
A Package for “safe mode” R Sessions

Paul Murrell

Abstract

This document describes the R package safemode, which provides a
function to monitor the activity that takes place on the console in an R
session and issue warnings when expressions are evaluated in an inappro-
priate order.

The document describes both the use of the command and also pro-
vides a literate version of the function itself.

This package has as its basis the R code from Ross Ihaka’s “A Function
for R Session Scripting.”

1 The safemode() Function

When safemode() is invoked, a sub-interpreter is run to process the user’s
commands in “safe mode.” When this sub-interpreter is running, the the R
command prompt is changed to safe> and the continuation prompt to safe+.
The sub-interpreter is exited by typing the command q().

> safemode()

safe> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

safe> max(rnorm(100))

[1] 2.592984

safe> q()

While in “safe mode,” expressions are checked to make sure that the no symbols
are “stale.” A symbol is stale if it was assigned a value less recently than one
or more of its dependents. For example, in the following, the symbol y becomes
dependent on x, so if x is modified, y becomes stale.

> safemode()

safe> x <- 1

safe> y <- x + 1

safe> x <- 2

safe> y

[1] 2

Warning message:

In withCallingHandlers(warning(staleWarnMsg(tracked[staleDeps])), ... :

Symbol ’y’ is stale!

1

This is essentially all there is to know about using safemode(), other than
to note that a safemode() command cannot be run from a safemode() sub-
interpreter.

2 Implementation of the safemode() Function

The code for the safemode function is implemented as a closure. The support
functions it uses are encapsulated in a private environment, visible only to that
function. The mechanism used is as follows.

2a 〈safemode.R 2a〉≡
〈comments-and-copyright 16〉
〈initialisation 2b〉
safemode <- local({

〈warning state variables 13a〉
〈support functions 10b〉
〈read-eval-print loop 4〉
〈main function 2c〉

})

This code is written to file safemode.R.

2.1 Initialisation

The safemode package records a database of time stamps for symbols and a
database of dependencies for symbols.

2b 〈initialisation 2b〉≡ (2a)

timeDB <- new.env()

depDB <- new.env()

2.2 The main function

The main function, safemode(), takes two arguments: whether to print out
debugging information (FALSE by default) and a file to read input from (NULL
by default, which means take input from the command line). This function calls
the main workhorse function that provides a read-eval-print-loop.

2c 〈main function 2c〉≡ (2a)

function(debug=FALSE, infile=NULL) {

〈call the read-eval-print-loop 2d〉
〈shut down 3〉

}

The first argument passed to the repl() function is the environment that
the safemode() function was called from. This will typically be the R global
enviroment. The second argument is a debugging flag. The third argument is a
file to read R code from (or NULL).

2d 〈call the read-eval-print-loop 2d〉≡ (2c)

repl(sys.parent(), debug, infile)

Uses repl 4.

2

On exit, the main function erases the time stamp and dependency databases
and returns an invisible (NULL) value.

3 〈shut down 3〉≡ (2c)

rm(list=ls(timeDB), envir=timeDB)

rm(list=ls(depDB), envir=depDB)

invisible()

3

2.3 The read-eval-print loop

The repl() function takes over the role of the topmost level of functionality in
R. It reads the lines of text that the user types, parses them and evaluates the
results. It also has to handle exceptional conditions such as errors, warnings
and user interrupts.

The important strategy employed in this function is used to accumulate the
lines the user types until a complete expression has been read. Reading the
lines is easy; it is done with readline(). Checking for a complete expression is
trickier because parsing an incomplete expression trips an error. These must be
caught using the tryCatch() mechanism and this type of error discriminated
from other syntax errors.

There is also the problem of user interrupts. These can occur at any point
in the read-eval-print process. To protect against such interrupts the whole
read-eval-print process is embedded in a loop whose sole task is to catch and
process interrupts.

