
4

Trellis Graphics: the Lattice Package

Chapter preview

This chapter describes how to produce Trellis plots using R. There
is a description of what Trellis plots are as well as a description of
the functions used to produce them. Trellis plots are designed to be
easy to interpret and at the same time provide some modern and
sophisticated plotting styles, such as multipanel conditioning.

The grid graphics system provides no high-level plotting functions
itself, so this chapter also describes the best way to produce a complete
plot using the grid system. There are several advantages to producing
a plot using the grid system, including greater flexibility in adding
further output to the plot, and the ability to interactively edit the
plot.

This chapter describes the lattice package, developed by Deepayan Sarkar[54].
Lattice is based on the grid graphics system, but can be used as a complete
graphics system in itself and a great deal can be achieved without encountering
any of the underlying grid concepts.∗ This chapter deals with lattice as a
self-contained system consisting of functions for producing complete plots,
functions for controlling the appearance of the plots, and functions for opening
and closing devices. Section 5.8 and Section 6.7 describe some of the benefits
that can be gained from viewing lattice plots as grid output and dealing
directly with the grid concepts and objects that underly the lattice system.

∗To give Deepayan proper credit, lattice uses grid only to render plots. Lattice performs
a lot of work itself to deconstruct formulae, rearrange the data, and manage many user-
settable options.

125

126 R Graphics

The graphics functions that make up the lattice graphics system are provided
in an add-on package called lattice. The lattice system is loaded into R as
follows.

> library(lattice)

The lattice package implements the Trellis Graphics system[6] with some novel
extensions. The Trellis Graphics system has a large number of sophisticated
features and many of these are described in this section, but more information,
examples, and background are available from the Trellis Display web site:

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html

4.1 The lattice graphics model

In simple usage, lattice functions appear to work just like traditional graphics
functions where the user calls a function and output is generated on the current
device. The following example plots the locations of 1000 earthquakes that
have occurred in the Pacific Ocean (near Fiji) since 1964 (see Figure 4.1).∗

> xyplot(lat ~ long, data=quakes, pch=".")

It is perfectly valid to use lattice this way; however, lattice graphics functions
do not produce graphical output directly. Instead they produce an object
of class "trellis", which contains a description of the plot. The print()

method for objects of this class does the actual drawing of the plot. This
can be demonstrated quite easily. For example, the following code creates a
trellis object, but does not draw anything.

> tplot <- xyplot(lat ~ long, data=quakes, pch=".")

The result of the call to xyplot() is assigned to the variable tplot so it is
not printed. The plot can be drawn by calling print on the trellis object
(the result is exactly the same as Figure 4.1).

> print(tplot)

∗The data are available as the data set quakes in the datasets package.

Trellis Graphics: the Lattice Package 127

long

la
t

165 170 175 180 185

−35

−30

−25

−20

−15

−10

Figure 4.1
A scatterplot using lattice (showing the locations of earthquakes in the Pacific
Ocean). A basic lattice plot has a very similar appearance to an analogous tra-
ditional plot.

128 R Graphics

This design makes it possible to work with the trellis object and modify it
using the update() method for trellis objects, which is an alternative to
modifying the original R expression used to create the trellis object. The
following code demonstrates this idea by modifying the trellis object tplot
to redefine the main title of the plot (it was empty). The resulting output is
shown in Figure 4.2. A subtle change to look for is the fact that extra space
has been introduced to allow room for adding the new main title text (the
height of the plot region is slightly smaller compared to Figure 4.1).

> update(tplot,

main="Earthquakes in the Pacific Ocean\n(since 1964)")

The side-effect of the code above is to produce new output that is a modifi-
cation of the original plot, represented by tplot. However, it is important to
remember that tplot has not been changed in any way (typing tplot again
will produce output like Figure 4.1 again). In order to retain an R object
representing the modified plot, the user must assign the value returned by the
update() function, as in the following code.

