
Drawing Contexts in Grid Graphics

Paul Murrell

July 9, 2003

In Grid, all drawing is ultimately performed by a set of predefined primitives
(lines, rectangles, text, ...) and the output produced by a primitive depends on
two sorts of things:

1. the location and size of the primitive; I call these structural parameters.

2. the colour, linewidth, fontsize, ... of the primitive; I call these graphical
parameters.

Furthermore, all drawing occurs within a viewport, which consists of three sorts
of things:

1. the location and size of the viewport (structural parameters).

2. the colour, linewidth, fontsize, ... of the viewport (graphical parameters).

3. a number of coordinate systems, which I call the drawing context defined
by the viewport.

For both primitives and viewports, the same set of parameters may produce
different final results when drawn within different drawing contexts. One conse-
quence of this is that, in order to replicate the result from drawing a primitive
or setting a viewport (e.g., when redrawing an image), it is vital that the same
drawing context can be reestablished.

1 Structural parameters

Location and size parameters are specified using "unit" objects. For example,
unit(1, "inches") specifies a location or size of 1".

Some units are absolute (such as inches and centimetres), but most are relative
to the current drawing context - the coordinate systems defined by the current
viewport.

In this sense, the location and size of objects are declarative.

1



2 Graphical parameters

Graphical parameters are specified using a "gpar" object. A primitive or view-
port does not have to specify any or all possible graphical parameters. Anything
that is specified overrides any previous (parent) settings and provides the default
for any subsequent (child) settings.

In this sense, graphical parameters are inherited.

A primitive’s graphical parameter settings take effect just before the primitive
is drawn, and their effects are reversed just after the primitive has finished
drawing1.

A viewport’s graphical parameter settings take effect just before the viewport
is pushed onto the viewport stack, and their effects are reversed just after the
viewport is popped off the stack.

3 The Drawing Process

Because primitives and viewports contain a declarative specification of their
location and size, and because graphical parameters are inherited, a lot of cal-
culation is required at drawing time to determine where the output should end
up and what it should look like.

For example, the following command requires establishing the current physical
location and size of the parent viewport in order to determine the location that
is 1" in from the bottom-left corner, and the current fontsize must be established
in order to determine how large the text should be.

grid.text("hi", x=1, y=1, default.unit="inches")

4 Coordinate Systems

Each coordinate system within a viewport is specified through one or more
parameters. For example, the "native" units on the x-dimension are specified
through a minimum value and a maximum value.

Most of these coordinate system parameters are stored in the viewport, however,
two of the coordinate systems have special parameters. The "lines" and "char"
units are based on the current lineheight and fontsize, which are general
graphical parameters. Viewports can have a lineheight and/or fontsize specified,
but this is not required. For example, a viewport may not specify either of
fontsize or lineheight if it just wants to inherit these values from its parent
viewport.

1Technically, the graphical parameters are only in effect during the call to the draw.details
method

2



The drawing process requires that we can establish things like the current font-
size and lineheight for each viewport.

5 Addendum

(I can now see that) The separation into structural and graphical parameters
mirrors the HTML/XML/SVG separation of structure and appearance (using
e.g., CSS). Can’t see yet what coordinate systems correspond to in this analogy,
but things may become clearer with more reading about SVG.

3


