also benefit from 'grid' concepts like viewports to determine the
arrangement of pieces of a complex plot within a page.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 35/44

Why grid ?

The fact that 'grid' is a general-purpose graphics system (not just for plots) means that 'grid'
concepts like viewports can be applied to things like arranging photos together on a page.

Why grid ?

The fact that 'grid' is a general-purpose graphics system also means that 'grid' can be used as a
rudimentary desktop publishing system (code-based, of course).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 36/44

grid Layouts

The approach that 'lattice' takes is to use a 'grid' "layout". A layout divides up a (parent) viewport
into a number of rows and columns and subsequent (child) viewports that are pushed beneath
the (parent) viewport with the layout can occupy a subset of the cells in the (parent) layout.

Creating Layouts

widths <- unit(c(1, 2, 1), c("null", "null", "cm"))

lay <- grid.layout(3, 3, widths=widths)

vplay <- viewport(layout=lay)

pushViewport(vplay)

pushViewport(viewport(layout.pos.row=2,

 layout.pos.col=2))

grid.rect(gp=gpar(col=NA, fill=rgb(1,0,0,.5)))

A layout can be specified as part of the description of a viewport.

A viewport can specify its location in terms of the rows and columns of a parent layout.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 37/44

Exercise

The purpose of this exercise is to make use of the grid.layout() function.
1. Produce a layout like the diagram below.
 +---+

 | w=7/9 5 h=0.5/5.5 |

 +-----+-----------------------------+-----+

 | | 1 h=1.0/5.5 | |

 | +-----------------------------+ |

 | 6 | 2 h=1.0/5.5 | 7 |

 | +-----------------------------+ |

 |w=1/9| 3 h=1.0/5.5 |w=1/9|

 | +-----------------------------+ |

 | | | |

 | | 4 h=2.0/5.5 | |

 | | | |

 +-----+-----------------------------+-----+

Credit: Julio Sergio Santana.

Exercise

This is the result you are looking for (the grid.show.layout() function takes a 'grid' layout as its
argument and draw a diagram of the layout):

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 38/44

Viewport Coordinates

grid.rect(width=stringWidth("axis label"))

The stringWidth() function lets us specify a width in terms of the size of a piece of text (like a label
on a plot axis).

There is also a stringHeight() function.

Both of these functions can be used to specify the widths of columns (or heights of rows) in a
'grid' layout (for example to leave enough space for axis labels around a plot).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 39/44

Viewport Coordinates

grid.text("axis label", name="t")

grid.rect(width=grobWidth("t"))

The grobWidth() function lets us specify a width in terms of the size of a grob (even a collection of
grobs like a plot legend).

There is also a grobHeight() function.

Both of these functions can also be used to specify the widths of columns (or heights of rows) in
a 'grid' layout (for example to leave enough room for a legend beside a plot).

Why grid ?

This sort of diagram presents a different sort of problem: how to draw a line from the edge of one
shape to the edge of another shape ?

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 40/44

Viewport Coordinates

grid.text("label", x=1/3, y=1/3, name="t")

grid.circle(2/3, 2/3, r=unit(1, "mm"),

 gp=gpar(fill="black"))

grid.segments(grobX("t", 0), grobY("t", 0), 2/3, 2/3)

The grobX() function lets us specify a location in terms of the boundary of a grob.

There is also a grobY() function.

Exercise

The purpose of this exercise is to make use of the grobX(), grobY(), grobWidth(), and
grobHeight() functions.
The following code draws two pieces of text:

grid.newpage()

grid.text("label 1", 1/3, 2/3, name="l1")

grid.text("label two", 2/3, 1/3, name="l2")

1. Draw a circle around each piece of text (with a radius that is half of the width of the text, plus
1mm).

2. Draw a line from the bottom-right edge of the top-left circle to the top-left edge of the bottom-
right circle.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 41/44

Exercise

This is the result you are looking for:

Why grid ?

This sort of infographic is an example of something that is hard to do in standard R graphics
because it involves more advanced graphics operations (like raster image compositing).

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 42/44

Where is grid ?

grDevices

grid

graphics

lattice ggplot2 ...

plotrix maps ...

SVG PNG PDF

gridGraphics

gridSVG

The 'gridSVG' package provides access to some of the more sophisticated graphics features of
SVG.

gridSVG

library(gridSVG)

grid.circle(r=.2, name="c")

grid.filter("c", filterEffect(feGaussianBlur(sd=3)))

grid.export()

The gridsvg() function opens a 'gridSVG' device. An alternative is the grid.export() function.

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 43/44

Exercise

The purpose of this exercise is to make use of the 'gridSVG' package.
The following code draws a scatterplot:

library(lattice)

xyplot(jitter(Sepal.Length) ~ jitter(Sepal.Width),

 group=Species, iris,

 par.settings=list(

 superpose.symbol=list(pch=21,

 col="black",

 fill="grey")))

1. Blur all of the points except for the "setosa" variety (hint: there are three separate points grobs
in the plot, one for each variety).

Exercise

This is the result you are looking for
 (which is an SVG file):

jitter(Sepal.Width)

jit
te

r(
S

ep
al

.L
en

gt
h)

5

6

7

8

2.0 2.5 3.0 3.5 4.0 4.5

Summary

'ggplot2' plots create 'grid' grobs and viewports.

Other packages create 'grid' grobs and viewports too, but there is no guarantee of a naming
scheme.

'gridGraphics' creates 'grid' grobs and viewports from 'graphics' plots.

grid.layout() creates layouts.

grobX(), grobY(), grobWidth(), and grobHeight() describe locations and sizes in terms of the
locations and sizes of other grobs.

'gridSVG' exports 'grid' grobs and viewports to SVG, with the possibility of fancier graphics
features.

Nuff said

23/11/2017 Getting to Know grid Graphics

file:///home/pmur002/fosFiles/Courses/NZSA2017/Slides/grid-slides.html 44/44

Written by Paul Murrell based on slide system by Chris Heilmann (specifically this one)

Writing for Others

Name all grobs and viewports.

Document your naming scheme.

Use upViewport() instead of popViewport().

These are some guidelines for writing 'grid' graphics code that will help others to work with your
result.

Farewell!

http://www.stat.auckland.ac.nz/~paul/
http://wait-till-i.com/
http://icant.co.uk/talks/what-is-html5/

