Exploring Student Records

Paul Murrell

The University of Auckland

August 132009

Overview

Motivation:

Problem statement:

Preconceptions:

Some answers:

STATS 220

What background do the students have?
Does background dictate performance?

A Comp Sci group
Comp Sci perform better

Preparing the data
Visualizing the data

The raw data

Originally an Excel file (plus file describing variables).
ID The student ID number.
Name The student name.
Term The term in which the student took the paper (e.g., semester 1, 2008), but as a code (e.g., 1083).
Subject The paper subject, as a letter code, e.g., STATS, or for older papers it could be a subject number, e.g., 475.

Catalog The paper number, e.g., 220.
Acad Prog The academic program of the student (at the time the paper was taken), e.g., BA or BSC.
Grade The grade for the paper, e.g., A, or blank if currently enrolled.

Cumulative GPA The student's GPA (per semester).

The raw data

These variables are also in the report, but I did not use them.
Status Whether the student is currently enrolled in STATS 220 (E). A couple of values are, worryingly, blank, but I don't know what that means yet.
Points The number of points for the paper.
Grd Pt/Unt The grade point contribution of this paper.
Take Prgrs Points achieved in a semester.
Pass Prgrs Points achieved in a semester (not sure how this differs from previous, but I did not use these two anyway).

The raw data

Exported the Excel file as CSV, removed names, grades, and GPA, and replaced ID with NewID which provides anonymous unique identifier.

Data preparation

Generate new variable Current to indicate whether the paper is currently being taken (!Current gives papers that the student has taken in the past).

```
> classData <- read.csv("Data/transcripts-blind.csv",
+ stringsAsFactors=FALSE,
+ strip.white=TRUE)
> classData$Current <- classData$Term > 1090
```


Data preparation

> head(classData[c("NewID", "Term", "Current")], 10)

	NewID	Term	Current
1	1	1093	TRUE
2	1	1093	TRUE
3	1	1093	TRUE
4	1	1093	TRUE
5	1	1090	FALSE
6	1	1085	FALSE
7	1	1085	FALSE
8	1	1085	FALSE
9	1	1085	FALSE
10	1	1083	FALSE

Data preparation

Some older papers have a numeric Subject.

```
> head(classData[!is.na(as.numeric(classData$Subject)),
+ c("NewID", "Term", "Subject")])
    NewID Term Subject
62 5 1005 641
63 5 1005 616
64 5 1005 610
65 5 1005 600
66 5 1003 641
67 5 1003 641
```


Data preparation

The file subjectNumbers.txt contains translations from subject numbers to subject names (begun work on more comprehensive file).

3	ANTHRO
13	ECON
26	MATHS
29	PHIL
30	POLITICS
285	POLITICS
405	BIOSCI
410	CHEM
445	MATHS
453	PHYSICS
475	STATS
530	HUMANBIO
600	ACCTG
610	COMLAW
616	ECON
641	MGMT
675	ENGSCI

Data preparation

```
subjNumbers <- read.table("Data/subjectNumbers.txt",
+
+ col.names=c("SubjectNumber",
        "SubjectName"),
    stringsAsFactors=FALSE)
```

Merge this table with classData.

```
> classData <- merge(classData,
    subjNumbers,
    by.x="Subject",
    by.y="SubjectNumber",
    all.x=TRUE)
    classData$SubjectName[is.na(classData$SubjectName)] <-
    classData$Subject[is.na(classData$SubjectName)]
```


Data preparation

> head(classData[c("NewID", "Subject", "SubjectName")], 10)

	NewID	Subject	SubjectName
1	101	13	ECON
2	101	13	ECON
3	101	13	ECON
4	101	26	MATHS
5	101	26	MATHS
6	5	285	POLITICS
7	5	285	POLITICS
8	5	285	POLITICS
9	101	29	PHIL
10	101	29	PHIL

Data preparation

Generate new School variable which maps each subject to a school or faculty.

The file school.txt contains translations from subject names to schools or faculties.