> tplot2 <-

update(tplot,

main="Earthquakes in the Pacific Ocean (since 1964)")

4.1.1 Lattice devices

For each graphics device, lattice maintains its own set of graphical parameter
settings that control the appearance of plots (colors of lines, fonts for text,
and many more — see Section 4.3)∗. The default settings depend on the
type of device being opened (e.g., the settings are different for a PostScript
device compared to a PDF device). In simple usage this causes no problems,
because lattice automatically initializes these settings the first time that lattice
output is produced on a device. If it is necessary to control the initial values
for these settings the trellis.device() function can be used to explicitly
open a device with specific lattice graphical parameter settings (or just to
enforce specific lattice settings on an existing device). Section 4.3 describes
more functions for manipulating the lattice graphical parameter settings.

∗One of the features of Trellis Graphics is that carefully selected default settings are
provided for colors, data symbols, and so on. These settings are selected to maximize the
interpretability of plots and are based on principles of human perception[15].

Trellis Graphics: the Lattice Package 129

Earthquakes in the Pacific Ocean
(since 1964)

long

la
t

165 170 175 180 185

−35

−30

−25

−20

−15

−10

Figure 4.2
The result of modifying a lattice object. Lattice creates an object representing the
plot. If this object is modified, the plot is redrawn. This figure shows the result of
modifying the object representing the plot in Figure 4.1 to add a title to the plot.

130 R Graphics

4.2 Lattice plot types

Lattice provides functions to produce a number of standard plot types, plus
some more modern and specialized plots. Table 4.1 describes the functions
that are available and Figure 4.3 provides a basic idea of the sort of output
that they produce.

There are a number of functions that produce output very similar to the out-
put of functions in the traditional graphics system, but there are three possible
reasons for using lattice functions instead of the traditional counterparts:

1. The default appearance of the lattice plots is superior in some areas.
For example, the default colors and the default data symbols have been
deliberately chosen to make it easy to distinguish between groups when
more than one data series is plotted. There are also some subtle things
such as the fact that tick labels on the y-axes are written horizontally
by default, which makes them easier to read.

2. The lattice plot functions can be extended in several very powerful ways.
For example, several data series can be plotted at once in a convenient
manner and multiple panels of plots can be produced easily (see Section
4.2.1).

3. The output from lattice functions is grid output, so many powerful grid
features are available for annotating, editing, and saving the graphics
output. See Section 5.8 and Section 6.7 for examples of these features.

Most of the lattice plotting functions provide a very long list of arguments
and produce a wide range of different types of output. Many of the argu-
ments are shared by different functions and the on-line help for the xyplot()

function provides an explanation of these standard arguments. The follow-
ing sections address some of the important shared arguments, but for a full
explanation of all arguments, the documentation for each specific function
should be consulted. The next section discusses two important arguments,
formula and data. The use of several other arguments is demonstrated in
Section 4.2.2 in the context of a more complex example. Section 4.3 mentions
the par.settings argument and Section 4.4 describes the layout argument.
Section 4.5 describes the panel and strip arguments.

Trellis Graphics: the Lattice Package 131

Table 4.1
The plotting functions available in lattice

Lattice Traditional
Function Description Analogue

barchart() Barcharts barplot()

bwplot() Boxplots boxplot()
Box-and-whisker plots

densityplot() Conditional kernel density plots none
Smoothed density estimate

dotplot() Dotplots dotchart()
Continuous versus categorical

histogram() Histograms hist()

qqmath() Quantile–quantile plots qqnorm()
Data set versus theoretical distribution

stripplot() Stripplots stripchart()
One-dimensional scatterplot

qq() Quantile–quantile plots qqplot()
Data set versus data set

xyplot() Scatterplots plot()

levelplot() Level plots image()

contourplot() Contour plots contour()

cloud() 3-dimensional scatterplot none

wireframe() 3-dimensional surfaces persp()

splom() Scatterplot matrices pairs()

parallel() Parallel coordinate plots none

132 R Graphics

barchart bwplot densityplot dotplot

histogram qqmath stripplot qq

xyplot levelplot contourplot cloud

wireframe

x

y

splom parallel

Figure 4.3
Plot types available in lattice. The name of the function used to produce the different
plot types is shown in the strip above each plot.

