Exploring Student Records

Paul Murrell

The University of Auckland

August 13 2009

Overview

Motivation:	STATS 220
Problem statement:	What background do the students have? Does background dictate performance?
Preconceptions:	A Comp Sci group Comp Sci perform better
Some answers:	Preparing the data Visualizing the data

The raw data

Originally an Excel file (plus file describing variables).

- **ID** The student ID number.
- Name The student name.
- **Term** The term in which the student took the paper (e.g., semester 1, 2008), but as a code (e.g., 1083).
- **Subject** The paper subject, as a letter code, e.g., STATS, or for older papers it could be a subject number, e.g., 475.

Catalog The paper number, e.g., 220.

- Acad Prog The academic program of the student (at the time the paper was taken), e.g., BA or BSC.
 - **Grade** The grade for the paper, e.g., A, or blank if currently enrolled.
- **Cumulative GPA** The student's GPA (per semester).

These variables are also in the report, but I did not use them.

Status Whether the student is currently enrolled in STATS 220 (E). A couple of values are, worryingly, blank, but I don't know what that means yet.

Points The number of points for the paper.

Grd Pt/Unt The grade point contribution of this paper.

Take Prgrs Points achieved in a semester.

Pass Prgrs Points achieved in a semester (not sure how this differs from previous, but I did not use these two anyway).

The raw data

Exported the Excel file as CSV, removed names, grades, and GPA, and replaced ID with NewID which provides anonymous unique identifier.

<u>F</u> ile	Edit y	iew Insert	Format	Tools	Data V	<u>V</u> indow <u>H</u> e	lp				×
۲	- 🗈		5 -	ADC 🖉	🧐 🖗	6 🗊 -	🚊 i 🧠 -	🥐 - I 📓	n. z. Niz Nia I	8 🖸 🗌	» •
	Libe	ration Sans	•	10	•	a a a) 🗏 🏼 -) % \$ <u>%</u> .	00, 0.0	» •
J1		•	<i>f</i> ∞ Σ =	= Ne	wID						-
	A	В	С	D	E	F	G	Н	1	J	-
1	Term	Subject	Catalog	Status	Points	Acad.Prog	Grd.Pt.Unt	Take.Prgrs	Pass.Prgrs	NewID	
2	1093	STATS	220	E	15	BSC	0	60	0	1	
3	1093	ITALIAN	106G	E	15	BSC	0	60	0	1	
4	1093	GEOG	250	E	15	BSC	0	60	0	1	
5	1093	ENVSCI	201	E	15	BSC	0	60	0	1	
6	1090	MATHS	108	E	15	BSC	0	15	0	1	
7	1085	STATS	201	E	15	BSC	3	60	60	1	
8	1085	STATS	150	E	15	BSC	7	60	60	1	
9	1085	GEOG	201	E	15	BSC	1	60	60	1	
10	1085	ENVSCI	101	E	15	BSC	4	60	60	1	
11	1083	STATS	101	E	15	BSC	4	60	60	1	
12	1083	GEOLOGY	102	E	15	BSC	2	60	60	1	
13	1083	GEOG	101	E	15	BSC	4	60	60	1	
14	1083	EDUC	121G	E	15	BSC	2	60	60	1	
15	1093	STATS	220	E	15	BA	0	60	0	2	
16	1093	STATS	208	E	15	BA	0	60	0	2	
17	1093	MATHS	108	E	15	BA	0	60	0	2	
18	1093	COMPSCI	105	E	15	BA	0	60	0	2	Т
19	1085	STATS	255	E	15	BA	3	60	60	2	-
	De\s	heet1/		1	4					Þ	Г
Shee	t1/1	Default		100%		STD		Sum	=0 Average=		

Generate new variable Current to indicate whether the paper is currently being taken (!Current gives papers that the student has taken in the past).

```
> classData <- read.csv("Data/transcripts-blind.csv",
+ stringsAsFactors=FALSE,
+ strip.white=TRUE)
```

> classData\$Current <- classData\$Term > 1090

Data preparation

> head(classData[c("NewID", "Term", "Current")], 10)

	NewID	Term	Current
1	1	1093	TRUE
2	1	1093	TRUE
3	1	1093	TRUE
4	1	1093	TRUE
5	1	1090	FALSE
6	1	1085	FALSE
7	1	1085	FALSE
8	1	1085	FALSE
9	1	1085	FALSE
10	1	1083	FALSE

Some older papers have a numeric Subject.