ACADPRAC	Academic Practice	Education	
ACCTG	Accounting	Business and Economics	
ANCHIST	Ancient History	Arts	
ANTHRO	Anthropology	Arts	
ARCHDES	Architectural Design	Creative Arts and Industries	
ARCHDRC	Architectural Media	Creative Arts and Industries	
ARCHGEN	Architecture	General	Creative Arts and Industries
ARCHHTC	Architectural History, Theory and Criticism	Creative Arts and Industries	
ARCHPRM	Architectural Practice and Management	Creative Arts and Industries	
ARCHTECH	Architectural Technology	Creative Arts and Industries	

Data preparation

```
schools <- read.table("Data/school.txt",
sep="\t", quote="",
strip.white=TRUE,
stringsAsFactors=FALSE,
col.names=c("Subject", "FullName",
"School", "EMPTY"))
```

Merge this table with classData.

```
> classData <- merge(classData, schools[, c(1, 3)],
    by.x="Subject", by.y=1)
```


Data preparation

>	head(classData[c("NewID", "SubjectName", "School")], 10)						
NewID SubjectName							
1	9	ACCTG Business and Economics					
2	5	ACCTG Business and Economics					
3	13	ACCTG Business and Economics					
4	13	ACCTG Business and Economics					
5	17	ACCTG Business and Economics					
6	13	ACCTG Business and Economics					
7	18	ACCTG Business and Economics					
8	25	ACCTG Business and Economics					
9	25	ACCTG Business and Economics					
10	18	ACCTG Business and Economics					

Data preparation

Generate new variable Year from Term.
> classData\$Year <- 2000 + (classData\$Term - 1000) \%/\% 10
> head(classData[c("NewID", "Term", "Year")], 10)
NewID Term Year
1910332003
2510252002
$3 \quad 1310432004$
41310352003
51710632006
$6 \quad 1310452004$
71810432004
$8 \quad 2510932009$
$9 \quad 2510852008$
101810452004

Data preparation

All of the data are per-paper.
Now want to generate per-student data (102 students).

Focus on each student's history by dropping all papers that are currently being taken.

```
> pastPapers <- subset(classData, !Current)
```

> dim(classData)
[1] 272214
> dim(pastPapers)
[1] 233414

Student history

How many papers has each student taken in the past?
> nPaper <- table(pastPapers\$NewID)
> library(lattice)
> densityplot(as.numeric(nPaper), lwd=3)

Student history

Most students are NOT in their second year at university.
> uniYear <- 2009 -
$+\quad$ tapply (pastPapers\$Year, list(pastPapers\$NewID), min) + 1
> hist (uniYear, breaks=seq(0.5, 9.5), axes=FALSE, col="grey")
$>$ axis (2)
$>\operatorname{mtext}(1: 9, \mathrm{at}=1: 9$, side=1, font=2)

Histogram of uniYear

uniYear

Student history

Time at university mostly corresponds to number of papers taken.
> jitYear <- jitter (uniYear)
> plot(jitYear, nPaper, type="n")
> abline(v=2:9, col="grey")
> points(jitYear, nPaper, pch=16,
$+\quad c e x=2, \operatorname{col}=r g b(0,0,1, .5))$

Student history

Which subjects have the students taken in the past?

Answer this by counting how many papers each student has taken in each subject.

Student history

The students have taken papers in LOTS of different subjects.
> tab <- table (pastPapers\$SubjectName)
$>$ ord <- order (tab)
$>\operatorname{par}(\operatorname{las}=2, \operatorname{mar}=c(6,3,0.5,0.5))$
> barplot(tab[ord])

Student history

Too many different subjects to have a count per subject, so only consider the most common subjects (this will also give larger totals in each count).

Generate new variable Dept which is based on Subject, but only has categories STATS, MATHS, COMPSCI, ECON, and OTHER.
> pastPapers\$Dept <- pastPapers\$SubjectName
> pastPapers\$Dept[! (pastPapers\$Dept \%in\%

+ c("STATS", "MATHS",
+ "COMPSCI", "ECON"))] <- "OTHER"

Data preparation

>	head(pastPapers[c("NewID", "SubjectName", "Dept")], 10)	
	NewID SubjectName Dept	
1	9	ACCTG OTHER
2	5	ACCTG OTHER
3	13	ACCTG OTHER
4	13	ACCTG OTHER
5	17	ACCTG OTHER
6	13	ACCTG OTHER
7	18	ACCTG OTHER
9	25	ACCTG OTHER
10	18	ACCTG OTHER
11	25	ACCTG OTHER

Student history

```
> nSubj <- do.call("rbind",
    tapply(factor(pastPapers$Dept),
    list(ID=pastPapers$NewID),
    table,
    simplify=FALSE))
> head(nSubj)
```

