
CONTRIBUTED RESEARCH ARTICLE 1

Enhanced Vector Image Import: The
grConvert and grImport2 packages
by Simon Potter and Paul Murrell

Abstract Two new packages, grConvert and grImport2, have been created to improve the support for
importing external vector images and rendering those images as part of an R graphics scene. Where
the old grImport package can import PostScript images, the new grImport2 package can import SVG
images, which means that more complex images can be imported. The grConvert package provides
functions for converting images to either PostScript or SVG for importing into R.

The problem

For some time, the grImport package (Murrell, 2009) has allowed PostScript files to be imported
into R and drawn as part of an R plot. As long as the original image is a PostScript image and the
image consists of only paths and text, the grImport package performs quite well. For example, Figure
1 shows a test image consisting of a coloured background rectangle, some text, and a circle. The
following code is all that is required to import that image and draw it in R (the result is shown in
Figure 1).

> library(grImport)

> PostScriptTrace("testimage-simple.ps", "testimage-simple.xml")
> image <- readPicture("testimage-simple.xml")

> grid.picture(image)

simple

gr
Im

po
rt

Figure 1: On the left is a simple PostScript test image consisting of only paths and text. On the right is
the result of importing and rendering the test image using grImport. Because the original image is
simple, grImport does a good job of reproducing it in R.

However, there are two main weaknesses in the grImport package: not all images that we might
want to import are in a PostScript format; and grImport does not import all possible PostScript images.

An example of the latter weakness is the fact that grImport does not import any raster elements
from the original PostScript image. To demonstrate this, Figure 2 shows a test image that includes
a small checkerboard raster element in the top-right corner, along with the result of importing and
rendering that image with grImport (to show that the raster element does not make it).

raster

gr
Im

po
rt

Figure 2: On the left is a PostScript test image that contains a raster element in the top-right corner. On
the right is the result of importing and rendering the test image using grImport. The raster element is
lost from the image during the import process.

When the original image is not in a PostScript format, it must be converted to PostScript using
third-party software, such as ImageMagick or Inkscape (Still, 2005; Bah, 2007), and this creates two
further problems: first, it places a burden on the user to install and learn to use a conversion utility;
second, and worse, the conversion to PostScript may result in degradation or loss of features from the
original image.

An example of the second problem is shown in Figure 3, where an original image is in an SVG
format and it contains a semitransparent fill. Converting this image to PostScript with ImageMagick

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 2

leads to rasterisation of the image and we have already seen that grImport cannot deal with raster
input.

gr
Im

po
rt

Figure 3: On the left is a test image that is in an SVG format and that contains a semitransparent fill.
In the middle is the result of converting the original image to a PostScript format with ImageMagick,
which results in rasterisation of the image. On the right is the result of importing and rendering the
converted image with grImport, which does not work very well because grImport does not import
raster elements.

In some cases, the conversion problem can be worked around simply by using a different conver-
sion tool. For example, Inkscape does a better job than ImageMagick at retaining semitransparent
fills during conversion to PostScript. However, for more complex images (or images containing more
sophisticated features), there may be no solution. Figure 4 shows another test image (requiring conver-
sion because it is in an SVG format), that contains a semitransparent gradient fill. The conversion to
PostScript results in either rasterisation, if we use ImageMagick, or simply loss of the fill information,
if we use Inkscape.

gr
Im

po
rt

Figure 4: On the left is a test image that is in an SVG format and that contains a semitransparent
gradient fill. In the middle is the result of converting the original image to a PostScript format with
Inkscape, which results in loss of the gradient fill. On the right is the result of importing and rendering
the converted image with grImport, which (apart from dropping the raster element) works fine, but
the result is imperfect because of loss of information during the conversion to PostScript.

This article describes two new packages that are designed to address the limitations of the grImport
package. The grConvert package aims to improve support for converting original images to a format
that can be imported into R and the grImport2 package aims to improve support for importing more
complex images into R.

The grConvert package

The grConvert package provides a simple function, called convertPicture(), to convert between
different graphics formats. The original image format can be PostScript, PDF, or SVG and any of those
can be converted to either PostScript or SVG.

Converting an image to PostScript is useful for importing an image with the grImport package.
For example, if the simple test image from Figure 1 was originally an SVG image, it could be converted
to PostScript with the following code.

> library(grConvert)

> convertPicture("testimage-simple.svg", "testimage-simple.ps")

Using grConvert to convert an image to SVG is useful for importing an image with the new
grImport2 package, as we will see in the next section.