Trellis Graphics: the Lattice Package 133

4.2.1 The formula argument and multipanel conditioning

In most cases, the first argument to the lattice plotting functions is an R

formula (see Section A.2.6) that describes which variables to plot. The sim-
plest case has already been demonstrated. A formula of the form y ~ x

plots variable y against variable x. There are some variations for plots of
only one variable or plots of more than two variables. For example, for the
bwplot() function, the formula can be of the form ~ x and for the cloud()

and wireframe() functions something of the form z ~ x * y is required to
specify the three variables to plot. Another useful variation is the ability to
specify multiple y-variables. Something of the form y1 + y2 ~ x produces a
plot of both the y1 variable and the y2 variable against x. Multiple x-variables
can be specified as well.

The second argument to a lattice plotting function is typically data, which
allows the user to specify a data frame within which lattice can find the
variables specified in the formula.

One of the very powerful features of Trellis Graphics is the ability to specify
conditioning variables within the formula argument. Something of the form
y ~ x | g indicates that several plots should be generated, showing the vari-
able y against the variable x for each level of the variable g. In order to demon-
strate this feature, the following code produces several scatterplots, with each
scatterplot showing the locations of earthquakes that occurred within a par-
ticular depth range (see Figure 4.4). First of all, a new variable depthgroup is
defined, which is a binning of the original depth variable in the quakes data
set.

> depthgroup <- equal.count(quakes$depth, number=3, overlap=0)

Now this depthgroup variable can be used to produce a scatterplot for each
depth range.

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".")

In the Trellis terminology, the plot in Figure 4.4 consists of three panels. Each
panel in this case contains a scatterplot and above each panel there is a strip
that presents the level of the conditioning variable.

There can be more than one conditioning variable in the formula argument,
in which case a panel is produced for each combination of the conditioning
variables. An example of this is given in Section 4.2.2.

The most natural type of variable to use as a conditioning variable is a cat-
egorical variable (factor), but there is also support for using a continuous

134 R Graphics

long

la
t

165 170 175 180 185

−35
−30
−25
−20
−15
−10

depthgroup depthgroup

−35
−30
−25
−20
−15
−10

depthgroup

Figure 4.4
A lattice multipanel conditioning plot. A single function call produces several scat-
terplots of the locations of earthquakes for different earthquake depths.

Trellis Graphics: the Lattice Package 135

(numeric) conditioning variable. For this purpose, Trellis Graphics introduces
the concept of a shingle. This is a continuous variable with a number of
ranges associated with it. The ranges are used to split the continuous val-
ues into (possibly overlapping) groups. The shingle() function can be used
to explicitly control the ranges, or the equal.count() function can be used
to generate ranges automatically given a number of groups (as was done to
produce the depthgroup variable above).

4.2.2 A nontrivial example

This section describes an example that makes use of some of the common
arguments to the lattice plotting functions to produce a more complex final
result (see Figure 4.5). First of all, another grouping variable, magnitude, is
defined, which is a shingle indicating whether an earthquake is big or small.

> magnitude <- equal.count(quakes$mag, number=2, overlap=0)

The plot is still produced from a single function call, but there are two con-
ditioning variables, so there is a panel for each possible combination of depth
and magnitude. A title and axis labels have been specified for the plot using
the main, xlab, and ylab arguments. The between argument has been used
to introduce a vertical gap between the top row of panels (big earthquakes)
and the bottom row of panels (small earthquakes). The par.strip.text ar-
gument is used to control the size of text in the strips above each panel. The
scales argument is used to control the drawing of axis labels; in this case
the specification says that the x-axis labels should go at the bottom for both
panels. This is to avoid the axis tick marks interfering with the main title.
Finally, the par.settings argument is used to control the size of the tick
labels on the axes.

