
HTML Kaleidoscope – how it works 
 

The kaleidoscope is based on the Price Kaleidoscope produced by the German Statistical Office, 

and Statistics New Zealand expressed interest in a New Zealand version. The data used in our 

kaleidoscope comes from Stats NZ. 

 

A number of concepts were used in order to get the HTML kaleidoscope functional. An HTML 

form element was used in conjunction with JavaScript, along with AJAX (Asynchronous 

JavaScript And XML). Zooming is achieved through AJAX, and tooltips are achieved with 

JavaScript functions that are called when onmouseover, onmousemove and onmouseout events 

occur. To get the HTML elements interacting with the SVG elements, I have used inline SVG 

which is valid using the HTML5 mark-up language. 

 

There are 2 JavaScript files included in the document: vars.js and functions.js. The first contains 

all the global variables needed and is created by R by substituting information into a template 

file. The functions file simply contains all the functions that make the page interactive - R does 

not insert any information into this file. 

 

Tooltips 

 

There are 2 groups of elements in the kaleidoscope that we want to trigger the display of 

tooltips when we interact with them via the mouse. The first group is consists of the labels on 

the left and right sides, and the second group consists of the polygons of the kaleidoscope. 

 

When we mouse over one of the labels for the very first time, a check is done to see whether 

the “label tooltip” elements exist. If not, we create these and append them to the inline SVG 

document via JavaScript, using the HTML DOM (Document Object Model), which describes the 

document as a tree-type structure with parent nodes and children nodes. The label tooltip is 

simply a tooltip that displays the text “Click to zoom”, alerting the viewer that a zooming 

functionality exists and can be explored by clicking on the labels. Zooming is only available from 

the top level. Hovering over a label also displays a thick black border around the polygon of the 

corresponding group, and brings it to the front so that parts of the border are not hidden behind 

subsequently defined polygon elements. The effect of bringing an element to the front is 

achieved by cloning nodes, setting their fill to none and then appending them at the end of the 

inline SVG document. 

 

A similar process occurs when we mouseover the polygons. Hovering over a polygon gives it a 

thick black border and brings it to the front. If it is the first time the tooltip function has been 

called, the tooltip elements are created and appended to the inline SVG document. Then, by 

making use of the argument(s) provided by the event to the called function, we can determine 

what category the current polygon represents. We can use this information to extract the 

category name, weight and price change from our global variables in vars.js. This tooltip is then 

updated with this information. 

 

An onmousemove attribute calls a function that moves the tooltips as we move the mouse over 

the polygon. Tooltips are by default displayed on the right side of the cursor. The function which 

moves tooltips detects when the end of the tooltip reaches or extends beyond the edge of the 

inline SVG document, and repositions the tooltip onto the left side of the cursor when this 

happens to ensure that tooltips are never cut off. 

 



When the mouse leaves the tooltip-producing elements, an onmouseout event calls a function 

that removes the cloned polygon and sets the visibility of the tooltip to “hidden”. 

 

Changing which quarters are compared 

 

An HTML form was used to obtain this functionality. The form consists of two drop-down lists 

(select elements with option elements as children) and an ‘Update button’ which is an input 

element of type ‘button’. Note that the option elements are not hand-coded into the document; 

R automates this part for us by inserting information into an HTML template file. 

 

When the update button is pressed, the updateValues() function is called. This function ‘reads’ 

the HTML form and can see which options are selected. Then it extracts the price information for 

the selected quarters from the global variables in vars.js. A loop is used to run through the 

arrays, calculating a percentage change in price and determining which fill colour each quarter 

should have based on the price changes. These new price changes are then globally assigned so 

that they overwrite the previous information contained in that variable (so that tooltips can 

access this information later). Then we grab all the polygon elements using the standard 

getElementsByTagName() JavaScript function. This gives us an array of nodes (polygon objects) 

which we can loop through. We read the ID attributes because we only want to change the fill of 

polygons that have a certain substring in their ID. Each time we have a match we change the fill 

colour (this is made easier by the fact that the order of the polygons is the same as the order of 

information in our JavaScript variables). 

 

The updateValues() function also recalculates price changes for the groups and updates these 

values (they appear underneath the labels on the sides). The heading above the legend is also 

updated. 

 

There are two additional features included in the HTML form: a ‘back one’ link (<<) and a 

‘ahead one’ link (>>). The back one link simply shifts both the comparison and baseline 

quarters back by one quarter if possible, then calls updateValues() so that we don’t need to 

click the update button. Similarly, the ahead one link shifts the comparison and baseline 

quarters ahead by one quarter if possible and then calls updateValues(). 

 

Zooming 

 

The way through which the process of updating price changes and fill colours occurs was the 

main reason for using AJAX for zooming. We can only keep the updated global variables if we 

remain on the same page. By using AJAX we can change the page content without leaving the 

page. AJAX allows us to send requests to the server and load the response within a JavaScript 

function. 

 

When we click on one of the side labels of the top kaleidoscope our ‘zoom’ function is called. 

This function sends a request off to a file on the server called returnSvg.php. PHP (Hypertext 

Preprocessor) is a server-side language: PHP code is executed before the page is sent to the 

client who requested it. The returnSvg.php file sends back SVG code if we are zooming in. Once 

the response is loaded, we then replace the SVG code with the SVG code of the sub-

kaleidoscope. A second request to the server loads a new vars.js file which redefines global 

variables, and executes that code. Because the retrieved SVG contains the default price 

changes and fill colours, updateValues() is called once the SVG content has been loaded. 

 

In each sub-kaleidoscope a ‘Back’ link appears at the bottom. This is necessary because when 

we zoomed in we never left the page we started at: we simply changed the content. Using the 



browser’s back button does not produce the desired effect! Clicking on the back link calls the 

zoom function, but this time we don’t need to load anything from the server. This is because the 

function that is called when we hover over a label grabs the top level SVG content and assigns it 

to a global variable the first time it is called. This allows us to ‘go back’ much faster than if we 

use the method of sending a request and waiting for a response. It is faster because the top 

level SVG file is over 200KB in size, and it is illogical to request and wait for this file multiple 

times when the content is always the same. 

 

 

 

 


