Splines and curves in grid

December 20, 2005

From R version 2.3.0, a new graphical primitive is available: the X-spline
(Blanc and Schlick, 1995). An X-spline is a parameterised curve through a set
of control points. A single ‘shape’ parameter allows the curve to vary from
an approximating cubic B-spline to an interpolating Catmull-Rom spline. The
spline may be open or closed; if it is open, either end can be adorned with an
arrow, and if it is closed, it can be filled with a colour.

Simple examples of X-splines through four control points, for various ‘shape’s
at each control point, are produced by the following code and shown in figure
1.

> example(grid.xspline)

X-splines can be used to easily draw exciting curvy lines instead of boring
straight lines, for example, when labelling a point of interest in a plot, as in
Figure 2.

Another use for closed X-splines is the creation of arbitrary smooth shapes (c.f.,
the use of the polygon primitive for arbitrary “pointy” shapes). Figure 3 shows
a couple of examples (with the corresponding polygon in grey).

Curves

Another new primitive, the curve has been developed that uses X-splines to
draw smooth curves between points. Given two locations (or several pairs of
locations), this function can be used to draw a nice curve from one location to
the other. Here is a simple example (see Figure 4):

> x1 <- unit(0.2, "mpc")
> y1 <= unit(0.15, "npc")
> x2 <- unit (0.8, "mpc")

Open Splines Closed Splines

NN o0 e
DERRRE R @
(rneoeeae

Figure 1: Some simple X-splines through four control points.

Auckland

IS

Figure 2: A simple use of an X-spline for labelling a plot.

o A X

Figure 3: Some amusing shapes produced using X-splines.

Figure 4: A simple curve between two points.

> y2 <- unit(0.75, "npc")

> grid.points(x1, yl1, pch = 16, size = unit(2, "mm"))
> grid.points(x2, y2, pch = 16, size = unit(2, "mm"))
> grid.curve(x1, y1, x2, y2)

The curve that grid.curve() draws is an X-spline so it depends on a set of
control points. The locations of the control points are calculated automatically
based on a circle that intersects the end points. Figure 5 shows the curve from
Figure 4 with a grey circle added to show the circle that was used to produce
the control point; a blue point has been added to show the control point itself.
Further markings show the origin of the circle (a small grey dot; the larger grey
dot will be explained later) and distinguish the start and end points by colouring
them green and red respectively.

There are several arguments that provide many ways to modify the basic curve:

Figure 5: The simple curve from Figure 4 with debugging information added.

shape This argument controls the shape of the
X-spline at each control point. For exam-
ple, using shape=0 means that the curve
is discontinuous at the control point.

shape =0

inflect This argument allows the curve to be re-
peated and inverted to produce a point of
inflection.

inflect = TRUE

ncp This argument controls the number of
control points that are generated; this
basically controls the smoothness of the
curve. Using eight or more control points
produces a very smooth curve. As the
number of control points increases, the in-
fluence of the shape argument is greatly
reduced.

ncp =8

curvature

arrow

angle

This argument controls the distance of the
control points from the straight line join-
ing the end points. The sign of this argu-
ment is important: a positive value means
that the control points are to the right of
a straight line looking from the start point
to the end point; a negative value means
that the control points are to the left of a
straight line. A curvature of 0 produces a
straight line.

Another way to think about this argu-
ment is that is controls the origin of the
circle that is used to calculate the con-
trol points. The default curvature is 1,
which means that the origin of the circle
lies on the line connecting the end points;
the control points lie on a semi-circle, with
origin half-way between the end points. a
curvature of -0.5 means that the origin of
the circle is to the right of the line con-
necting the end points, so the curve is a
“flatter”, left-hand curve.

This argument controls whether arrows
are drawn at either end of the line. A
non-NULL value should be provided using
the arrow() function, which allows for ar-
rows at both ends of the line, allows the
arrows to be closed, and so on.

This argument is a subtle one. It con-
trols the placement of control points by al-
lowing them to be skewed towards one or
other end point. What happens is that a
“corner” is calculated from the end points
so that the angle between the start con-
trol point and corner is angle (the cor-
ner is shown as a large grey dot in Figure
5). The circle that is used to generate
control points is skewed so that the mid-
point of the arc on this circle maps to the
corner. The default value of angle is 90,
which means that the control points are
not skewed at all.

curvature =0

curvature = -0.5

arrow = arrow()

angle = 90

angle = 135

square This argument is also a bit subtle. If it is
TRUE, then an additional control points is
automatically added so that there is a 45-
degree line between that control point and
the start point or end point. The effect of
this is that the default curve is drawn be-
tween the end points in a city-block fash- ~ Square = FALSE
ion, left-right and then up-down, or vice-
versa.
If this argument is FALSE, no additional
control points are added.

square=TRUE

Vectorised arguments

It is possible to draw multiple curves from a single call to grid.curve() by
specifying a vector of values for either end point. The curvature, angle, ncp,
and inflect arguments are all single-valued so multiple curves will all have
the same fundamental shape. The shape argument can be a vector, but this
is simply to allow fine control over each control point when there is more than
one control point (i.e., the same vector of shape values is applied to all curves
drawn by a single call to grid.curve()). The arrow and gp arguments may
contain vector values, in which case each curve may receive different values.