 COMPSCI ECON MATHS OTHER STATS
 | 1 | 0 | 0 | 1 | 5 | 3 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 2 | 0 | 1 | 3 | 2 |
| 3 | 0 | 0 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 0 | 1 |
| 5 | 0 | 2 | 0 | 14 | 2 |
| 6 | 0 | 0 | 1 | 15 | 1 |

Student history

> nSubj [1,]

COMPSCI	ECON	MATHS	OTHER	STATS
0	0	1	5	3

> pastPapers[pastPapers\$NewID == 1,

+ c("NewID", "Dept", "Subject", "SubjectName")]

	NewID	Dept	Subject	SubjectName
854	1	OTHER	EDUC	EDUC
915	1	OTHER	ENVSCI	ENVSCI
1084	1	OTHER	GEOG	GEOG
1085	1	OTHER	GEOG	GEOG
1090	1	OTHER	GEOLOGY	GEOLOGY
1278	1	MATHS	MATHS	MATHS
2106	1	STATS	STATS	STATS
2107	1	STATS	STATS	STATS
2108	1	STATS	STATS	STATS

Student history

Two groups: students with several MATHS and/or STATS and students with few (and few COMPSCI).

Student history

Two groups: students with several MATHS and/or STATS and students with few (and few COMPSCI).

File Options Tour1D

File Options

		$\begin{aligned} & \text { STATS } \\ & \text { COMPSCI } \end{aligned}$		
	MATHS*	MATHS $\%$ 3 COMPSCI		
	$\begin{aligned} & \text { COMPSCI } \\ & \text { Ben } \end{aligned}$	CÖMPSC1*		
		EGON ZOMPSCI	Ecore	$\begin{aligned} & \text { ECON. } \\ & \text { مٌ: } \end{aligned}$

Student history

Three groups : those with several COMPSCI are a separate group.

File Options Iour2D

Student history

Which schools or faculties have the students taken papers in?

Answer this by counting how many papers each student has taken in each school or faculty.

Student history

The students have taken papers in several different schools/faculties.
> stab <- table(pastPapers\$School)
> sord <- order (stab)
$>\operatorname{par}(l a s=2, \operatorname{mar}=c(10,3,0.5,0.5))$
> barplot(stab[sord])

Student history

Too many different schools/faculties to have a count per subject, so only consider the most common schools/faculties.

Generate new variable Schl which is based on School, but only has categories Science, Business and Economics, Arts, and OTHER.
> pastPapers\$Schl <- pastPapers\$School
> pastPapers\$Schl[! (pastPapers\$School \%in\%

+ c("Science", "Arts", "Business and Economics"))] <- "OTHER"

Data preparation

```
> head(pastPapers[pastPapers$Schl == "OTHER",
+
c("NewID", "School", "Schl")], 10)
```

 NewID School Schl
 $378 \quad 35$ Engineering OTHER
37920 Engineering OTHER
8541 Education OTHER
85555 Education OTHER
85655 Education OTHER
85755 Education OTHER
85877 Education OTHER
85965 Education OTHER
86177 Education OTHER
86277 Education OTHER

Student history

```
> nSchool <- do.call("rbind",
    tapply(factor(pastPapers$Schl),
    list(ID=pastPapers$NewID),
    table,
    simplify=FALSE))
> head(nSchool)
```

 Arts Business and Economics OTHER Science
 | 1 | 0 | 0 | 1 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| 2 | 0 | 2 | 0 | 6 |
| 3 | 0 | 0 | 0 | 5 |
| 4 | 0 | 0 | 0 | 4 |
| 5 | 5 | 10 | 0 | 3 |
| 6 | 1 | 0 | 11 | 5 |

Student history

> nSchool[1,]

Arts Business and Economics	
0	0
OTHER	Science
1	8

> pastPapers[pastPapers\$NewID == 1,

+ c("NewID", "SubjectName", "School", "Schl")]

	NewID SubjectName	School	Schl	
854	1	EDUC	Education	OTHER
915	1	ENVSCI	Science Science	
1084	1	GEOG	Science Science	
1085	1	GEOG	Science Science	
1090	1	GEOLOGY	Science Science	
1278	1	MATHS	Science Science	
2106	1	STATS	Science Science	
2107	1	STATS	Science Science	
2108	1	STATS	Science Science	

Student history

Four groups : Arts vets, BandE vets, Other vets, and Science.