The main purpose of the grConvert package is to provide more convenience for the task of convert-
ing an image from its original format to a format that can be imported into R. However, the grConvert
package depends on the Spectre library for reading and writing PostScript files (freedesktop.org,
2013b), the Poppler library for reading PDF files (freedesktop.org, 2013a), and the rsvg library for
reading and writing SVG files (GNOME Project, 2013), so these must be available for the package to
install. This means that, in practice, the package is only available for Linux systems at the time of
writing.

One reason for making grConvert a separate package was to emphasise the separation between
the two steps of preparing an image for import, which is a one-off operation, and importing the

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 3

prepared image into R. These steps can be carried out by different people on different platforms if
necessary.

The grImport2 package

The grImport2 package provides two main functions: readPicture() for reading an external image
into R and grid.picture() for drawing the image.

In contrast to the readPicture() function from the grImport package, which is used to import
PostScript files, the readPicture() function in grImport2 imports SVG files.

The grImport2 package does not understand all of SVG, but rather a subset defined to be SVG
code that is produced by the Cairo graphics library (Packard et al., 2013). This subset of SVG is used
because it is much easier to develop code to import a subset rather than all of the possible complexity
of the SVG language. Furthermore, this Cairo SVG format is exactly what the grConvert package
produces when it converts an image to SVG. This means that the typical process for importing an
image into R using grImport2 involves a call to the convertPicture() function from the grConvert
package, to produce a Cairo SVG version (even if the original image format was SVG), then a call
to readPicture() to import the image, and finally a call to grid.picture() to render the imported
image.

As an example, the following code starts with the simple test image from Figure 1 in an SVG
format, converts it to Cairo SVG, and then imports and renders it with the grImport2 package (see
Figure 5).

> library(grImport2)

> convertPicture("testimage-simple.svg", "testimage-simple-cairo.svg")
> image <- readPicture("testimage-simple-cairo.svg")

> grid.picture(image)

gr
Im

po
rt

2

Figure 5: On the left is a simple SVG test image consisting of only paths and text. On the right is the
result of converting the image to Cairo SVG using grConvert then importing and rendering the image
using grImport2.

The previous example demonstrates that the grImport2 package can be used in a very similar
manner to the grImport package and it should be just as good at handling images consisting of just
paths and text. The next example begins to demonstrate where the grImport2 package performs better
than the grImport package.

In the following code, we start with an SVG version of the test image from Figure 2, which contains
a raster element, convert it to Cairo SVG and import and render it with grImport2. The result is shown
in Figure 6, which illustrates that grImport2 is able to import all features of the original image, in this
case including the raster element in the test image.

> convertPicture("testimage-raster.svg", "testimage-raster-cairo.svg")
> image <- readPicture("testimage-raster-cairo.svg")

> grid.picture(image)

gr
Im

po
rt

2

Figure 6: On the left is an SVG test image that contains a raster element. On the right is the result of
converting the image to Cairo SVG using grConvert then importing and rendering the image using
grImport2. The important point is that the raster element is retained during the import process.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 4

The next example shows that grImport2 can also correctly import the test image that contains
semitransparency (see Figure 7).

> convertPicture("testimage-semitrans.svg", "testimage-semitrans-cairo.svg")
> image <- readPicture("testimage-semitrans-cairo.svg")

> grid.picture(image)

gr
Im

po
rt

2

Figure 7: On the left is an SVG test image that contains a semitransparent fill. On the right is the result
of converting the image to Cairo SVG using grConvert then importing and rendering the image using
grImport2. The important point is that the semitransparent fill is correctly reproduced.

The final test image, which contains a semitransparent gradient (see Figure 4), demonstrates a
slightly more advanced use of the grid.picture() function. This image can be imported by grImport2,
but rendering is hampered by the fact that the R graphics engine does not support gradient fills. The
grImport2 package provides support for complex image features like these by integrating with the
gridSVG package, which does have support for gradient fills (among other things). The following
code demonstrates the use of the ext argument to the grid.picture() function that is required to
produce a correct rendering of this test image (see Figure 8). Also notice that the rendering on a
standard R graphics device does not include the gradient fill, but the exported SVG image (rendered
with gridSVG) does include the gradient fill.

