
The grid Graphics Package

Paul Murrell

September 9, 2002

Grid graphics is an alternative graphics interface to the base R graphics
(plot(), par(), lines(), ...). It is designed to allow greater low-level power
and customisation for graphics. Grid itself mostly consists of the basis for
producing flash high-level plots; there are a couple of examples of higher-level
plotting functions (e.g., grid.xaxis and grid.yaxis, and more spectacularly,
grid.show.layout and grid.show.viewport). The lattice package provides
plenty of examples of what can be achieved.

This user guide focuses on the low-level functionality; the purpose of this
package is to provide greater power and flexibility for producing plots when the
standard high-level plots are not sufficient.

This guide provides an explanation of the system through examples. It is
best used while sitting at a console with R running.

A more detailed and complete description of individual functions is available
in the form of Rd files (see help(Grid) and library(help=grid)).

There are also more documents describing how grid’s features work at the
grid website, http://www.stat.auckland.ac.nz/ paul/grid/grid.html. This
website also has links to a paper from a talk on grid and to the article on grid
in Volume 2/2, June 2002 of R News.

1 Getting Started

Load the Grid library with the command

> library(grid)

2 Tutorial

We will now look at some very simple Grid graphics drawing functions. This
section assumes that you have loaded Grid graphics.

2.1 Baby Steps

First of all, try typing the following commands:

> grid.rect(x = 0.5, y = 0.5, h = 1, w = 1, just = "centre", gp = gpar(border = NULL,

+ fill = "#FFBF00"))

> grid.rect(x = 0.33, y = 0, h = 1, w = 0.2, just = c("left", "bottom"),

+ gp = gpar(border = NULL, fill = "#FF8000"))

> grid.text(x = 0.5, y = 0.5, "A Label")

1



A Label

The window is now a light orange colour with a darker orange vertical strip
and the text ”A Label” in the centre.

The first rectangle is centred half way across and half way up the device
(just = "centre", x = 0.5, and y = 0.5) and is as wide as and as high as
the device (w = 1 and h = 1). In other words, it occupies the entire device.

The second rectangle has its bottom-left corner at the bottom of the device
and about a third of the way across (just = c("left", "bottom"), x = 0.33,
and y = 0) and is as high as the device, but only one fifth as wide (w = 0.2
and h = 1).

These locations and dimensions are all defined as proportions of the device;
try resizing the window and notice that the text remains centred, while the
location and width of vertical strip changes as the width of the device changes.

In grid, there are a number of coordinate systems available; this one is known
as Normalised Parent Coordinates (NPC). It is not called Normalised Device
Coordinates because drawing is not always relative to the entire device surface.
In fact, drawing always occurs within a structure called a viewport.

A viewport is a region on a graphics device which has a number of coordinate
systems associated with it. Grid has a default viewport, which occupies the
entire device region. It is possible to specify which viewport you want to draw
into, but if you do not, Grid just uses the default viewport.

The following code draws the same rectangles and text as in the previous
example, but within a viewport that occupies only part of the device.

> grid.newpage()

NULL

2



> vp <- viewport(x = 0.5, y = 1, w = 1, h = unit(1, "lines"), just = c("centre",

+ "top"))

> push.viewport(vp)

> grid.rect(gp = gpar(border = NULL, fill = "#FFBF00"))

> grid.rect(x = 0.33, y = 0, h = 1, w = 0.2, just = c("left", "bottom"),

+ gp = gpar(border = NULL, fill = "#FF8000"))

> grid.text(x = 0.5, y = 0.5, "A Label")

> pop.viewport()

NULL

A Label

The screen probably looks a bit of a mess. Type grid.newpage() and then
enter the above commands again. Grid does not have the concept of a ”plot” so
you have to clear the device with a call to grid.newpage() to start again with
a blank device.

The same rectangles are now drawn within a viewport which is only 1 line of
text high (h = unit(1, "lines")) and flush with the top of the device (just =
c("centre", "top")). The function push.viewport is used to set the current
viewport; the function viewport is used to create a viewport description. Grid
maintains a stack of viewports and we “pop” the viewport at the end to restore
the system to the state it was before we started drawing.

This example demonstrates that drawing is relative to the viewport rather
than the device. For example, the text is centred within the viewport. This also
demonstrates how you specify a unit or coordinate system explicitly using the
unit function. In "lines" units, locations and dimensions are multiples of the
height of one line of text.

3



Notice also that the first call to grid.rect has not specified the values of
x, y, w, h, and just. This is because the values we want are actually just the
default values supplied by the grid.rect function.

2.2 A Simple Plot

Now try the following commands:

> vp <- viewport(x = 0.5, y = 0.5, w = 0.6, h = 0.6, xscale = c(0,

+ 11), yscale = c(0, 11))

> push.viewport(vp)

> grid.rect()

> grid.points(runif(10, 1, 10), runif(10, 1, 10))

> grid.xaxis()

> grid.yaxis()

> pop.viewport()

NULL

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0

2

4

6

8

10

This produces a basic plot, with axes and data points. Notice again that
drawing is relative to a viewport. We also see a third Grid coordinate system
called "native" coordinates. The viewport has x- and y-scales defined and the
grid.points function uses these ”native” scales to locate the data points within
the viewport. Similarly, grid.xaxis and grid.yaxis use the scales to locate
their tick marks.

Note that your plot will not look exactly like the one shown because of the
use of runif to generate random data.

4



2.3 A Taster

So far, we have dealt with drawing within a single viewport. Now try the
following code:

> vp1 <- viewport(x = 0.5, y = 0.5, w = 0.6, h = 0.6, layout = grid.layout(2,

+ 1, heights = unit(c(1, 1), c("lines", "null"))))

> push.viewport(vp1)

> vp2 <- viewport(layout.pos.row = 1)

> push.viewport(vp2)

> grid.rect(x = 0.5, y = 0.5, h = 1, w = 1, just = "centre", gp = gpar(border = NULL,

+ fill = "#FFBF00"))

> grid.rect(x = 0.33, y = 0, h = 1, w = 0.2, just = c("left", "bottom"),

+ gp = gpar(border = NULL, fill = "#FF8000"))

> grid.text(x = 0.5, y = 0.5, "A Label")

> pop.viewport()

NULL

> vp3 <- viewport(layout.pos.row = 2, xscale = c(0, 11), yscale = c(0,

+ 11))

> push.viewport(vp3)

> grid.rect()

> grid.points(runif(10, 1, 10), runif(10, 1, 10))

> grid.xaxis()

> grid.yaxis()

> pop.viewport(2)

NULL

A Label

●●
●

●

●

●

●
●

●
●

0 2 4 6 8 10

0

2

4

6

8

10

5



Here we have a top-level viewport (vp1) with two other viewports nested
within it (vp2 and vp3). Drawing occurs within the lower-level viewports and
these viewports are positioned within the top-level viewport.

The positioning of the lower-level viewports can be controlled by x, y, width,
height, and just as in previous examples, but in this case, the positioning is
controlled by a layout (which is a way of cutting up a viewport into subregions).
The top-level viewport defines a layout with 2 rows and 1 column, where the
top row is 1 "lines" unit high and the second row just expands to fill the
remaining space. The first low-level viewport occupies the first row of the layout
(layout.pos.row=1) and the second low-level viewport occupies the second row
of the layout (layout.pos.row=2).

It is possible to nest viewports to more than two levels, there are other co-
ordinate systems not described here, and there are many different features of
layouts to explore. Some idea of what can be done is given by the output of
the grid.show.viewport and grid.show.layout functions. Try typing exam-
ple(Grid) to see examples of this stuff.

6