> xyplot(lat ~ long | depthgroup * magnitude,

data=quakes,

main="Fiji Earthquakes",

ylab="latitude", xlab="longitude",

pch=".",

scales=list(x=list(alternating=c(1, 1, 1))),

between=list(y=1),

par.strip.text=list(cex=0.7),

par.settings=list(axis.text=list(cex=0.7)))

This example demonstrates that it is possible to have very fine control over
many aspects of a lattice plot, given sufficient willingness to learn about all
of the arguments that are available.

136 R Graphics

Fiji Earthquakes

longitude

la
tit

ud
e

165 170 175 180 185

−35
−30
−25
−20
−15
−10

depthgroup
magnitude

165 170 175 180 185

depthgroup
magnitude

165 170 175 180 185

depthgroup
magnitude

depthgroup
magnitude

depthgroup
magnitude

depthgroup
magnitude

Figure 4.5
A complex lattice plot. There are a large number of arguments to lattice plotting
functions to allow control over many details of a plot, such as the text to use for
labels and titles, the size and placement of axis tick labels, and the size of the gaps
between columns and rows of panels.

Trellis Graphics: the Lattice Package 137

4.3 Controlling the appearance of lattice plots

An important feature of Trellis Graphics is the careful selection of default
settings that are provided for many of the features of lattice plots. For exam-
ple, the default data symbols and colors used to distinguish between different
data series have been chosen so that it is easy to visually discriminate be-
tween them. Nevertheless, it is still sometimes desirable to be able to make
alterations to the default settings for aspects like color and text size. It is also
useful to be able to control the layout or arrangement of the components (pan-
els and strips) of a lattice plot, but that is dealt with separately in Section
4.4. This section is only concerned with graphical parameters that control
colors, line types, fonts and the like.

The lattice graphical parameter settings consist of a large list of parameter
groups and each parameter group is a list of parameter settings. For example,
there is a plot.line parameter group consisting of col, lty, and lwd settings
to control the color, line type, and line width for lines drawn between data
locations. There is a separate plot.symbol group consisting of cex, col,
font, and pch settings to control the size, shape, and color of data symbols.
The settings in each parameter group affect some aspect of a lattice plot:
some have a “global” effect; for example, the fontsize settings affect all text
in a plot; some are more specific; for example, the strip.background setting
affects the background color of strips; and some only affect a certain aspect
of a certain sort of plot; for example, the box.dot settings affect only the dot
that is plotted at the median value in boxplots.

A separate list of graphical parameters is maintained for each graphics device.
Changes to parameter settings (see below) only affect the current device.

The function show.settings() produces a picture representing some of the
current graphical parameter settings. Figure 4.6 shows the settings for a
black-and-white PostScript device.

The current value of graphical parameter settings can be obtained using the
trellis.par.get() function. For a list of all current graphical parameter
settings, type trellis.par.get(). If a name is specified as the argument to
this function, then only the relevant settings are returned. The following code
shows how to obtain only the fontsize group of settings (the output is on
page 139).

> trellis.par.get("fontsize")

138
R

G
ra

p
h
ics

superpose.symbol superpose.line strip.background strip.shingle

dot.[symbol, line] box.[dot, rectangle, umbrella]

Hello

World

add.[line, text] reference.line

plot.[symbol, line] plot.shingle[bar.fill] histogram[bar.fill] barchart[bar.fill]

superpose.fill regions

F
ig

u
re

4
.6

S
o
m

e
d
efa

u
lt

la
ttice

settin
g
s

fo
r

a
b
la

ck
-a

n
d
-w

h
ite

P
o
stS

crip
t

d
ev

ice.
T

h
is

fi
g
u
re

w
a
s

p
ro

d
u
ced

b
y

th
e

la
ttice

fu
n
ctio

n
s
h
o
w
.
s
e
t
t
i
n
g
s
(
)
.

Trellis Graphics: the Lattice Package 139

$text

[1] 9

$points

[1] 8

There are two ways to set new values for graphical parameters. The values
can be set persistently (i.e., they will affect all subsequent plots until a new
setting is specified) using the trellis.par.set() function, or they can be
set temporarily for a single plot by specifying settings as an argument to a
plotting function.