> convertPicture("testimage-gradient.svg", "testimage-gradient-cairo.svg")
> image <- readPicture("testimage-gradient-cairo.svg")

> grid.picture(image, ext="gridSVG")

> library(gridSVG)

> grid.export("testimage-gradient-grimport2-gridsvg.svg")

gr
Im

po
rt

2

Figure 8: On the left is an SVG test image that contains a semitransparent gradient fill. In the middle
is the result of converting the image to Cairo SVG using grConvert then importing and rendering the
image using grImport2 on a standard R graphics device; although the gradient fill is imported, the
standard graphics device cannot render it. On the right is the result of rendering the imported image
as an SVG file using gridSVG, which is capable of rendering the gradient fill.

An image test suite

The original motivation for the new packages arose from a problem posed by Toby Dylan Hocking,
which involved importing the entire set of flags of the U.S. states. These images are available from
Wikipedia in an SVG format.1 We will use several of the flags of the U.S. states to demonstrate some
further examples of the improved performance of grImport2 over grImport.

First up is the state flag of Oklahoma, just to show that, if an image consists of only paths and text,
even if there are lots of complicated paths, both the old grImport package and the new grImport2
package produce a good result (see Figure 9).

> convertPicture("Flag_of_Oklahoma.svg", "Flag_of_Oklahoma.ps")
> PostScriptTrace("Flag_of_Oklahoma.ps", "Flag_of_Oklahoma.xml")
> oklahomaPS <- grImport::readPicture("Flag_of_Oklahoma.xml")

1http://en.wikipedia.org/wiki/State_flags

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://en.wikipedia.org/wiki/State_flags


CONTRIBUTED RESEARCH ARTICLE 5

> grImport::grid.picture(oklahomaPS)

> convertPicture("Flag_of_Oklahoma.svg", "Flag_of_Oklahoma_cairo.svg")
> oklahoma <- readPicture("Flag_of_Oklahoma_cairo.svg")

> grid.picture(oklahoma)

gr
Im

po
rt

gr
Im

po
rt

2

Figure 9: At left, the state flag of Oklahoma as an SVG image (from Wikipedia). In the middle, the
flag after importing and rendering with grImport. At right, the flag after importing and rendering
with grImport2. Although the image is complex, it only contains paths and text, so both packages
reproduce the image faithfully.

The next example, the state flag of Kansas, provides a more dramatic demonstration of the ability
to import gradient fills. On the state seal at the centre of the flag, the sky, the sea, and the land all
contain linear gradient fills. As with the test image that contained a gradient fill (Figure 4), a correct
rendering of the Kansas flag requires the involvement of the gridSVG package (see Figure 10).

> convertPicture("Flag_of_Kansas.svg", "Flag_of_Kansas_cairo.svg")
> kansas <- readPicture("Flag_of_Kansas_cairo.svg")
> grid.picture(kansas, ext="gridSVG")

> grid.export("kansas-grimport2-gridsvg.svg")

gr
Im

po
rt

2

Figure 10: At left, the state flag of Kansas as an SVG image (from Wikipedia). In the middle, the flag
after importing and rendering with grImport2 on a standard R graphics device; the standard device
cannot render the gradient fills, which results in black regions on the flag. At right, the flag after
importing with grImport2 and rendering with gridSVG.

The state flag of Hawaii contains a feature that we have not previously encountered: clipping . The
Union Jack at the top-left of the flag is drawn as a collection of simple shapes and lines, with clipping
used to limit the visible output to just the top-left corner of the flag. This presents a problem for the
grImport package because that package ignores clipping information (see Figure 11).

The grImport2 package imports the clipping information for an image, but, similar to gradient
fills, the rendering of clipping information is hampered by the limitations of the R graphics engine,
which can only clip to rectangular regions. The ext argument to the grid.picture() function can be
given the value "clipbbox" to force all clipping information in an image to be converted to bounding
boxes (i.e., rectangular clipping regions) for rendering. In the case of the state flag of Hawaii, this
works well because the clipping regions in the original image are already rectangles (see Figure 11).

gr
Im

po
rt

gr
Im

po
rt

2
+

 c
lip

bb
ox

 

Figure 11: At left, the state flag of Hawaii as an SVG image (from Wikipedia). In the middle, the flag
after importing and rendering with grImport, which does not import clipping information. At right,
the flag after importing and rendering with grImport2.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 6

The state flag of Ohio presents the more complex clipping case, where the clipping regions are
not rectangular (see Figure 12). In this situation, there is no hope of producing the correct result on a
standard R graphics device, but, as for gradient fills, we can use ext="gridSVG" and export to SVG to
obtain the correct rendering (see Figure 12).

