
1

An Introduction to R Graphics

Chapter preview

This chapter provides the most basic information to get started pro-
ducing plots in R. First of all, there is a three-line code example that
demonstrates the fundamental steps involved in producing a plot. This
is followed by a series of figures to demonstrate the range of images
that R can produce. There is also a section on the organization of R

graphics giving information on where to look for a particular function.
The final section describes the different graphical output formats that
R can produce and how to obtain a particular output format.

The following code provides a simple example of how to produce a plot using
R (see Figure 1.1).

> plot(pressure)

> text(150, 600,

"Pressure (mm Hg)\nversus\nTemperature (Celsius)")

The expression plot(pressure) produces a scatterplot of pressure versus
temperature, including axes, labels, and a bounding rectangle.∗ The call to
the text() function adds the label at the data location (150, 600) within
the plot.

∗The pressure data set, available in the datasets package, contains 19 recordings of
the relationship between vapor pressure (in millimeters of mercury) and temperature (in
degrees Celsius).

1

2 R Graphics

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

temperature

pr
es

su
re

Pressure (mm Hg)
versus

Temperature (Celsius)

Figure 1.1
A simple scatterplot of vapor pressure of mercury as a function of temperature.
The plot is produced from two simple R expressions: one expression to draw the
basic plot, consisting of axes, data symbols, and bounding rectangle; and another
expression to add the text label within the plot.

An Introduction to R Graphics 3

This example is basic R graphics in a nutshell. In order to produce graphical
output, the user calls a series of graphics functions, each of which produces
either a complete plot, or adds some output to an existing plot. R graphics
follows a “painters model,” which means that graphics output occurs in steps,
with later output obscuring any previous output that it overlaps.

There are very many graphical functions provided by R and the add-on pack-
ages for R, so before describing individual functions, Section 1.1 demonstrates
the variety of results that can be achieved using R graphics. This should pro-
vide some idea of what users can expect to be able to achieve with R graphics.

Section 1.2 gives an overview of how the graphics functions in R are organized.
This should provide users with some basic ideas of where to look for a function
to do a specific task. Section 1.3 describes the set of functions involved with
the selection of a particular graphical output format. By the end of this
chapter, the reader will be in a position to start understanding in more detail
the core R functions that produce graphical output.

1.1 R graphics examples

This section provides an introduction to R graphics by way of a series of
examples. None of the code used to produce these images is shown, but it
is available from the web site for this book. The aim for now is simply to
provide an overall impression of the range of graphical images that can be
produced using R. The figures are described over the next few pages and the
images themselves are all collected together on pages 7 to 15.

1.1.1 Standard plots

R provides the usual range of standard statistical plots, including scatterplots,
boxplots, histograms, barplots, piecharts, and basic 3D plots. Figure 1.2 shows
some examples.∗

In R, these basic plot types can be produced by a single function call (e.g.,

∗The barplot makes use of data on death rates in the state of Virginia for different age
groups and population groups, available as the VADeaths data set in the datasets package.
The boxplot example makes use of data on the effect of vitamin C on tooth growth in guinea
pigs, available as the ToothGrowth data set, also from the datasets package. These and
many other data sets distributed with R were obtained from “Interactive Data Analysis” by
Don McNeil[40] rather than directly from the original source.

4 R Graphics

pie(pie.sales) will produce a piechart), but plots can also be considered
merely as starting points for producing more complex images. For example, in
the scatterplot in Figure 1.2, a text label has been added within the body of the
plot (in this case to show a subject identification number) and a secondary
y-axis has been added on the right-hand side of the plot. Similarly, in the
histogram, lines have been added to show a theoretical normal distribution
for comparison with the observed data. In the barplot, labels have been added
to the elements of the bars to quantify the contribution of each element to the
total bar and, in the boxplot, a legend has been added to distinguish between
the two data sets that have been plotted.