The following code demonstrates these rules by drawing three curves, all orig-
inating from the same location, but ending at three different locations. Each
curve has a different style of arrow head, and a different fill colour applied to it
(see Figure 6).

> x3 <= unit (0.1, "npc")

> y3 <= unit (0.1, "npc")

> x4 <- unit(2:4/5, "npc")
> y4 <- unit(0.9, "npc")
>
+
+

grid.curve(x3, y3, x4, y4, arrow = arrow(type = c("open", "closed",
"closed"), angle = c(15, 30, 45), length = unit(3:1/10, "inches")),
gp = gpar(fill = c(NA, "grey", "black")))

More examples

This section describes some useful combinations of the various grid.curve()
arguments.

loops By defining end points very close together, a very large curvature, and

Figure 6: Multiple curves from a single grid.curve() call.

lots of control points, it is possible to produce a loop pointing back on
itself.

curvature=10, ncp=10,
square=FALSE, arrow=arrow(...)

arcs If you want to produce a curve between two points that represents an arc,
there is an arcCurvature () function that calculates the correct curvature
given an angle for the arc. A simple example is to draw a quarter circle
between two points. Using a large number of control points ensures the
curve follows the arc on a circle; for general use, it is necessary to specify
square=FALSE.

curvature=arcCurvature(90),
ncp=8, square=FALSE, /
arrow=arrow(...)
connectors Two-way arrows between locations in a grid are simple using the
inflect argument, a single control point, and a shape of zero.

shape=0, inflect=TRUE,
arrow=arrow(...)

overshoot Curves that shoot past the destination and curve back around are
possible with a large number of control points, and variation of the angle
argument. You will probably have to use square=FALSE to produce a nice
result.

shape=-1, angle=130,

square=FALSE,)
ncp=8, arrow=arrow(...)

US\ 2 G2

100MW limit
a3
Io

Figure 7: A node-and-edge graph.

curly ones The default “square” curves work well with a shape of zero or less,
a single control point, and the default angle of 90. Variations on these
settings can produce some interesting curves.

squareShape=1, inflect=TRUE,
ncp=3, arrow=arrow(...)

general paths By combining X-splines and other line-drawing primitives, it is
possible to produce arbitrary paths.

grid.curve(xl, yi1, x1, y2, ...)
grid.lines(x1, y2, x2, y2, ...)
grid.curve(x2, y2, x2, y1, ...)

Node-and-Edge Graphs and Flow Diagrams

Combining these curve-drawing primitives with the ability to calculate the bor-
ders of a grob, makes it straightforward to produce node-and-edge graphs and
flow diagrams (see the end of this document for code used to produce these
figures).

References

R. H. Bartels, J. C. Beatty, and B. A. Barsky. An introduction to splines for
use in computer graphics and geometric modeling. Kaufmann, 1987.

C. Blanc and C. Schlick. X-splines : A spline model designed for the end user.
Proceedings of SIGGRAPH 95, 1995.

Figure 8: A flow diagram.

C

Figure 9: An approximate Bezier curve. The black line (and open circles) is
the Bezier curve (and its control points) that we are trying to draw. The grey
dashed line (and grey circles) is the B-spline (and its control points) that we
use to approximate the Bezier curve.

A Note on Bezier Curves

A (cubic) Bezier curve is a curve described by four control points. The curve
goes through the first and last control points and approximates the second and
third control points. A Bezier curve with control points b = (b1, 2,b3,b4) is
equivalent to a B-spline curve with control points s = (s1, s2, 3, s4) (Bartels
et al., 1987), where ...

s=Ms"1 % Mbxb,

1 4 10 1 0 00

1 3 0 30 3 3 00
Ms=wxf 5 ¢ g o [Mb= 3 -6 3 0
1 3 -3 1 -1 3 -3 1

The (open) curves drawn by default by grid.xspline() automatically replicate
the first and last control point (so that the curve is drawn from the first and
last control point). This can be turned off via the repEnds argument and then,
using the above formulae, an approximate bezier curve can be obtained.

Figure 9 illustrates this process. In the Figure, the Bezier control points are
drawn as open circles, the corresponding B-spline control points are drawn as
grey circles, the default output from grid.xspline() is shown as a dashed grey
line, and the approximation to the desired Bezier curve, produced by setting
repEnds=FALSE, is drawn as a thick black line. The curve is only approximate
because an X-spline with shape=1 is only approximately a B-spline; but the
approximation is quite good.

