An Empirical Study of Colour Use

Paul Murrell and Ross Ihaka
The University of Auckland
New Zealand

Introduction

- A motivating example
- Why is it so hard to choose colours?
- Colour spaces
- Learning from the experts

Introduction

- A motivating example
- Why is it so hard to choose colours?
- Colour spaces
- Learning from the experts

Introduction

- A motivating example
- Why is it so hard to choose colours?
- Colour spaces
- Learning from the experts

Introduction

- A motivating example
- Why is it so hard to choose colours?
- Colour spaces
- Learning from the experts

Introduction

- A motivating example
- Why is it so hard to choose colours?
- Colour spaces
- Learning from the experts

A motivating example

- Filling regions in barplots (or piecharts, or ...)

A motivating example

- Filling regions in barplots (or piecharts, or ...)

Why is it so hard to choose colours?

- Lack of natural talent
- Lack of knowledge about how colour works
- Lack of tools to work with colour
- Lack of knowledge about how to select colours

Why is it so hard to choose colours?

- Lack of natural talent
- Lack of knowledge about how colour works
- Lack of tools to work with colour
- Lack of knowledge about how to select colours

Why is it so hard to choose colours?

- Lack of natural talent
- Lack of knowledge about how colour works
- Lack of tools to work with colour
- Lack of knowledge about how to select colours

Why is it so hard to choose colours?

- Lack of natural talent
- Lack of knowledge about how colour works
- Lack of tools to work with colour
- Lack of knowledge about how to select colours

Why is it so hard to choose colours?

- Lack of natural talent
- Lack of knowledge about how colour works
- Lack of tools to work with colour
- Lack of knowledge about how to select colours

Colour spaces

There are three main perceptual components to colour:

- hue (colour)
- lightness (light or dark)
- saturation (brightness, colourfulness)

Colour spaces

There are three main perceptual components to colour:

- hue (colour)
- lightness (light or dark)
- saturation (brightness, colourfulness)

Colour spaces

There are three main perceptual components to colour:

- hue (colour)
- lightness (light or dark)
- saturation (brightness, colourfulness)

Colour spaces

There are three main perceptual components to colour:

- hue (colour)
- lightness (light or dark)
- saturation (brightness, colourfulness)

Colour spaces

- RGB colour space confounds hue, lightness, and saturation.

Colour spaces

- HSV colour space directly addresses hue, lightness, and saturation.

Colour spaces

- CIE $L^{*} u^{*} v^{*}$ colour space directly addresses hue, lightness, and saturation AND attempts to make unit steps perceptually uniform.

Learning from the experts

- Interior designers select colours for large areas
- Interior design palettes are available on the internet
- Are there any obvious patterns to these palettes?
- View the palettes in CIE $L^{*} u^{*} v^{*}$ space

Learning from the experts

- Interior designers select colours for large areas
- Interior design palettes are available on the internet
- Are there any obvious patterns to these palettes?
- View the palettes in CIE $L^{*} u^{*} v^{*}$ space

Learning from the experts

- Interior designers select colours for large areas
- Interior design palettes are available on the internet
- Are there any obvious patterns to these palettes?
- View the palettes in CIE $L^{*} u^{*} v^{*}$ space

Learning from the experts

- Interior designers select colours for large areas
- Interior design palettes are available on the internet
- Are there any obvious patterns to these palettes?
- View the palettes in CIE $L^{*} u^{*} v^{*}$ space

Learning from the experts

- Interior designers select colours for large areas
- Interior design palettes are available on the internet
- Are there any obvious patterns to these palettes?
- View the palettes in CIE $L^{*} u^{*} v^{*}$ space

Victorian Eclectic ("Home Decore" site)

Victorian Eclectic

Victorian Eclectic

Victorian Eclectic

Victorian Eclectic

Victorian Eclectic Palette

Average Linkage Clustering

Applying the Expert Example

Basic observations from the experts:

- L between 50 and 80
- U between -20 and 60
- V between -20 and 60

Modifications for barplots:

