Gore: What is it Good For?

Paul Murrell

The University of Auckland

July 2011

Overview

• Several R graphics packages provide convenient high-level functions for producing statistical plots.

Overview

• Several graphics packages also provide access to much lower-level graphics facilities (gory graphics details).

- What's the point of these gory graphical details?
 - Complex paths and fill-rules
 - Texture mapping
 - Colour spaces
 - Character encodings
 - Line endings

Complex paths

• Sophisticated graphics systems allow for not just general polygonal shapes, but also for complex paths whose edges may self-intersect and/or that may consist of disjoint polygons.

• When a polygon describes a complex shape, either with self-intersecting edges, or disjoint paths, there are two standard rules for determining which regions are "inside" the polygon:

• R provides support for drawing these sorts of complex paths and provides control over the fill-rule.

• Complex paths can be useful for drawing plots.

• The plot consists of data symbols ...

points(x, y, ...)

• ... a map outline ...

library(maps)
map("nz")

• ... and contour lines.

• The map is a complex path that describes the border of New Zealand.

• We can add points to add a bounding box to this path ...

• Filling with an "evenodd" rule now fills everything outside New Zealand.

• The contours are drawn first ...

• ... then the inverted New Zealand region is filled to obscure the contours outside New Zealand ...

• ... and finally the points are drawn over the top.

- When drawing a 3D image, surfaces can be "coloured" using an image.
- library(rgl)

"worldsmall.png"

persp3d(x, y, z)

• Points on the image are mapped to vertices on the 3D surface.

• Points on the image are mapped to vertices on the 3D surface.

• Texture mapping can be useful for drawing plots.

• The plot consists of a filled contour ...

filled.contour(x, y, z)

• ... a map ...

library(maps)
map("world")

• ... and a 3D surface.

library(rgl)
persp3d(x, y, z)

• The map and heatmap can be combined in a PNG image.

```
png("world.png")
filled.contour(x, y, z)
map("world", add=TRUE)
dev.off()
```


• The image is then used as a texture for the surface.

• The colour space that most people are familiar with is RGB (Red Green Blue).

rgb(.8, .6, .4)

[1] "#CC9966"

- But this is not a very convenient colour space to work in.
- For example, what colour is produced by the code above?

Colour Spaces

grid.rect(gp=gpar(fill=rgb(.8, .6, .4)))

• A much nicer colour space to work in is HCL (Hue Chroma Lightness).

hcl(46, 55, 67)

[1] "#CC9967"

 It is actually still very difficult to intuit the hue (0 yields red, 120 yields green 240 yields blue), but I can at least immediately tell that this is a not very colourful and moderately light colour.

Colour Spaces

• What I also gain is the ability to generate colour **sets** in a rational manner.

hcl(46, 55, seq(10, 90, 10)) [1] "#3B0F00" "#522600" "#6A3D00" "#835401" [5] "#9E6D33" "#B98752" "#D5A170" "#F1BC8C" [9] "#FFD8A9"

Color Spaces

• Color spaces can be useful in plots.

Зл

Color Spaces

• The plot consists of polygons describing the states of Australia ...

• ... and colours representing the population density of each state.

hcl(46, 55, 4*popDens)

• An additional detail is that the text labels in each state are calculated programmatically from the state colours.

ifelse(4*popDens < 80, "white", "black")</pre>

Color Spaces

• A font is a collection of named glyphs.

/a	\rightarrow	а
/b	\rightarrow	b
/c	\rightarrow	с
/d	\rightarrow	d
/zero	\rightarrow	0
/exclam	\rightarrow	!
/ampersand	\rightarrow	&
/plusminus	\rightarrow	\pm

• An encoding pairs a number code with each named glyph.

141	\rightarrow	/a	\rightarrow	а
142	\rightarrow	/b	\rightarrow	b
143	\rightarrow	/c	\rightarrow	с
144	\rightarrow	/d	\rightarrow	d
060	\rightarrow	/zero	\rightarrow	0
041	\rightarrow	/exclam	\rightarrow	!
046	\rightarrow	/ampersand	\rightarrow	&
261	\rightarrow	/plusminus	\rightarrow	\pm

- Keystrokes are recorded as number codes.
- Special escape sequences can be used to enter number codes that have no corresponding key.

A	\rightarrow	141	\rightarrow	/a	\rightarrow	а
В	\rightarrow	142	\rightarrow	/b	\rightarrow	b
С	\rightarrow	143	\rightarrow	/c	\rightarrow	с
D	\rightarrow	144	\rightarrow	/d	\rightarrow	d
0	\rightarrow	060	\rightarrow	/zero	\rightarrow	0
!	\rightarrow	041	\rightarrow	/exclam	\rightarrow	!
&	\rightarrow	046	\rightarrow	/ampersand	\rightarrow	&
\261	\rightarrow	261	\rightarrow	/plusminus	\rightarrow	\pm

• Character encodings can be useful for drawing plots.

• The plot consists of a line ...

curve(20*(3*log(1-x) + log(x)))

• ... and a special script-I character.

grid.text("\200", gp=gpar(fontfamily="special"))

• The Computer Modern Math Italic font.

C 94 ; WX 1000 ; N slurbelow ; B 56 133 943 371 ; C 95 ; WX 1000 ; N slurabove ; B 56 130 943 381 ; C 96 ; WX 416.667 ; N lscript ; B 11 -12 398 705 ; C 97 ; WX 528.588 ; N a ; B 40 -11 498 442 ; C 98 ; WX 429.165 ; N b ; B 47 -11 415 694 ;

• A special encoding file.

```
%% 0140
/quoteleft /a /b /c /d /e /f /g
/h /i /j /k /l /m /n /o
/p /q /r /s /t /u /v /w
/x /y /z /braceleft /bar
/braceright /asciitilde /.notdef
%% 0200
/lscript /.notdef /.notdef /.notdef
...
```

• Telling R about the font and the encoding.

```
lscriptFont <-
   Type1Font(family="special",
        metrics=c("./cmmi10.afm",
        "Helvetica-Bold.afm",
        "Helvetica-Oblique.afm",
        "Helvetica-BoldOblique.afm"),
        encoding="./special")
pdfFonts(special=lscriptFont)
NA</pre>
```

curve(20*(3*log(1-x) + log(x)), axes=FALSE)
mtext("\200", side=2, family="special")

Line Endings

• The default line ending in R graphics is "round".

segments(.5, 0, .5, runif(1), lwd=10)

Line Endings

• Even line endings can be useful for drawing plots.

segments(.5, 0, .5, runif(1), lwd=10, lend="butt")

- As well as producing convenient high-level interfaces for statistical graphics, it is important to retain access to the low-level gory details.
- Implications for software design: the **user** needs access to the gory details.
- Implications for teaching: should we be teaching students the gory details?

Acknowledgements

- The contour map within a map came from discussions with G. Arun Kumar.
- The New Zealand boundaries came from the maps package.
- The earthquake data came from the GeoNet Project http://www.geonet.org.nz/
- The 3D texture mapping example came from discussion with Claudia Tebaldi.
- The 3D images were produced with the **rgl** package.
- The script-I example came from discussion with Ivo Welch.
- The Australian map boundaries came from the **oz** package.
- Australian state population and area information was obtained from Wikipedia.
- The line endings example was based on an R-help post by Frank Harrell.