
An Example of Sharing Graphical Objects in Grid

Paul Murrell

July 9, 2003

Grid graphical objects are implemented as “external pointers”. This is easiest
to explain by example:

> line <- grid.lines()

> line2 <- line

> grid.edit(line2, gp = gpar(col = "green"))

> get.value(line)

The output from the final command shows that line is also now “green”.

In the above, we create a graphical object and assign it to line. We then assign
line to line2. In most cases in R, this would copy the value of line to line2,
but in this case it actually copies a reference to the value of line to line2. In
other words, line and line2 “point” to the same value. Thus when we modify
line2, the change is reflected in line.

Shared Axes

Suppose that I am drawing two graphs on a page, which are the results from
two subjects in an experiment. I want the graphs to have the same axes to aid
in comparison of the subjects.

First of all, I will split the page up into two bits for the two graphs.

> push.viewport(viewport(layout = grid.layout(1, 2, respect = TRUE)))

Now I generate some data and draw the first plot.

> x <- 1:10

> y1 <- rnorm(10)

> vp1a <- viewport(layout.pos.col = 1)

> vp1b <- viewport(width = 0.6, height = 0.6, xscale = c(0, 11),

+ yscale = c(-4, 4))

> push.viewport(vp1a, vp1b)

1



> xa <- grid.xaxis()

> ya <- grid.yaxis()

> grid.points(x, y1)

> pop.viewport(2)

Notice that I have saved the graphical objects for the axes. Now when I draw
the second plot I will just reuse these graphical objects rather than creating new
ones.

> y2 <- rnorm(10)

> vp2a <- viewport(layout.pos.col = 2)

> vp2b <- viewport(width = 0.6, height = 0.6, xscale = c(0, 11),

+ yscale = c(-4, 4))

> push.viewport(vp2a, vp2b)

> grid.draw(xa)

> grid.draw(ya)

> grid.points(x, y2)

> pop.viewport(2)

The output looks like the figure below.

0 2 4 6 8 10

−4

−2

0

2

4

●●

●
●

●●●

●
●

●

0 2 4 6 8 10

−4

−2

0

2

4

●●●
●

●
●

●●

●●

Because I have used the same graphical object in both plots, I can edit the axes
for both plots simultaneously rather than having to edit each one in turn. For
example ...

> grid.edit(xa, at = c(1, 5, 9))

The output now looks like the figure below.

2



1 5 9

−4

−2

0

2

4

●●

●
●

●●●

●
●

●

1 5 9

−4

−2

0

2

4

●●●
●

●
●

●●

●●

This might seem a very small gain in this example, but it is potentially of great
use in, for example, the implementation of a scatterplot matrix.

3