> convertPicture("Flag_of_Ohio.svg", "Flag_of_Ohio_cairo.svg")
> ohio <- readPicture("Flag_of_Ohio_cairo.svg")
> grid.picture(ohio, ext="gridSVG")

> grid.export("Flag_of_Ohio_gridsvg.svg")

gr
Im

po
rt

2
Figure 12: At left, the state flag of Ohio as an SVG image (from Wikipedia). In the middle, the flag
after importing and rendering with grImport2 on a standard R graphics device; the non-rectangular
clipping information in this flag cannot be rendered correctly on a standard graphics device. At right,
the flag after importing with grImport2 and rendering with gridSVG.

In addition to gradient fills and clipping paths, grImport2 can also import images that make use
of masks and pattern fills, although correct rendering of these features will again require the help of
the gridSVG package.

A plot example

The main point of importing images into R is not simply to replicate the image by itself, but to
incorporate the image as part of an R graphics scene that contains other drawing. This section presents
an example of the latter, incorporating an imported image within a lattice plot (Sarkar, 2008).

The external image is a balloon icon (an SVG image) by Yuko Iwai, from thenounproject.com
collection2 (see Figure 13). We will use this image within a plot to show the popularity of the top 5
male baby names (in New Zealand in 20003).

> convertPicture("noun_project_3663.svg", "balloon.svg")
> balloon <- readPicture("balloon.svg")
> grid.picture(balloon)

Figure 13: A balloon icon by Yuko Iwai, from thenounproject.com collection.

The following code draws a lattice plot of the number of male babies with the given name (for the
top 5 names), with a custom panel function defined in the xyplot() call to add the ballon icon as a
plotting symbol. This code demonstrates another function in the grImport2 package, grid.symbols(),
which is useful for drawing multiple copies of an imported image at once.

> library(lattice)
> library(grid)

2http://thenounproject.com/term/balloon/3663/
3http://www.stats.govt.nz/~/media/Statistics/browse-categories/population/births/tables/babies-

names.xls

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://thenounproject.com/term/balloon/3663/
http://www.stats.govt.nz/~/media/Statistics/browse-categories/population/births/tables/babies-names.xls
http://www.stats.govt.nz/~/media/Statistics/browse-categories/population/births/tables/babies-names.xls


CONTRIBUTED RESEARCH ARTICLE 7

> xyplot(counts ~ names, pch=16,
+ type="h", lty="dotted", lwd=3, col="grey",
+ ylab="", ylim=c(300, 750),
+ xlab="Most Popular Male Baby Names (NZ 2000)",
+ scales=list(x=list(draw=FALSE)),
+ panel=function(x, y, ...) {
+ panel.xyplot(x, y, ...)
+ grid.symbols(balloon, x, y, size=unit(3.5, "cm"))
+ })

Figure 14 shows a slightly more complex result than that produced by the code above, with a few
extra embellishments added. In particular, it demonstrates that the imported image can be modified
by altering the graphical parameter settings, such as colour, when drawing the image (full code for
this figure is available from the second author’s web site).

Most Popular Male Baby Names (NZ 2000)

400

500

600

700

Joshua

Jack

Samuel
James

Matthew

Figure 14: The balloon icon from Figure 13 used as a plotting symbol in a lattice plot.

Summary

The following list summarises the main scenarios that arise when we want to import an external image
and use it within an R graphic:

• If the original image is in PostScript format and consists only of text and paths (e.g., no raster
elements and no clipping), the grImport package should work well.

• If the original image is not in PostScript format, but consists only of text and paths, then it
should convert well to PostScript for import via grImport.

• If the original image is not in PostScript format and/or includes complex content such as raster
elements, gradient fills, or clipping paths, it should be possible to convert the image to SVG via
grConvert and then import with grImport2.

• Rendering of some complex images will only be possible in an SVG format with the support of
the gridSVG package.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 8

Discussion

The main body of this article has demonstrated some of the limitations of the old grImport package
and some of the benefits of the new grImport2 package. This section expands the discussion to include
some weaknesses in the new grImport2 package and some redeeming features of the old grImport
package.

First of all, despite being able to import a wider range of images, there are still some images that
grImport2 cannot import and render correctly. Figure 15 provides an example from the state flag
of Arizona. In this case, the problem is that the yellow "rays" are drawn with a very thick dashed
line. The grImport2 package cannot import this image correctly because the dash pattern cannot be
properly represented in R graphics.