- Evenly spaced for "equal" difference
- Equal lightness for "equal impact"

Applying the Expert Example

Basic observations from the experts:

- L between 50 and 80
- U between -20 and 60
- V between -20 and 60

Modifications for barplots:

- Evenly spaced for "equal" difference
- Equal lightness for "equal impact"

Applying the Expert Example

Basic observations from the experts:

- L between 50 and 80
- U between -20 and 60
- V between -20 and 60

Modifications for barplots:

- Evenly spaced for "equal" difference
- Equal lightness for "equal impact"

Applying the Expert Example

Basic observations from the experts:

- L between 50 and 80
- U between -20 and 60
- V between -20 and 60

Modifications for barplots:

- Evenly spaced for "equal" difference
- Equal lightness for "equal impact"

Applying the Expert Example

Basic observations from the experts:

- L between 50 and 80
- U between -20 and 60
- V between -20 and 60

Modifications for barplots:

- Evenly spaced for "equal" difference
- Equal lightness for "equal impact"

Applying the Expert Example

Basic observations from the experts:

- L between 50 and 80
- U between -20 and 60
- V between -20 and 60

Modifications for barplots:

- Evenly spaced for "equal" difference
- Equal lightness for "equal impact"

Applying the Expert Example

- Filling regions in barplots (or piecharts, or ...)

Learning from the experts

- The EasyRGB web site.

EasyRGB

Dark Sea Green

EasyRGB

Dark Sea Green

Applying the Expert Example

Basic observations from the experts:

- Halve or double the saturation
- Increase or decrease the luminance
- Generate complementary colours or triads

Applying the Expert Example

Basic observations from the experts:

- Halve or double the saturation
- Increase or decrease the Iuminance
- Generate complementary colours or triads

Applying the Expert Example

Basic observations from the experts:

- Halve or double the saturation
- Increase or decrease the luminance
- Generate complementary colours or triads

Applying the Expert Example

Basic observations from the experts:

- Halve or double the saturation
- Increase or decrease the luminance
- Generate complementary colours or triads

Applying the Expert Example

- Filling regions in barplots (or piecharts, or ...)

Caveats

- This is just for barplots
- This is not for colour-blind
- This is not for grayscale printing

Caveats

- This is just for barplots
- This is not for colour-blind
- This is not for grayscale printing

Caveats

- This is just for barplots
- This is not for colour-blind
- This is not for grayscale printing

Caveats

- This is just for barplots
- This is not for colour-blind
- This is not for grayscale printing

Conclusions

If you collect colour palettes from the web ...
... and you work in the right colour space ...
... and you treat the palette as a data set ...
... and you observe simple patterns in the data ...
... you can generate simple colour palettes of your own (which don't make you physically ill).

Conclusions

If you collect colour palettes from the web ...
... and you work in the right colour space ...
... and you treat the palette as a data set ...
... and you observe simple patterns in the data ...
... you can generate simple colour palettes of your own (which don't make you physically ill).

Conclusions

If you collect colour palettes from the web ...
... and you work in the right colour space ...
... and you treat the palette as a data set ...
... and you observe simple patterns in the data ...
... you can generate simple colour palettes of your own (which don't make you physically ill).

Conclusions

If you collect colour palettes from the web ...
... and you work in the right colour space ...
... and you treat the palette as a data set ...
... and you observe simple patterns in the data ...
... you can generate simple colour palettes of your own (which don't make you physically ill).

Conclusions

If you collect colour palettes from the web ...
... and you work in the right colour space ...
... and you treat the palette as a data set ...
... and you observe simple patterns in the data ...
... you can generate simple colour palettes of your own (which don't make you physically ill).

Conclusions

If you collect colour palettes from the web ...
... and you work in the right colour space ...
... and you treat the palette as a data set ...
... and you observe simple patterns in the data ...
... you can generate simple colour palettes of your own (which don't make you physically ill).
http://www.stat.auckland.ac.nz/ paul/