The general structure of the repl() function is shown by the following func-
tion. Initial values are defined for the command prompt and the current expres-
sion, we determine whether we are running in batch mode (or interactively),
and then the interrupt catching loop is run.

After exiting “safe mode”, if we are in bacth mode, there is some shut down
to perform.

4 〈read-eval-print loop 4〉≡ (2a)

repl <- function(env, debug, infile) {

prompt <- "safe> "

cmd <- character()

if (is.null(infile)) {

batch <- FALSE

} else {

batch <- TRUE

〈init batch mode 15a〉
}

repeat {

〈interrupt catching 5a〉
}

if (batch) {

〈batch shut down 15f〉
}

}

Defines:
cmd, used in chunks 5–7 and 15.
prompt, used in chunks 5 and 6b.
repl, used in chunk 2d.

4

The code inside the repeat loop, in the function above, runs the repl and
catches any interrupts that occur with a tryCatch() statement. The statement
catches just interrupts and gives a fresh prompt.

5a 〈interrupt catching 5a〉≡ (4)

ans <- tryCatch(

repeat {

〈parse and evaluate expressions 5b〉
}, interrupt = function(x) x)

if (inherits(ans, "interrupt")) {

cat("\nInterrupt!\n")

prompt <- "script> "

cmd <- character()

} else {

stop("Interrupt catcher caught non-interrupt")

}

Uses cmd 4 and prompt 4.

Expressions are read and processed in a loop. A pass through the loop reads
a single line of input with readline() and adds it to the cmd buffer (unless
we are in batch mode). Each line of input is also added to the command line
history with the timestamp() function.

We handle (whole-line) comments as a special case, immediately discarding
them (or echoing them in batch mode).

Each time a line is added, an attempt is made to parse the contents of
cmd and obtain a valid expression for evaluation. The parse is wrapped in a
tryCatch() to trap any parsing errors that occur. The result of this attempted
parse determines what happens next.

5b 〈parse and evaluate expressions 5b〉≡ (5a)

repeat {

if (batch) {

〈batch read 15b〉
} else {

cmd <- c(cmd, readline(prompt))

timestamp(cmd, prefix="", suffix="", quiet=TRUE)

}

Handle EOF in batch mode

if (!length(cmd)) {

return()

}

if (grepl("^#", cmd)) {

if (batch) {

〈batch comment 15c〉
}

cmd <- character()

break

}

ans <- tryCatch(parse(text = cmd), error = function(e) e)

〈handle the results of the parse 6a〉
}

Uses cmd 4 and prompt 4.

5

The result returned by the tryCatch() is either a valid expression that can
be evaluated or an error condition. We branch depending on the type of result
obtained.

6a 〈handle the results of the parse 6a〉≡ (5b)

〈handle the expression 6b〉
There are two possible types of error to deal with. Errors can be caused by

an incomplete parse or by some other type of syntax error. If the expression is
incomplete, we change the prompt to indicate continuation and return to the
top of the loop to fetch another line of input. If there was some other type of
error, we deal with the error then we reset the command prompt and the state
of the input buffer.

If there was no error, we have a valid expression. We then choose between a
number of special cases (such as quitting “safe mode”) and the general case of
evaluating the expression typed by the user. When that is complete, we reset
the command prompt and the state of the command buffer before continuing
on to read the next expression.

6b 〈handle the expression 6b〉≡ (6a)

if (inherits(ans, "error")) {

if (incompleteParse((ans))) {

prompt <- "safe+ "

} else {

handleParseError(ans)

prompt <- "safe> "

cmd <- character()

}

} else {

〈handle special expression cases 7〉
〈handle the general expression case 8〉
prompt <- "safe> "

cmd <- character()

}

Uses cmd 4, handleParseError 12a, incompleteParse 11c, and prompt 4.

6

If the expression was empty (the user idly typed the enter key) we simply go
back to fetch another expression. If the user typed q() then we exit from the
repl and return to the top-level function. If for some reason the user tried to
invoke safemode() we issue an error. (This probably needs further thought.)