This ability to add several graphical elements together to create the final
result is a fundamental feature of R graphics. The flexibility that this allows
is demonstrated in Figure 1.3, which illustrates the estimation of the original
number of vessels based on broken fragments gathered at an archaeological
site: a measure of “completeness” is obtained from the fragments at the site;
a theoretical relationship is used to produce an estimated range of “sampling
fraction” from the observed completeness; and another theoretical relationship
dictates the original number of vessels from a sampling fraction[19]. This plot
is based on a simple scatterplot, but requires the addition of many extra lines,
polygons, and pieces of text, and the use of multiple overlapping coordinate
systems to produce the final result.

For more information on the R functions that produce these standard plots,
see Chapter 2. Chapter 3 describes the various ways that further output can
be added to a plot.

1.1.2 Trellis plots

In addition to the traditional statistical plots, R provides an implementation of
Trellis plots[6] via the package lattice[54] by Deepayan Sarkar. Trellis plots
embody a number of design principles proposed by Bill Cleveland[12][13] that
are aimed at ensuring accurate and faithful communication of information via
statistical plots. These principles are evident in a number of new plot types
in Trellis and in the default choice of colors, symbol shapes, and line styles
provided by Trellis plots. Furthermore, Trellis plots provide a feature known
as “multi-panel conditioning,” which creates multiple plots by splitting the
data being plotted according to the levels of other variables.

Figure 1.4 shows an example of a Trellis plot. The data are yields of several
different varieties of barley at six sites, over two years. The plot consists of
six “panels,” one for each site. Each panel consists of a dotplot showing yield
for each variety with different symbols used to distinguish different years, and
a “strip” showing the name of the site.

An Introduction to R Graphics 5

For more information on the Trellis system and how to produce Trellis plots
using the lattice package, see Chapter 4.

1.1.3 Special-purpose plots

As well as providing a wide variety of functions that produce complete plots,
R provides a set of functions for producing graphical output primitives, such
as lines, text, rectangles, and polygons. This makes it possible for users to
write their own functions to create plots that occur in more specialized areas.
There are many examples of special-purpose plots in add-on packages for R.
For example, Figure 1.5 shows a map of New Zealand produced using R and
the add-on packages maps[7] and mapproj[39].

R graphics works mostly in rectangular Cartesian coordinates, but functions
have been written to display data in other coordinate systems. Figure 1.6
shows three plots based on polar coordinates. The top-left image was pro-
duced using the stars() function. Such star plots are useful for representing
data where many variables have been measured on a relatively small number of
subjects. The top-right image was produced using customized code by Karsten
Bjerre and the bottom-left image was produced using the rose.diag() func-
tion from the CircStats package[36]. Plots such as these are useful for pre-
senting geographic, or compass-based data. The bottom-right image in Figure
1.6 is a ternary plot producing using ternaryplot() from the vcd package[41].
A ternary plot can be used to plot categorical data where there are exactly
three levels.

In some cases, researchers are inspired to produce a totally new type of plot
for their data. R is not only a good platform for experimenting with novel
plots, but it is also a good way to deliver new plotting techniques to other
researchers. Figure 1.7 shows a novel display for decision trees, visualizing the
distribution of the dependent variable in each terminal node[30] (produced
using the party package).

For more information on how to generate a plot starting from an empty page
with traditional graphics functions, see Chapter 3. The grid package provides
even more power and flexibility for producing customized graphical output
(see Chapters 5 and 6), especially for the purpose of producing functions for
others to use (see Chapter 7).