> convertPicture("Flag_of_Arizona.svg", "Flag_of_Arizona_cairo.svg")
> arizona <- readPicture("Flag_of_Arizona_cairo.svg")
> grid.picture(arizona)

gr
Im

po
rt

2
Figure 15: At left, the state flag of Arizona as an SVG image (from Wikipedia). At right, the flag after
importing and rendering with grImport2 on a standard R graphics device.

Another limitation of the grImport2 package is that it cannot import text content from the original
image as text. This is because the Cairo SVG subset does not support text; it represents all text as
paths that draw the individual characters. This means that the R version of an imported image will
not contain any text; for example, it will not be possible to search for text values within a PDF file
produced by R from an imported image.

This leads us to one of the advantages of the old grImport package because that package is capable
of importing text from an external image and rendering it as text. Another advantage of grImport
(compared to grImport2) is the relative simplicity of the data structure that is used to represent an
imported image. The practical result of this difference is that it is a simple matter to extract a subset
from the components an imported image with grImport, if we only want to render a small part of an
imported image rather than the entire image. This subsetting of an imported image is much harder to
do with grImport2. The grImport2 package also currently has no support for rendering an imported
image as part of a scene based on the standard graphics package.

A final reason for retaining the old grImport package is the fact that the conversion of an image
from a format other than SVG to Cairo SVG can introduce problems, such as loss of features from the
original image. This means that, if the original image is in a PostScript format, the best result may be
obtained by importing and rendering with grImport rather than converting the image to SVG with
grConvert and importing and rendering with grImport2.

Links to other information

The grConvert and grImport2 packages are currently available from R-Forge.4 A more detailed
discussion of grConvert and grImport2 packages is provided in Potter and Murrell (2013) and the
complete set of state flags and how well they are rendered by grImport and grImport2 is available
from the following link:
https://dl.dropboxusercontent.com/u/54315147/import/state-table.html.

Acknowledgements

Simon Potter’s work on the grConvert and grImport2 packages was funded by a Google Summer of
Code scholarship. The Summer of Code project was originally proposed by Toby Dylan Hocking.

4https://r-forge.r-project.org/projects/grimport/

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://dl.dropboxusercontent.com/u/54315147/import/state-table.html
https://r-forge.r-project.org/projects/grimport/


CONTRIBUTED RESEARCH ARTICLE 9

Bibliography

T. Bah. Inkscape: Guide to a Vector Drawing Program. Prentice Hall Press, Upper Saddle River, NJ, USA,
2007. ISBN 9780131357945. [p1]

freedesktop.org. Poppler, 2013a. Version 0.22.2. [p2]

freedesktop.org. libspectre, 2013b. URL http://libspectre.freedesktop.org/. Version 0.2.7. [p2]

GNOME Project. librsvg, 2013. URL http://live.gnome.org/LibRsvg. Version 2.37. [p2]

P. Murrell. Importing vector graphics: The grImport package for R. Journal of Statistical Software, 30(4):
1–37, 2009. URL http://www.jstatsoft.org/v30/i04/. [p1]

K. Packard, C. Worth, and B. Esfahbod. Cairo, 2013. URL http://cairographics.org/. Version 1.12.14.
[p3]

S. Potter and P. Murrell. Improved importing of vector graphics in R. Technical Report 2013-9,
Department of Statistics, The University of Auckland, 2013. URL http://stattech.wordpress.fos.
auckland.ac.nz/2013-9-improved-importing-of-vector-graphics-in-r/. [p8]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p6]

M. Still. The Definitive Guide to ImageMagick. Apress, 2005. ISBN 9781590595909. [p1]

Simon Potter
The University of Auckland
Auckland
New Zealand simon@sjp.co.nz

Paul Murrell
The University of Auckland
Auckland
New Zealand paul@stat.auckland.ac.nz

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://libspectre.freedesktop.org/
http://live.gnome.org/LibRsvg
http://www.jstatsoft.org/v30/i04/
http://cairographics.org/
http://stattech.wordpress.fos.auckland.ac.nz/2013-9-improved-importing-of-vector-graphics-in-r/
http://stattech.wordpress.fos.auckland.ac.nz/2013-9-improved-importing-of-vector-graphics-in-r/
http://lmdvr.r-forge.r-project.org
mailto:simon@sjp.co.nz
mailto:paul@stat.auckland.ac.nz

	Enhanced Vector Image Import: The grConvert and grImport2 packages
	The problem
	The grConvert package
	The grImport2 package
	An image test suite
	A plot example
	Summary
	Discussion
	Links to other information
	Acknowledgements