The trellis.par.set() function can be used in several ways. For back-
compatibility with the original implementation of Trellis, it is possible to
provide a name as the first argument and a list of settings as the second
argument. This will modify the values for one parameter group.

A new approach is to provide a list of lists that can be used to modify multiple
parameter groups at once. Lattice also introduces the concept of themes,
which is a comprehensive and coherent set of graphical parameter values. It
is possible to specify such a theme and enforce a new “look and feel” for a
plot in one function call. Lattice currently provides one such theme via the
col.whitebg() function. It is also possible to obtain the default theme for a
particular device using the canonical.theme() function.

The following code demonstrates how to use trellis.par.set() in either
the backwards-compatible, one-parameter-group-at-a-time way, or the new
list-of-lists way, to specify fontsize settings.

> trellis.par.set("fontsize", list(text=14, points=10))

> trellis.par.set(list(fontsize=list(text=14, points=10)))

The theme approach is usually more convenient, especially when setting only
one value within a parameter group. For example, the following code demon-
strates the difference between the two approaches for modifying just the text
setting within the fontsize parameter group (old way first, new way second).

> fontsize <- trellis.par.get("fontsize")

> fontsize$text <- 20

> trellis.par.set("fontsize", fontsize)

> trellis.par.set(list(fontsize=list(text=20)))

The concept of themes is an example of a lattice-specific extension to the
original Trellis Graphics system.

140 R Graphics

The other way to modify lattice graphical parameter settings is on a per-
plot basis, by specifying a par.settings argument in the call to a plotting
function. The value for this argument should be a theme (a list of lists).
Such a setting will only be enforced for the relevant plot and will not affect
any subsequent plots. The following code demonstrates how to modify the
fontsize settings just for a single plot.

> xyplot(lat ~ long, data=quakes,

par.settings=list(fontsize=list(text=14, points=10)))

4.4 Arranging lattice plots

There are two types of arrangements to consider when dealing with lattice
plots: the arrangement of panels and strips within a single lattice plot; and
the arrangement of several complete lattice plots together on a single page.

In the first case (the arrangement of panels and strips within a single plot)
there are two useful arguments that can be specified in a call to a lattice
plotting function: the layout argument and the aspect argument.

The layout argument consists of up to three values. The first two indicate
the number of columns and rows of panels on each page and the third value
indicates the number of pages. It is not necessary to specify all three values,
as lattice provides sensible default values for any unspecified values. The
following code produces a variation on Figure 4.4 by explicitly specifying that
there should be a single column of three panels via the layout argument, and
that each panel must be “square” via the aspect argument. The index.cond

argument has also been used to specify that the panels should be ordered from
top to bottom (see Figure 4.7).

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".",

layout=c(1, 3), aspect=1, index.cond=list(3:1))

The aspect argument specifies the aspect ratio (height divided by width) for
the panels. The default value is "fill", which means that panels expand to
occupy as much space as possible. In the example above, the panels were all
forced to be square by specifying aspect=1. This argument will also accept
the special value "xy", which means that the aspect ratio is calculated to
satisfy the “banking to 45 degrees” rule proposed by Bill Cleveland[13].

Trellis Graphics: the Lattice Package 141

long

la
t

165 170 175 180 185

−35
−30
−25
−20
−15
−10

depthgroup

−35
−30
−25
−20
−15
−10

depthgroup

−35
−30
−25
−20
−15
−10

depthgroup

Figure 4.7
Controlling the layout of lattice panels. Lattice arranges panels in a sensible way by
default, but there are several ways to force the panels to be arranged in a particular
layout. This figure shows a custom arrangement of the panels in the plot from Figure
4.4.

142 R Graphics

As with the choice of colors and data symbols, a lot of work is done to select
sensible default values for the arrangement of panels, so in many cases nothing
special needs to be specified.