1.1.4 General graphical scenes

The generality and flexibility of R graphics makes it possible to produce graph-
ical images that go beyond what is normally considered to be statistical graph-

6 R Graphics

ics, although the information presented can usually be thought of as data of
some kind. A good mainstream example is the ability to embed tabular ar-
rangements of text as graphical elements within a plot as in Figure 1.8. This
is a standard way of presenting the results of a meta-analysis. Figure 1.12
and Figure 3.6 provide other examples of tabular graphical output produced
by R.∗

R has also been used to produce figures that help to visualize important con-
cepts or teaching points. Figure 1.9 shows two examples that provide a geo-
metric representation of extensions to F-tests (provided by Arden Miller[42]).
A more unusual example of a general diagram is provided by the musical score
in Figure 1.10 (provided by Steven Miller). R graphics can even be used like
a general-purpose painting program to produce “clip art” as shown by Figure
1.11. These examples tend to require more effort to achieve the final result as
they cannot be produced from a single function call. However, R’s graphics
facilities, especially those provided by the grid system (Chapters 5 and 6),
provide a great deal of support for composing arbitrary images like these.

These examples present only a tiny taste of what R graphics (and clever and
enthusiastic users) can do. They highlight the usefulness of R graphics not
only for producing what are considered to be standard plot types (for little
effort), but also for providing tools to produce final images that are well
beyond the standard plot types (including going beyond the boundaries of
what is normally considered statistical graphics).

∗All of the figures in this book, apart from the figures in Chapter 7 that only contain R

code, were produced using R.

An Introduction to R Graphics 7

0 4 8 12 16

0

2

4

6

0

2

4

6

Travel Time (s)

Re
sp

on
se

s
pe

r T
ra

ve
l

Re
sp

on
se

s
pe

r S
ec

on
d

Bird 131

Histogram of Y

Y
De

ns
ity

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0

50

100

150

200

Rural
Male

Rural
Female

Urban
Male

Urban
Female

11.7
18.1
26.9

41

66

8.711.7
20.3
30.9

54.3

15.4
24.3

37

54.6

71.1

8.4
13.6
19.3

35.1

50

0.5 1 2

0
5

10
15
20
25
30
35

to
ot

h
le

ng
th

Vitamin C dose (mg)
0.5 1 2

0
5

10
15
20
25
30
35

Ascorbic acid
Orange juice

x

y

z

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla

Figure 1.2
Some standard plots produced using R: (from left-to-right and top-to-bottom) a
scatterplot, a histogram, a barplot, a boxplot, a 3D surface, and a piechart. In the
first four cases, the basic plot type has been augmented by adding additional labels,
lines, and axes. (The boxplot is adapted from an idea by Roger Bivand.)

8 R Graphics

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

234 (65%)

159 (44%)

1.2

Nu
m

be
r o

f V
es

se
ls

Sampling Fraction

Co
m

pl
et

en
es

s

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

N = 360 brokenness = 0.5

Figure 1.3
A customized scatterplot produced using R. This is created by starting with a simple
scatterplot and augmenting it by adding an additional y-axis and several additional
sets of lines, polygons, and text labels.

An Introduction to R Graphics 9

Barley Yield (bushels/acre)

20 30 40 50 60

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

University Farm
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Crookston
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Waseca

1932
1931

Figure 1.4
A Trellis dotplot produced using R. The relationship between the yield of barley and
species of barley is presented, with a separate dotplot for different experimental sites
and different plotting symbols for data gathered in different years. This is a small
modification of Figure 1.1 from Bill Cleveland’s “Visualizing Data” (reproduced with
permission from Hobart Press).

10 R Graphics

Auckland

Figure 1.5
A map of New Zealand produced using R, Ray Brownrigg’s maps package, and
Thomas Minka’s mapproj package. The map (of New Zealand) is drawn as a se-
ries of polygons, and then text, an arrow, and a data point have been added to
indicate the location of Auckland, the birthplace of R. A separate world map has
been drawn in the bottom-right corner, with a circle to help people locate New
Zealand.