File Options Tour2D

File Options

Student performance

> exam <- read.csv("PrivData/exam-blind.csv")
> densityplot(~ final, data=exam, lwd=3)

Student performance

> examNpaper <- merge(exam, as.data.frame(nPaper),
$+$ by.x="NewID", by.y="Var1")
> plot(final ~ Freq, data=examNpaper,
$+\quad \mathrm{pch}=16, \mathrm{cex}=2, \mathrm{col}=\mathrm{rgb}(0,0,1, .5)$)

Student performance

> examUniYear <- merge(exam, as.data.frame(jitYear),

+ by.x="NewID", by. $\mathrm{y}=0$)
> plot(final ~ jitYear, data=examUniYear,
+ type="n")
> abline(v=2:9, col="grey")
> points(final ~ jitYear, data=examUniYear,
$+\quad \mathrm{pch}=16, \mathrm{cex}=2, \mathrm{col}=\mathrm{rgb}(0,0,1, .5))$

Student performance

> grad <- nSubj[, "STATS"] + nSubj[, "MATHS"] >= 8
> plot(jitter(nSubj[, "STATS"]),

+ jitter(nSubj[, "MATHS"]),
$+\quad \operatorname{col}=\mathrm{rgb}(1: 0,0,0: 1, .5)[\mathrm{grad}+1], \mathrm{pch}=16, \mathrm{cex}=2)$

Student performance

> examGrad <- merge(exam, grad, by.x="NewID", by.y=0)
> densityplot(~ final | grad, data=examGrad, layout=c(1, 2),
$+\quad$ lwd=3)

Student performance

> examCompSci <- merge(exam, nSubj[, "COMPSCI", drop=FALSE],

+ by.x="NewID", by. $\mathrm{y}=0$)
> jitcs <- jitter (examCompSci\$COMPSCI)
> plot(final ~ jitcs, data=examCompSci, type="n")
> abline(v=unique(examCompSci\$COMPSCI), col="grey")
> points(final ~ jitcs, data=examCompSci,
$+\quad \mathrm{pch}=16, \mathrm{cex}=2$, $\mathrm{col}=\mathrm{rgb}(0,0,1, .5))$

Student performance

> SchoolFactor <- read.csv("Data/SchoolFactor-blind.csv")
> SchoolFactor\$school <- factor(SchoolFactor\$school)
> levels(SchoolFactor\$school) <- c("Science", "Other", "BandE", "Arts")
> examSchool <- merge(exam, SchoolFactor)
> head(examSchool)

	NewID	final	school
1	1	51.18	Science
2	2	75.78	Science
3	3	91.31	Science
4	4	79.01	Science
5	5	16.48	BandE
6	6	74.68	Other

> densityplot(~ final | school, data=examSchool, layout=c(1, 4), lwd=3)

Student performance

Student performance

```
> program <- aggregate(pastPapers["Acad.Prog"],
list(NewID=pastPapers$NewID),
function(program) {
prog <- paste(sort(unique(program)),
                                    collapse="-")
        switch(prog,
                                    BA="BA",
                                    BSC="BSC",
                                    "OTHER")
    })
> head(program)
    NewID Acad.Prog
\(11 \quad 1 \quad\) BSC
2 BA
3
4
\begin{tabular}{rrr}
5 & 5 & OTHER \\
6 & 6 & BSC
\end{tabular}
```


Student performance

> examProgram <- merge(exam, program)
> densityplot(~ final | Acad.Prog, data=examProgram, layout=c(1, 3), $+\quad$ lwd=3)

Student performance

> table(SchoolFactor\$school, program\$Acad.Prog)

	BA	BSC	OTHER
Science	7	35	25
Other	1	5	5
BandE	0	0	15
Arts	3	2	4

Student performance

> gpa <- read.csv("PrivData/gpa-blind.csv")
> examGPA <- merge (exam, gpa)
> plot(final ~ GPA, data=examGPA,
$+\quad \mathrm{pch}=16, \mathrm{cex}=2, \mathrm{col}=\mathrm{rgb}(0,0,1, .5))$

Summary

- Many students in third, fourth, or fifth year at uni.
- Two student groups: Maths/Stats newbies versus Maths/Stats vets (neither has much Comp Sci)
- More Maths/Stats does not help.
- NOT a separate Comp Sci group, BUT more Comp Sci helps (BUT zero Comp Sci does not doom).
- Four student groups: Arts, BandE, Science, and OTHER.
- Science group worst (BUT BA worse than BSC).
- NO clear evidence found of distinct groups with markedly different performance.
- Best predictor of final mark is GPA.