7 〈handle special expression cases 7〉≡ (6b)

special <- TRUE

if (length(ans) == 0) {

if (batch) {

〈batch blank line 15d〉
}

cmd <- character()

break

} else if (isQuitCall(ans)) {

return()

} else if (grepl("^safemode\\(",

deparse(ans[[1]], nlines = 1))) {

cat("Error: You can’t call safemode() while in \"safe mode\"\n")

break

} else {

special <- FALSE

}

Uses cmd 4 and isQuitCall 15g.

7

If none of these special cases hold, we are in the general situation. We
evaluate the expression that the user typed and print the answer. Note that it
is possible for parsing to produce several calls in the expression returned from
the parse. (Such calls are separated by semicolons.) To handle the general case,
we loop over the elements of the expression evaluating and printing each one in
turn.

After evaluation, a check is made of whether any new warnings have been is-
sued. If there were, the warnings are transferred to the global variable last.warning.
There, they can be accessed with calls to the function warnings(). Finally, a
call is made to displayWarnings() to display the warning messages in the
correct way.

8 〈handle the general expression case 8〉≡ (6b)

if (!special) {

renewwarnings <<- TRUE

newwarnings <<- FALSE

if (batch) {

〈batch expression 15e〉
}

for(e in ans) {

〈evaluate expression in safe mode 9a〉
}

if (newwarnings) {

warnings = warningCalls

names(warnings) = warningMessages

assign("last.warning",

warnings[1:nwarnings],

"package:base")

displayWarnings(nwarnings)

}

}

Uses displayWarnings 14a, newwarnings 13a, nwarnings 13a, renewwarnings 13a,
warningCalls 13a, and warningMessages 13a.

8

2.4 Evaluating expressions in “safe mode”

For each expression, e, we determine which symbols need checking, check for
any stale symbols, then evaluate the expression.

Before we evaluate the expression, we deparse it so we have a text version
of the code.

Evaluation is carried out inside a tryCatchWithWarnings() call. This means
that any warnings that occur are recorded (in the variables warningCalls and
warningMessages). Evaluation also occurs in the parent environment of the
safemode() call, env (which will typically be the global environment).

If there were no errors, we record new time stamps and dependencies for any
symbols assigned in the expression.

9a 〈evaluate expression in safe mode 9a〉≡ (8)

〈determine tracked symbols in expression 9b〉
〈check for stale symbols in expression 9c〉
code <- deparse(e)

e <- tryCatchWithWarnings(withVisible(eval(e,

envir = env)))

if (inherits(e, "error")) {

handleError(e)

} else {

handleValue(e)

〈record time stamps and dependencies 10a〉
}

Uses handleError 12b, handleValue 12c, and tryCatchWithWarnings 13b.

To determine which symbols need to be checked, we use findGlobals()

from the codetools package. This involves setting up a dummy function (with
no arguments) because findGlobals() only works on closures. We also can
only check symbols for which we already have a time stamp.

9b 〈determine tracked symbols in expression 9b〉≡ (9a)

dummy <- function() {}

body(dummy) <- e

vars <- findGlobals(dummy)

tracked <- vars[vars %in% ls(timeDB)]

〈debug globals 14b〉
If there are any symbols to check, and any of those symbols are stale, we

issue a warning.

9c 〈check for stale symbols in expression 9c〉≡ (9a)

if (length(tracked) > 0) {

staleDeps <- sapply(tracked, stale)

if (any(staleDeps)) {

withCallingHandlers(warning(staleWarnMsg(tracked[staleDeps])),

warning = warningHandler)

}

}

9

To determine whether the expression involved an assignment, we use getInputs()
from the CodeDepends package. If that function determines that there are
“output” or “update” symobls in the expression, then we have an assignment,
so we record a new time stamp (and update the dependencies) for the sym-
bol that was assigned a new value. The get nanotime() function from the
microbenchmark package is used to get more accurate timings.