Another issue in the arrangement of a single lattice plot is the placement and
structure of the key or legend. This can be controlled using the auto.key or
key argument to plotting functions, which will accept complex specifications
of the contents, layout, and positioning of the key.

The problem of arranging multiple lattice plots on a page requires a different
approach. A trellis object must be created (but not plotted) for each lattice
plot, then the print() function is called, supplying arguments to specify the
position of each plot. The following code provides a simple demonstration
using the average yearly number of sunspots from 1749 to 1983, available as
the sunspots data set in the datasets package (see Figure 4.8). Two lattice
plots are produced and then positioned one above the other on a page. The
position argument is used to specify their location, (left, bottom, right,

top), as a proportion of the total page, and the more argument is used in the
first print() call to ensure that the second print() call draws on the same
page. The scales argument is also used to draw the x-axis at the top of the
top plot.

> spots <- by(sunspots, gl(235, 12, lab=1749:1983), mean)

> plot1 <- xyplot(spots ~ 1749:1983, xlab="", type="l",

main="Average Yearly Sunspots",

scales=list(x=list(alternating=2)))

> plot2 <- xyplot(spots ~ 1749:1983, xlab="Year", type="l")

> print(plot1, position=c(0, 0.2, 1, 1), more=TRUE)

> print(plot2, position=c(0, 0, 1, 0.33))

Section 5.8 describes additional options for controlling the arrangements of
panels within a lattice plot, and more flexible options for arranging multiple
lattice plots, using the concepts and facilities of the grid system.

4.5 Annotating lattice plots

In the original Trellis Graphics system, plots are completely self-contained.
There is no real concept of adding output to a plot once the plot has been
drawn. This constraint has been lifted in lattice, though the traditional ap-
proach is still supported.

Trellis Graphics: the Lattice Package 143

Average Yearly Sunspots

sp
ot

s

1750 1800 1850 1900 1950

0

50

100

150

Year

sp
ot

s

1750 1800 1850 1900 1950

0
100

Figure 4.8
Arranging multiple lattice plots. This shows two separate lattice plots arranged
together on a single page.

144 R Graphics

4.5.1 Panel functions and strip functions

The trellis object that is produced by a lattice plotting function is a com-
plete description of a plot. The usual way to add extra output to a plot (e.g.,
add text labels to data symbols), is to add extra information to the trellis

object. This is achieved by specifying a panel function via the panel argument
of lattice plotting functions.

The panel function is called for each panel in a lattice plot. All lattice plotting
functions have a default panel function, which is usually the name of the
function with a “panel.” prefix. For example, the default panel function for
the xyplot() function is panel.xyplot(). The default panel function draws
the default contents for a panel so it is typical to call this default as part of a
custom panel function.

The arguments available to the panel function differ depending on the plotting
function. The documentation for individual panel functions should be con-
sulted for full details, but some common arguments to expect are x and y (and
possibly z), giving locations at which to plot data symbols, and subscripts,
which provides the indices used to obtain the subset of the data for each panel.

In addition to the panel function, it is possible to specify a prepanel function
for controlling the scaling and size of panels and a strip function for controlling
what gets drawn in the strips of a lattice plot.

The following code provides a simple demonstration of the use of panel,
prepanel and strip functions. The plot is a lattice multi-panel scatterplot
with text labels added to the data points and a custom strip showing both
levels of the conditioning variable with the relevant level bold and the other
level grey (see Figure 4.9).

The panel function calls the default panel.xyplot() to draw data symbols,
then calls ltext() to draw the labels. Because lattice is based on grid, tra-
ditional graphics functions will not work in a panel function (though see Ap-
pendix B for a way around this constraint). However, there are several lattice
functions that correspond to traditional functions and can be used in much
the same way as the corresponding traditional functions. The names of the
lattice analogues are the traditional function names with an “l” prefix added.
In this case, the code draws letters as the labels, using the subscripts argu-
ment to select an appropriate subset. The labels are drawn slightly to the left
of and above the data symbols by subtracting 1 from the x values and adding
1 to the y values.