An Introduction to R Graphics 11

Motor Trend Cars

mpg

cyl
disp

hp

drat

wt
qsec

10
20
30
40
50
N

E

S

W

90

270

180 0

None Some

Marked

0.2

0.8

0.2

0.4

0.6

0.4

0.6

0.4

0.6

0.8

0.2

0.8

Figure 1.6
Some polar-coordinate plots produced using R (top-left), the CircStats package by
Ulric Lund and Claudio Agostinelli (top-right), and code submitted to the R-help

mailing list by Karsten Bjerre (bottom-left). The plot at bottom-right is a ternary
plot produced using the vcd package (by David Meyer, Achim Zeileis, Alexandros
Karatzoglou, and Kurt Hornik)

12 R Graphics

vari
p < 0.001

1

≤ 0.059 > 0.059

vasg
p < 0.001

2

≤ 0.046 > 0.046

vart
p = 0.001

3

≤ 0.005 > 0.005

Node 4 (n = 51)

glau norm
0

0.2

0.4

0.6

0.8

1
Node 5 (n = 22)

glau norm
0

0.2

0.4

0.6

0.8

1
Node 6 (n = 14)

glau norm
0

0.2

0.4

0.6

0.8

1
Node 7 (n = 109)

glau norm
0

0.2

0.4

0.6

0.8

1

Figure 1.7
A novel decision tree plot, visualizing the distribution of the dependent variable in
each terminal node. Produced using the party package by Torsten Hothorn, Kurt
Hornik, and Achim Zeileis.

An Introduction to R Graphics 13

Centre

Thailand
Philippines

All in situ

Colombia
Spain

All invasive

All

Carcinoma in situ

Invasive cancer

cases

327
319

1462

96
115

211

1673
0 1 2 3 4

OR

Figure 1.8
A table-like plot produced using R. This is a typical presentation of the results
from a meta-analysis. The original motivation and data were provided by Martyn
Plummer[48].

14 R Graphics

X1

X2 X3

X2 X3

X1

Figure 1.9
Didactic diagrams produced using R and functions provided by Arden Miller. The
figures show a geometric representation of extensions to F-tests.

An Introduction to R Graphics 15

A Little Culture

4
4

Ma− ry had a lit− tle lamb

Figure 1.10

A music score produced using R (code by Steven Miller).

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Once upon a time ...

Figure 1.11

A piece of clip art produced using R.

16 R Graphics

1.2 The organization of R graphics

This section briefly describes how R’s graphics functions are organized so that
the user knows where to start looking for a particular function.

The R graphics system can be broken into four distinct levels: graphics pack-
ages; graphics systems; a graphics engine, including standard graphics devices;
and graphics device packages (see Figure 1.12).

Graphics
Packages lattice ...maps ...

Graphics
Systems graphics grid

Graphics
Engine

&
Devices

grDevices

Graphics
Device

Packages
gtkDevice ...

Figure 1.12
The structure of the R graphics system showing the main packages that provide
graphics functions in R. Arrows indicate where one package builds on the functions
in another package. The packages described in this book are highlighted with thicker
borders and grey backgrounds.

An Introduction to R Graphics 17

The core R graphics functionality described in this book is provided by the
graphics engine and the two graphics systems, traditional graphics and grid.
The graphics engine consists of functions in the grDevices package and pro-
vides fundamental support for handling such things as colors and fonts (see
Section 3.2), and graphics devices for producing output in different graphics
formats (see Section 1.3).

The traditional graphics system consists of functions in the graphics package
and is described in Part I. The grid graphics system consists of functions in
the grid package and is described in Part II.

There are many other graphics functions provided in add-on graphics pack-
ages, which build on the functions in the graphics systems. Only one such
package, the lattice package, is described in any detail in this book. The
lattice package builds on the grid system to provide Trellis plots (see Chap-
ter 4).

There are also add-on graphics device packages that provide additional graph-
ical output formats.

1.2.1 Types of graphics functions

Functions in the graphics systems and graphics packages can be broken down
into three main types: high-level functions that produce complete plots; low-
level functions that add further output to an existing plot; and functions for
working interactively with graphical output.

The traditional system, or graphics packages built on top of it, provide the
majority of the high-level functions currently available in R. The most signifi-
cant exception is the lattice package (see Chapter 4), which provides complete
plots based on the grid system.