10a 〈record time stamps and dependencies 10a〉≡ (9a)

test for whether expression was an assignment

sc <- readScript("", txt=code)

info <- scriptInfo(sc)

inputs <- info[[1]]@inputs

outputs <- info[[1]]@outputs

updates <- info[[1]]@updates

〈debug inputs and outputs 14c〉
assignment <- FALSE

symbol <- character()

if (length(outputs) > 0) {

symbol <- c(symbol, outputs)

assignment <- TRUE

}

if (length(updates) > 0) {

symbol <- c(symbol, updates)

assignment <- TRUE

}

if (assignment) {

for (i in symbol) {

assign(i, get_nanotime(), envir=timeDB)

assign(symbol, tracked, envir=depDB)

}

〈debug time and dependency databases 14d〉
}

2.5 Stale symbol support functions

The functions age() and deps() provide convenient access to the time stamp
and dependencies databases.

10b 〈support functions 10b〉≡ (2a) 11a .

age <- function(x) {

get(x, timeDB, inherits=FALSE)

}

deps <- function(x) {

get(x, depDB, inherits=FALSE)

}

10

The stale() function finds all dependencies for a symbol and checks that
the symbol is older than all of its dependents, and that all of its dependents are
not stale.

11a 〈support functions 10b〉+≡ (2a) / 10b 11b .

stale <- function(x) {

dependents <- deps(x)

length(dependents) &&

(any(age(x) < sapply(dependents, age)) ||

any(sapply(dependents, stale)))

}

The staleWarnMsg() function generates text for a warning message.

11b 〈support functions 10b〉+≡ (2a) / 11a 11c .

staleWarnMsg <- function(deps) {

N <- length(deps)

if (N == 1) {

paste0("Symbol ’", deps, "’ is stale!")

} else if (N == 2) {

paste0("Symbols ’",

paste(deps, collapse="’ and ’"),

"’ are stale!")

} else {

paste0("Symbols ’",

paste(paste(deps[-N], collapse="’, ’"),

deps[N], sep="’, and ’"),

"’ are stale!")

}

}

2.6 Parsing support functions

An incomplete parse is detected when the result of the parse is an error that
contains the string "unexpected end of input".

11c 〈support functions 10b〉+≡ (2a) / 11b 12a .

incompleteParse <- function(e) {

(inherits(e, "error") &&

grepl("unexpected end of input", e$message))

}

Defines:
incompleteParse, used in chunk 6b.

11

The most complicated support function is the one that handles the printing
of error messages from parsing. Because the parse is taking place using a char-
acter vector as input, the error messages produced look rather different from
those produced when the parser gets its input from the console. This function
transforms the error messages into that form.

12a 〈support functions 10b〉+≡ (2a) / 11c 12b .

handleParseError <- function(e) {

msg = strsplit(conditionMessage(e), "\n")[[1]]

errortxt = msg[1]

msg = gsub("[0-9]+: ", "", msg[-c(1, length(msg))])

msg = msg[length(msg) - 1:0]

if (length(msg) == 1)

msg = paste(" in: \"", msg, "\"\n", sep = "")

else

msg = paste(" in:\n\"",

paste(msg, collapse = "\n"),

"\"\n", sep = "")

cat("Error",

gsub("\n.*", "",

gsub("<text>:[0-9]+:[0-9]+", "",

errortxt)),

msg, sep = "")

}

Defines:
handleParseError, used in chunk 6b.

2.7 Input-output support

The error messages produced during evaluation are easy to process. We simply
cat them to the output.

12b 〈support functions 10b〉+≡ (2a) / 12a 12c .

handleError <- function(e) {

cat("Error in", deparse(conditionCall(e)),

":", conditionMessage(e), "\n")

}

Defines:
handleError, used in chunk 9a.