	NewID	Term	Subject
62	5	1005	641
63	5	1005	616
64	5	1005	610
65	5	1005	600
66	5	1003	641
67	5	1003	641

The file subjectNumbers.txt contains translations from subject numbers to subject names (begun work on more comprehensive file).

3	ANTHRO	
13	ECON	
26	MATHS	
29	PHIL	
30	POLITICS	
285	POLITICS	
405	BIOSCI	
410	CHEM	
445	MATHS	
453	PHYSICS	
475	STATS	
530	HUMANBIO	
600	ACCTG	
610	COMLAW	
616	ECON	
641	MGMT	
675	ENGSCI	

Paul Murrell

Exploring Student Records

Merge this table with classData.

```
> classData <- merge(classData,
+ subjNumbers,
+ by.x="Subject",
+ by.y="SubjectNumber",
+ all.x=TRUE)
> classData$SubjectName[is.na(classData$SubjectName)] <-
+ classData$Subject[is.na(classData$SubjectName)]
```

```
> head(classData[c("NewID", "Subject", "SubjectName")], 10)
```

	NewID	Subject	SubjectName
1	101	13	ECON
2	101	13	ECON
3	101	13	ECON
4	101	26	MATHS
5	101	26	MATHS
6	5	285	POLITICS
7	5	285	POLITICS
8	5	285	POLITICS
9	101	29	PHIL
10	101	29	PHIL

Generate new School variable which maps each subject to a school or faculty.

The file school.txt contains translations from subject names to schools or faculties.

ACADPRAC	Academic Practice Education	1
ACCTG	Accounting Business and Economics	L
ANCHIST	Ancient History Arts	L
ANTHRO	Anthropology Arts	L
ARCHDES	Architectural Design Creative Arts and Industries	L
ARCHDRC	Architectural Media Creative Arts and Industries	L
ARCHGEN	Architecture - General Creative Arts and Industries	L
ARCHHTC	Architectural History, Theory and Criticism Creative Arts and Industrie	:\$
ARCHPRM ARCHTECH	Architectural Practice and Management Creative Arts and Industries Architectural Technology Creative Arts and Industries	

```
> schools <- read.table("Data/school.txt",
+ sep="\t", quote="",
+ strip.white=TRUE,
+ stringsAsFactors=FALSE,
+ col.names=c("Subject", "FullName",
+ "School", "EMPTY"))
```

Merge this table with classData.

```
> classData <- merge(classData, schools[, c(1, 3)],
+ by.x="Subject", by.y=1)
```

> head(classData[c("NewID", "SubjectName", "School")], 10)

	NewID	SubjectName			School
1	9	ACCTG	Business	and	Economics
2	5	ACCTG	Business	and	Economics
3	13	ACCTG	Business	and	Economics
4	13	ACCTG	Business	and	Economics
5	17	ACCTG	Business	and	Economics
6	13	ACCTG	Business	and	Economics
7	18	ACCTG	Business	and	Economics
8	25	ACCTG	Business	and	Economics
9	25	ACCTG	Business	and	Economics
10	18	ACCTG	Business	and	Economics

Generate new variable Year from Term.

- > classData\$Year <- 2000 + (classData\$Term 1000) %/% 10</pre>
- > head(classData[c("NewID", "Term", "Year")], 10)

	NewID	Term	Year
1	9	1033	2003
2	5	1025	2002
3	13	1043	2004
4	13	1035	2003
5	17	1063	2006
6	13	1045	2004
7	18	1043	2004
8	25	1093	2009
9	25	1085	2008
10	18	1045	2004

All of the data are per-paper.

Now want to generate per-student data (102 students).

Focus on each student's **history** by dropping all papers that are currently being taken.

> pastPapers <- subset(classData, !Current)</pre>

- > dim(classData)
- [1] 2722 14
- > dim(pastPapers)
- [1] 2334 14

How many papers has each student taken in the past?