Both the traditional and grid systems provide many low-level graphics func-
tions, and grid also provides functions for interacting with graphical output
(editing, extracting, deleting parts of an image).

Most functions in graphics packages produce complete plots and typically offer
specialized plots for a specific sort of analysis or a specific field of study. For
example: the hexbin package[10] from the BioConductor project has functions
for producing hexagonal binning plots for visualizing large amounts of data;
the maps package[7] provides functions for visualizing geographic data (see, for
example, Figure 1.5); and the package scatterplot3d[35] produces a variety
of 3-dimensional plots. If there is a need for a particular sort of plot, there
is a reasonable chance that someone has already written a function to do it.
For example, a common request on the R-help mailing list is for a way to
add error bars to scatterplots or barplots and this can be achieved via the

18 R Graphics

functions plotCI() from the gplots package in the gregmisc bundle or the
errbar() function from the Hmisc package. There are some search facilities
linked off the main R home page web site to help to find a particular function
for a particular purpose (also see Section A.2.10).

While there is no detailed discussion of the high-level graphics functions in
graphics packages other than lattice, the general comments in Chapter 2 con-
cerning the behavior of high-level functions in the traditional graphics system
will often apply as well to high-level graphics functions in graphics packages
built on the traditional system.

1.2.2 Traditional graphics versus grid graphics

The existence of two distinct graphics systems in R raises the issue of when
to use each system.

For the purpose of producing complete plots from a single function call, which
graphics system to use will largely depend on what type of plot is required.
The choice of graphics system is largely irrelevant if no further output needs
to be added to the plot.

If it is necessary to add further output to a plot, the most important thing to
know is which graphics system was used to produce the original plot. In gen-
eral, the same graphics system should be used to add further output (though
see Appendix B for ways around this).

In some cases, the same sort of plot can be produced by both lattice and
traditional functions. The lattice versions offer more flexibility for adding
further output and for interacting with the plot, plus Trellis plots have a
better design in terms of visually decoding the information in the plot.

For producing graphical scenes starting from a blank page, the grid system
offers the benefit of a much wider range of possibilities, at the cost of having
to learn a few additional concepts.

For the purpose of writing new graphical functions for others to use, grid
again provides better support for producing more general output that can be
combined with other output more easily. Grid also provides more possibilities
for interaction.

An Introduction to R Graphics 19

1.3 Graphical output formats

At the start of this chapter (page 1), there is a simple example of the sort of R

expressions that are required to produce a plot. When using R interactively,
the result is a plot drawn on screen. However, it is also possible to produce
a file that contains the plot, for example, as a PostScript document. This
section describes how to control the format in which a plot is produced.

R graphics output can be produced in a wide variety of graphical formats.
In R’s terminology, output is directed to a particular output device and that
dictates the output format that will be produced. A device must be created or
“opened” in order to receive graphical output and, for devices that create a file
on disk, the device must also be closed in order to complete the output. For
example, for producing PostScript output, R has a function postscript()

that opens a file to receive PostScript commands. Graphical output sent to
this device is recorded by writing PostScript commands into the file. The
function dev.off() closes a device.

The following code shows how to produce a simple scatterplot in PostScript
format. The output is stored in a file called myplot.ps:

> postscript(file="myplot.ps")

> plot(pressure)

> dev.off()

To produce the same output in PNG format (in a file called myplot.png), the
code simply becomes:

> png(file="myplot.png")

> plot(pressure)

> dev.off()

When working in an interactive session, output is often produced, at least
initially, on the screen. When R is installed, an appropriate screen format is
selected as the default device and this default device is opened automatically
the first time that any graphical output occurs. For example, on the various
Unix systems, the default device is an X11 window so the first time a graphics
function gets called, a window is created to draw the output on screen. The
user can control the format of the default device using the options() function.