Printing the values that result from evaluating expressions has one wrinkle
to it. We have to check the visibility of the result and only print “visible”
results.

12c 〈support functions 10b〉+≡ (2a) / 12b 13b .

handleValue <- function(e) {

if (e$visible) {

print(e$value)

}

}

Defines:
handleValue, used in chunk 9a.

12

2.8 Warning support

A number of top-level closure variables are used to manage the warning messages
produced by evaluation of expressions. The following variables manage the
accumulation of error messages.

warningCalls holds the calls that produced warnings
warningMessages holds the warning messages
nwarnings the number or warnings accumulated
renewwarnings purge the warning list on next warning?
newwarnings has the evaluation produced new warnings

The variables are initialised as follows.

13a 〈warning state variables 13a〉≡ (2a)

warningCalls <- vector("list", 50)

warningMessages <- character(50)

nwarnings <- 0

renewwarnings <- TRUE

newwarnings <- FALSE

Defines:
newwarnings, used in chunks 8 and 13b.
nwarnings, used in chunks 8, 13b, and 14a.
renewwarnings, used in chunks 8 and 13b.
warningCalls, used in chunks 8 and 13b.
warningMessages, used in chunks 8 and 13b.

Warnings are trapped by the following two functions. The effect is to simply
add warnings to the accumulated list of warnings and then call the built-in
muffleWarning() restart.

13b 〈support functions 10b〉+≡ (2a) / 12c 14a .

warningHandler <- function(w) {

newwarnings <<- TRUE

if (renewwarnings) {

renewwarnings <<- FALSE

nwarnings <<- 0

}

n <- nwarnings + 1

if (n <= 50) {

warningCalls[[n]] <<- conditionCall(w)

warningMessages[n] <<- conditionMessage(w)

nwarnings <<- n

}

invokeRestart("muffleWarning")

}

tryCatchWithWarnings <- function(expr) {

withCallingHandlers(tryCatch(expr,

error = function(e) e),

warning = warningHandler)

}

Defines:
tryCatchWithWarnings, used in chunk 9a.

Uses newwarnings 13a, nwarnings 13a, renewwarnings 13a, warningCalls 13a,
and warningMessages 13a.

13

The displayWarnings() function is used to display warnings at the end of
an evaluation. If there are 10 or fewer messages they are displayed. If there
are more than 10 messages, the user is told to inspect them with warnings().
Only the first 50 messages are stored.

14a 〈support functions 10b〉+≡ (2a) / 13b 15g .

displayWarnings <- function(n) {

if (n <= 10) {

print(warnings())

} else if (n < 50) {

cat("There were",

nwarnings,

"warnings (use warnings() to see them)\n")

} else {

cat("There were 50 or more warnings",

"(use warnings() to see the first 50)\n")

}

}

Defines:
displayWarnings, used in chunk 8.

Uses nwarnings 13a.

2.9 Debugging support

If the debug flag is set to TRUE a variety of debugging information is spewed out
for each expression.

14b 〈debug globals 14b〉≡ (9b)

if (debug) {

cat(paste("globals: ", paste(vars, collapse=", "), "\n"))

cat(paste("tracked: ", paste(tracked, collapse=", "), "\n"))

}

14c 〈debug inputs and outputs 14c〉≡ (10a)

if (debug) {

cat(paste("inputs: ", paste(inputs, collapse=", "), "\n"))

cat(paste("outputs: ", paste(outputs, collapse=", "), "\n"))

cat(paste("updates: ", paste(updates, collapse=", "), "\n"))

}

14d 〈debug time and dependency databases 14d〉≡ (10a)

if (debug) {

cat("Time stamp database:\n")

print(sapply(ls(timeDB), get, envir=timeDB))

cat("Dependencies database:\n")

print(sapply(ls(depDB), get, envir=depDB))

}

14

2.10 Batch mode

If the infile argument to safemode() is non-NULL, we open a file to read from
(rather than reading from the command line).