Paul Murrell

Exploring Student Records

- > nPaper <- table(pastPapers\$NewID)</pre>
- > library(lattice)
- > densityplot(as.numeric(nPaper), lwd=3)

Paul Murrell

Student history

Most students are NOT in their second year at university.

```
> uniYear <- 2009 -
```

- + tapply(pastPapers\$Year, list(pastPapers\$NewID), min) + 1
- > hist(uniYear, breaks=seq(0.5, 9.5), axes=FALSE, col="grey")
 > axis(2)

Histogram of uniYear

> mtext(1:9, at=1:9, side=1, font=2)

Time at university mostly corresponds to number of papers taken.

```
> jitYear <- jitter(uniYear)
> plot(jitYear, nPaper, type="n")
> abline(v=2:9, col="grey")
> points(jitYear, nPaper, pch=16,
+ cex=2, col=rgb(0, 0, 1, .5))
```


jitYear

Which subjects have the students taken in the past?

Answer this by counting how many papers each student has taken in each subject.

The students have taken papers in LOTS of different subjects.

- > tab <- table(pastPapers\$SubjectName)</pre>
- > ord <- order(tab)</pre>
- > par(las=2, mar=c(6, 3, 0.5, 0.5))
- > barplot(tab[ord])

Too many different subjects to have a count per subject, so only consider the most common subjects (this will also give larger totals in each count).

Generate new variable Dept which is based on Subject, but only has categories STATS, MATHS, COMPSCI, ECON, and OTHER.

```
> pastPapers$Dept <- pastPapers$SubjectName
> pastPapers$Dept[!(pastPapers$Dept %in%
+ c("STATS", "MATHS",
+ "COMPSCI", "ECON"))] <- "OTHER"</pre>
```

> head(pastPapers[c("NewID", "SubjectName", "Dept")], 10)

	NewID	SubjectName	Dept
1	9	ACCTG	OTHER
2	5	ACCTG	OTHER
3	13	ACCTG	OTHER
4	13	ACCTG	OTHER
5	17	ACCTG	OTHER
6	13	ACCTG	OTHER
7	18	ACCTG	OTHER
9	25	ACCTG	OTHER
10	18	ACCTG	OTHER
11	25	ACCTG	OTHER

```
> nSubj <- do.call("rbind",
+ tapply(factor(pastPapers$Dept),
+ list(ID=pastPapers$NewID),
+ table,
+ simplify=FALSE))
```

> head(nSubj)

	COMPSCI	ECON	MATHS	OTHER	STATS
1	0	0	1	5	3
2	2	0	1	3	2
3	0	0	0	0	5
4	2	0	1	0	1
5	0	2	0	14	2
6	0	0	1	15	1

854	1	OTHER	EDUC	EDUC
915	1	OTHER	ENVSCI	ENVSCI
1084	1	OTHER	GEOG	GEOG
1085	1	OTHER	GEOG	GEOG
1090	1	OTHER	GEOLOGY	GEOLOGY
1278	1	MATHS	MATHS	MATHS
2106	1	STATS	STATS	STATS
2107	1	STATS	STATS	STATS
2108	1	STATS	STATS	STATS

Two groups : students with several MATHS and/or STATS and students with few (and few COMPSCI).

Two groups : students with several MATHS and/or STATS and students with few (and few COMPSCI).

Three groups : those with several COMPSCI are a separate group.

Which schools or faculties have the students taken papers in?

Answer this by counting how many papers each student has taken in each school or faculty.

The students have taken papers in several different schools/faculties.

- > stab <- table(pastPapers\$School)</pre>
- > sord <- order(stab)</pre>
- > par(las=2, mar=c(10, 3, 0.5, 0.5))
- > barplot(stab[sord])

Too many different schools/faculties to have a count per subject, so only consider the most common schools/faculties.

Generate new variable Schl which is based on School, but only has categories Science, Business and Economics, Arts, and OTHER.

```
> head(pastPapers[pastPapers$Sch1 == "OTHER",
+ c("NewID", "School", "Schl")], 10)
```

	NewID	School	Schl
378	35	Engineering	OTHER
379	20	Engineering	OTHER
854	1	Education	OTHER
855	55	Education	OTHER
856	55	Education	OTHER
857	55	Education	OTHER
858	77	Education	OTHER
859	65	Education	OTHER
861	77	Education	OTHER
862	77	Education	OTHER

```
> nSchool <- do.call("rbind",
+ tapply(factor(pastPapers$Schl),
+ list(ID=pastPapers$NewID),
+ table,
+ simplify=FALSE))
```

> head(nSchool)