Trellis Graphics: the Lattice Package 145

Y

X

0 5 10 15 20

0

5

10

15

20

a
c

e
g

i
k

m
o

q
s

1 2
0

5

10

15

20

b
d

f
h

j
l

n
p

r
t

1 2

Figure 4.9
Annotating a lattice plot using panel and strip functions. The text labels have been
added beside the data symbols using a custom panel function and the bold and grey
numerals in the strips have been produced using a custom strip function.

146 R Graphics

> myPanel <- function(x, y, subscripts, ...) {

panel.xyplot(x, y, ...)

ltext(x - 1, y + 1, letters[subscripts], cex=0.5)

}

The strip function also uses ltext(). Locations within the strip are based on
a “normalized” coordinate system with the location (0, 0) at the bottom-left
corner and (1, 1) at the top-right corner. The font face and color for the
text is calculated using the which.panel argument. This supplies the current
level for each conditioning variable in the panel.

> myStrip <- function(which.panel, ...) {

font <- rep(1, 2)

font[which.panel] <- 2

col=rep("grey", 2)

col[which.panel] <- "black"

llines(c(0, 1, 1, 0, 0), c(0, 0, 1, 1, 0))

ltext(c(0.33, 0.66), rep(0.5, 2), 1:2,

font=font, col=col)

}

The prepanel function calculates the limits of the scales for each panel by
extending the range of data by 1 unit (this allows room for the text labels
that are added in the panel function).

> myPrePanel <- function(x, y, ...) {

list(xlim=c(min(x) - 1, max(x) + 1),

ylim=c(min(y) - 1, max(y) + 1))

}

We now generate some data to plot and create the plot using xyplot(), with
the special panel functions provided as arguments. The final result is shown
in Figure 4.9.

> X <- 1:20

> Y <- 1:20

> G <- factor(rep(1:2, 10))

> xyplot(X ~ Y | G, aspect=1, layout=c(1, 2),

panel=myPanel, strip=myStrip,

prepanel=myPrePanel)

A great deal more can be done with panel functions using grid concepts and
functions. See Sections 5.8 and 6.7 for some examples.

Trellis Graphics: the Lattice Package 147

4.5.2 Adding output to a lattice plot

Unlike in the original Trellis implementation, it is also possible to add output
to a complete lattice plot (i.e., without using a panel function). The func-
tion trellis.focus() can be used to return to a particular panel or strip
of the current lattice plot in order to add further output using, for example,
llines() or lpoints(). The function trellis.panelArgs() may be useful
for retrieving the arguments (including the data) used to originally draw the
panel. Also, the trellis.identify() function provides basic mouse inter-
action for labelling data points within a panel. Again, Sections 5.8 and 6.7
show how grid provides more flexibility for navigating to different parts of a
lattice plot and for adding further output.

4.6 Creating new lattice plots

The lattice plotting functions have many arguments and are very flexible in
the variety of output that they can produce. However, lattice is not designed
to be the best environment for developing new types of graphical display. For
example, there is no mechanism for adding new graphical parameters to the
list of values that control the appearance of plots (see Section 4.3).

Nevertheless, a lot can be done by defining a panel function that does not just
add extra output to the default output, but replaces the default output with
some sort of completely different display. For example, the lattice dotplot()

function is really only a call to the bwplot() function with a different panel
function supplied.

Users wanting to develop a new lattice plotting function along these lines are
advised to read Chapter 5 to gain an understanding of the grid system that
is used in the production of lattice output.

148 R Graphics

Chapter summary

The lattice package implements and extends the Trellis graphics sys-
tem for producing complete statistical plots. This system provides
most standard plot types and a number of modern plot types with
several important extensions. For a start, the layout and appearance
of the plots is designed to maximize readability and comprehension of
the information represented in the plot. Also, the system provides a
feature called multipanel conditioning, which produces multiple panels
of plots from a single data set, where each panel contains a different
subset of the data. The lattice functions provide an extensive set of
arguments for customizing the detailed appearance of a plot and there
are functions that allow the user to add further output to a plot.