20 R Graphics

Table 1.1
Graphics formats that R supports and the functions that open
an appropriate graphics device

Device Function Graphical Format

Screen/GUI Devices
x11() or X11() X Window window
windows() Microsoft Windows window
quartz() Mac OS X Quartz window

File Devices
postscript() Adobe PostScript file
pdf() Adobe PDF file
pictex() LATEX PicTEX file
xfig() XFIG file
bitmap() GhostScript conversion to file
png() PNG bitmap file
jpeg() JPEG bitmap file
(Windows only)

win.metafile() Windows Metafile file
bmp() Windows BMP file

Devices provided by add-on packages
devGTK() GTK window (gtkDevice)
devJava() Java Swing window (RJavaDevice)
devSVG() SVG file (RSvgDevice)

1.3.1 Graphics devices

Table 1.1 gives a full list of functions that open devices and the output formats
that they correspond to.

All of these functions provide several arguments to allow the user to specify
things such as the physical size of the window or document being created. The
documentation for individual functions should be consulted for descriptions
of these arguments.

It is possible to have more than one device open at the same time, but only
one device is currently “active” and all graphics output is sent to that device.

If multiple devices are open, there are functions to control which device is
active. The list of open devices can be obtained using dev.list(). This gives
the name (the device format) and number for each open device. The function
dev.cur() returns this information only for the currently active device. The
dev.set() function can be used to make a device active, by specifying the

An Introduction to R Graphics 21

appropriate device number and the functions dev.next() and dev.prev()

can be used to make the next/previous device on the device list the active
device.

All open devices can be closed at once using the function graphics.off().
When an R session ends, all open devices are closed automatically.

1.3.2 Multiple pages of output

For a screen device, starting a new page involves clearing the window before
producing more output. On Windows there is a facility for returning to pre-
vious screens of output (see the “History” menu, which is available when a
graphics window has focus), but on most screen devices, the output of previ-
ous pages is lost.

For file devices, the output format dictates whether multiple pages are sup-
ported. For example, PostScript and PDF allow multiple pages, but PNG does
not. It is usually possible, especially for devices that do not support multiple
pages of output, to specify that each page of output produces a separate file.
This is achieved by specifying the argument onefile=FALSE when opening
a device and specifying a pattern for the file name like file="myplot%03d"

so that the %03d is replaced by a three-digit number (padded with zeroes)
indicating the “page number” for each file that is created.

1.3.3 Display lists

R maintains a display list for each open device, which is a record of the output
on the current page of a device. This is used to redraw the output when
a device is resized and can also be used to copy output from one device to
another.

The function dev.copy() copies all output from the active device to another
device. The copy may be distorted if the aspect ratio of the destination device
— the ratio of the physical height and width of the device — is not the same as
the aspect ratio of the active device. The function dev.copy2eps() is similar
to dev.copy(), but it preserves the aspect ratio of the copy and creates a file
in EPS (Encapsulated PostScript) format that is ideal for embedding in other
documents (e.g., a LATEX document). The dev2bitmap() function is similar
in that it also tries to preserve the aspect ratio of the image, but it produces
one of the output formats available via the bitmap() device.

The function dev.print() attempts to print the output on the active device.
By default, this involves making a PostScript copy and then invoking the print
command given by options("printcmd").

22 R Graphics

The display list can consume a reasonable amount of memory if a plot is par-
ticularly complex or if there are very many devices open at the same time.
For this reason it is possible to disable the display list, by typing the expres-
sion dev.control(displaylist="inhibit"). If the display list is disabled,
output will not be redrawn when a device is resized, and output cannot be
copied between devices.

Chapter summary

R graphics can produce a wide variety of graphical output, including
(but not limited to) many different kinds of statistical plots, and the
output can be produced in a wide variety of formats. Graphical output
is produced by calling functions that either draw a complete plot or
add further output to an existing plot.

There are two main graphics systems in R: a traditional system similar
to the original S graphics system and a newer grid system that is
unique to R. Additional graphics functionality is provided by a large
number of add-on packages that build on these graphics systems.