	Arts	Business	and	Economics	OTHER	Science
1	0			0	1	8
2	0			2	0	6
3	0			0	0	5
4	0			0	0	4
5	5			10	0	3
6	1			0	11	5

> nSchool[1,]

Arts	Business	and	Economics
0			0
OTHER			Science
1			8

```
> pastPapers[pastPapers$NewID == 1,
+ c("NewID", "SubjectName", "School", "Schl")]
```

	NewID	${\tt SubjectName}$	School	Schl
854	1	EDUC	Education	OTHER
915	1	ENVSCI	Science	Science
1084	1	GEOG	Science	Science
1085	1	GEOG	Science	Science
1090	1	GEOLOGY	Science	Science
1278	1	MATHS	Science	Science
2106	1	STATS	Science	Science
2107	1	STATS	Science	Science
2108	1	STATS	Science	Science

Four groups : Arts vets, BandE vets, Other vets, and Science.

- > exam <- read.csv("PrivData/exam-blind.csv")</pre>
- > densityplot(~ final, data=exam, lwd=3)


```
> examNpaper <- merge(exam, as.data.frame(nPaper),
+ by.x="NewID", by.y="Var1")
```

```
> plot(final ~ Freq, data=examNpaper,
```

```
+ pch=16, cex=2, col=rgb(0, 0, 1, .5))
```


Exploring Student Records

- > examGrad <- merge(exam, grad, by.x="NewID", by.y=0)</pre>
- > densityplot(~ final | grad, data=examGrad, layout=c(1, 2),
- + lwd=3)


```
> examCompSci <- merge(exam, nSubj[, "COMPSCI", drop=FALSE],
+ by.x="NewID", by.y=0)
> jitcs <- jitter(examCompSci$COMPSCI)
> plot(final ~ jitcs, data=examCompSci, type="n")
> abline(v=unique(examCompSci$COMPSCI), col="grey")
> points(final ~ jitcs, data=examCompSci,
+ pch=16, cex=2, col=rgb(0, 0, 1, .5))
```


Exploring Student Records

- > SchoolFactor <- read.csv("Data/SchoolFactor-blind.csv")</pre>
- > SchoolFactor\$school <- factor(SchoolFactor\$school)</pre>
- > levels(SchoolFactor\$school) <- c("Science", "Other", "BandE", "Arts")</pre>
- > examSchool <- merge(exam, SchoolFactor)</pre>
- > head(examSchool)

	NewID	final	school
1	1	51.18	Science
2	2	75.78	Science
3	3	91.31	Science
4	4	79.01	Science
5	5	16.48	BandE
6	6	74.68	Other

```
> densityplot(~ final | school, data=examSchool, layout=c(1, 4),
+ lwd=3)
```



```
> program <- aggregate(pastPapers["Acad.Prog"],</pre>
                         list(NewID=pastPapers$NewID),
+
                         function(program) {
+
                              prog <- paste(sort(unique(program)),</pre>
+
                                              collapse="-")
                              switch(prog,
+
                                      BA="BA",
                                      BSC="BSC",
+
                                      "OTHER")
+
                         })
+
```

> head(program)

	NewID	Acad.Prog
1	1	BSC
2	2	BA
3	3	OTHER
4	4	BSC
5	5	OTHER
6	6	BSC

- > examProgram <- merge(exam, program)</pre>
- > densityplot(~ final | Acad.Prog, data=examProgram, layout=c(1, 3),
- + lwd=3)

> table(SchoolFactor\$school, program\$Acad.Prog)

	BA	BSC	OTHER
Science	7	35	25
Other	1	5	5
BandE	0	0	15
Arts	3	2	4

- > gpa <- read.csv("PrivData/gpa-blind.csv")</pre>
- > examGPA <- merge(exam, gpa)</pre>
- > plot(final ~ GPA, data=examGPA,
- + pch=16, cex=2, col=rgb(0, 0, 1, .5))

Summary

- Many students in third, fourth, or fifth year at uni.
- Two student groups: Maths/Stats newbies versus Maths/Stats vets (neither has much Comp Sci)
- More Maths/Stats does not help.
- NOT a separate Comp Sci group, BUT more Comp Sci helps (BUT zero Comp Sci does not doom).
- Four student groups: Arts, BandE, Science, and OTHER.
- Science group worst (BUT BA worse than BSC).
- NO clear evidence found of distinct groups with markedly different performance.
- Best predictor of final mark is GPA.