10

Code for node-and-edge graph

x <= unit(c(0, 1, 0.5), "native")
y <- unit(c(1, 1, 0.5), "native")
grid.text(1:3, x, y)
grid.circle(x[1], y[1], r=unit(0.7, "char"), name="c1")
grid.circle(x[2], y[2], r=unit(0.7, "char"), name="c2")
grid.circle(x[3], y[3], r=unit(0.7, "char"), name="c3")
grid.segments(grobX("c1", "east"), grobY("cl", "east"),
grobX("c2", "west"), grobY("c2", "west"))
grid.segments(grobX("c1", 315), grobY("c1i", 315),
grobX("c3", 135), grobY("c3", 135))
grid.segments(grobX("c2", 225), grobY("c2", 225),
grobX("c3", 45), grobY("c3", 45))
arr <- arrow(angle=15, length=unit(2, "mm"))
grid.text("us ", -0.25, 1.12, just="right", default="native")
grid.segments(-.24, 1.12, grobX("cl", 160), grobY("ci", 160),
default="native", arrow=arr)
grid.text("Gl1 ", -0.25, 0.88, just="right", default="native")
grid.segments(-.24, 0.88, grobX("cl", 200), grobY("c1", 200),
default="native", arrow=arr)
grid.text(" G2", 1.25, 1.12, just="left", default="native")
grid.segments(1.24, 1.12, grobX("c2", 20), grobY("c2", 20),
default="native", arrow=arr)
grid.text(" D", 0.5, 0.22, just="left", default="native",
gp=gpar (fontface="italic"))
grid.segments(grobX("c3", 270), grobY("c3", 270), 0.5, 0.2,
default="native", arrow=arr)
grid.text("100MW 1imit", 0.8, 0.7, just="left", default="native")

Code for flow diagram

hex <- function(x, y, width=.2, height=.1, units="npc",
gp=gpar (col="grey", fill="light grey"), ...) {
xx <- unit(c(x - 0.3*width, x - 0.5%width, x - 0.3*width,
x + 0.3*width, x + 0.5%width, x + 0.3*width),
units)
yy <- unit(c(y - 0.5%height, y, y + 0.5%height,
y + 0.5%height, y, y - 0.5%height),
units)
grid.polygon(xx, yy, gp=gp, -..)
}
grid.newpage()

11

arr <- arrow(angle=15, type="closed", length=unit(0.03, "npc"))
hex(.5, .8, name="h1")
hex(.5, .6, name="h2")
hex (.25, .4, name="h3")
hex(.75, .4, name="h4")
hex(.75, .2, name="h5")
grid.segments(grobX("h1", 270), grobY("h1", 270),
grobX("h2", 90), grobY("h2", 90),
arrow=arr, gp=gpar(fill="grey", col="grey"))
grid.curve(grobX("h2", 270), grobY("h2", 270),
grobX("h3", 90), grobY("h3", 90),
inflect=TRUE, shape=0, curvature=-1,
arrow=arr, gp=gpar(fill="grey", col="grey"))
grid.curve(grobX("h2", 270), grobY("h2", 270),
grobX("h4", 90), grobY("h4", 90),
inflect=TRUE, shape=0,
arrow=arr, gp=gpar(fill="grey", col="grey"))
grid.segments(grobX("h4", 270), grobY("h4", 270),
grobX("h5", 90), grobY("h5", 90),
arrow=arr, gp=gpar(fill="grey", col="grey"))
grid.curve(grobX("h2", 180), grobY("h2", 180),
grobX("h1", 180), grobY("h1l", 180),
shape=1, ncp=10, square=FALSE, curvature=-1,
arrow=arr, gp=gpar(fill="black"))
grid.curve(grobX("h3", 270), grobY("h3", 270),
grobX("h3", 90), grobY("h3", 90),
shape=1, square=FALSE, curvature=-3, ncp=10,
arrow=arr, gp=gpar(fill="black"))
grid.curve(grobX("h5", 270), grobY("h5", 270),
grobX("h2", 0), grobY("h2", 0),
shape=1, square=FALSE, curvature=1, ncp=10, angle=60,
arrow=arr, gp=gpar(fill="black"))
grid.curve(grobX("h5", 270), grobY("h5", 270),
grobX("h1", 0), grobY("hi", 0),
shape=1, square=FALSE, curvature=0.8, ncp=10, angle=50,
arrow=arr, gp=gpar(fill="black"))
grid.text("A", 0.8, 0.7)
grid.text("B", 0.7, 0.6)
grid.text("C", 0.1, 0.5)
grid.text("D", 0.3, 0.8)

12