15a 〈init batch mode 15a〉≡ (4)

con <- file(infile, "r")

In batch mode, we read from the connection rather than from the command
line.

15b 〈batch read 15b〉≡ (5b)

cmd <- c(cmd, readLines(con, n=1))

Uses cmd 4.

In batch mode, comments are echoed to stdout.

15c 〈batch comment 15c〉≡ (5b)

cat(paste0("safe> ", cmd), "\n")

Uses cmd 4.

In batch mode, blank lines are echoed to stdout.

15d 〈batch blank line 15d〉≡ (7)

cat("\n")

In batch mode, we echo the expression text to stdout.

15e 〈batch expression 15e〉≡ (8)

cat(paste0(c("safe> ",

rep("safe+ ",

max(0, length(cmd) - 1))),

cmd), sep="\n")

Uses cmd 4.

In batch mode, we must close the input connection.

15f 〈batch shut down 15f〉≡ (4)

close(con)

2.11 Miscellany

The following function does a quick-and-dirty check of whether a user typed q()

at the command prompt. It is rather easy to defeat this. For example, typing
(q()) will cause an immediate exit from R.

15g 〈support functions 10b〉+≡ (2a) / 14a

isQuitCall <- function(e) {

(!inherits(e, "error") &&

length(e) == 1 &&

deparse(e[[1]], nlines = 1) == "q()")

}

Defines:
isQuitCall, used in chunk 7.

15

2.12 Comments and copyright

16 〈comments-and-copyright 16〉≡ (2a)

Original code and documentation copyright Ross Ihaka, 2011

###

Modifications copyright Paul Murrell, 2015

###

Distributed under the terms of GPL3, but may also be

redistributed under any later version of the GPL.

###

DO NOT edit this file directly.

This R code was generated from a literate document;

all changes should be made to that literate document.

###

Safe mode for R

###

Synopsis:

###

This function provides an environment that provides some

protection from stupidity arising from laziness

###

safemode()

...

q()

###

Exit from safe mode using using q()

###

This is best regarded as an exercise in getting familar

with R’s condition system and a demonstration of how

to write an interpreted REPL and an exploration of

the ’codetools’ and ’CodeDepends’ packages.

16

Chunk Index

〈batch blank line 15d〉
〈batch comment 15c〉
〈batch expression 15e〉
〈batch read 15b〉
〈batch shut down 15f〉
〈call the read-eval-print-loop 2d〉
〈check for stale symbols in expression 9c〉
〈comments-and-copyright 16〉
〈debug globals 14b〉
〈debug inputs and outputs 14c〉
〈debug time and dependency databases 14d〉
〈determine tracked symbols in expression 9b〉
〈evaluate expression in safe mode 9a〉
〈handle special expression cases 7〉
〈handle the expression 6b〉
〈handle the general expression case 8〉
〈handle the results of the parse 6a〉
〈init batch mode 15a〉
〈initialisation 2b〉
〈interrupt catching 5a〉
〈main function 2c〉
〈parse and evaluate expressions 5b〉
〈read-eval-print loop 4〉
〈record time stamps and dependencies 10a〉
〈safemode.R 2a〉
〈shut down 3〉
〈support functions 10b〉
〈warning state variables 13a〉

17

Identifier Index

cmd: 4, 5a, 5b, 6b, 7, 15b, 15c, 15e
displayWarnings: 8, 14a
handleError: 9a, 12b
handleParseError: 6b, 12a
handleValue: 9a, 12c
incompleteParse: 6b, 11c
isQuitCall: 7, 15g
newwarnings: 8, 13a, 13b
nwarnings: 8, 13a, 13b, 14a
prompt: 4, 5a, 5b, 6b
renewwarnings: 8, 13a, 13b
repl: 2d, 4
tryCatchWithWarnings: 9a, 13b
warningCalls: 8, 13a, 13b
warningMessages: 8, 13a, 13b

18

