
Web-based Interactive Graphics

David Banks

Contents

1 Introduction 3

2 An introduction to SVG 4

2.1 What is SVG . 4

2.2 An SVG example . 4

3 The gridSVG package for R 7

3.1 Why use gridSVG? . 7

3.2 The format of gridSVG output 10

4 Scripting with SVG 11

4.1 The Javascript Language . 11

4.2 Event Handlers . 11

4.3 Javascript examples . 12

4.4 Adding javascript with gridSVG 14

4.5 Adding hyperlinks and animation with gridSVG 16

5 Application 1: Statistics Course Pathways 17

5.1 Introductory information . 17

5.2 Getting the data into an R-readable format 18

5.3 Using R to produce graphs of this data 19

5.4 Exporting to SVG . 23

5.5 Making an interactive index page 24

5.6 Summary . 26

1

6 Application 2: Health Data for Victoria, Australia 28

6.1 Background Information . 28

6.2 Making the map with R . 28

6.3 Creating an image to export . 29

6.4 Converting R variables to javascript variables 29

6.5 Making our SVG interactive . 30

6.6 Adding hyperlinks to the regions 33

6.7 Integrating into HTML . 35

6.8 Summary . 38

7 Application 3: NZ Price Kaleidoscope 42

7.1 Origin of the idea . 42

7.2 Using the German Price Kaleidoscope 42

7.3 Acquiring New Zealand CPI data 43

7.4 Making our own circle of regions 43

7.5 Creating a suitable page layout 44

7.6 Presenting price changes using colour 45

7.7 Positioning the labels . 46

7.8 Exporting to an SVG document 47

7.9 Converting R variables to javascript variables 49

7.10 Adding interactivity . 50

7.11 Integrating into HTML for further functionality 50

7.12 Summary . 54

8 Summary and Conclusion 55

A Appendix 1: An introduction to grid 56

A.1 The basics of grid . 56

A.2 Graphical parameters . 57

A.3 Using units . 58

A.4 Grobs . 59

A.5 Viewports . 61

A.6 Viewport trees and grob trees . 63

2

Chapter 1

Introduction

In this report we look at the gridSVG package for R with a focus on how we can
use it to solve real-world tasks. R is free statistical software used for statistical
computation and graphics [28]. Our aim was to investigate whether we could
use gridSVG for a number of tasks, and if so, how difficult it would be.

First we present an introduction to the grid graphics system in R and discuss its
main features and capabilities. Then we take a look at what SVG is, how to use
it and what we can do with it. Following that we explore the gridSVG package
in R, showing how we can use it to export grid graphics into SVG format and
to add extra features into exported SVG documents. Then we discuss scripting
SVG documents, introducing javascript and showing how it can be used in
conjunction with SVG to add interactivity to an SVG document. We then
present three applications of the gridSVG package. Each application started
with an idea and an aim to get that idea into an interactive web document.
We use grid graphics and the gridSVG package to help us with this, and show
the steps of how we obtained interactive web documents for each idea. We also
discuss the level of success we had and how much work was involved in each
application.

3

Chapter 2

An introduction to SVG

2.1 What is SVG

SVG stands for Scalable Vector Graphics. It is an open standard specification
for two dimensional vector graphics [8]. The SVG standard uses an XML file
format. XML (Extensible Markup Language) is a specification for encoding
documents in a format that is readable by humans, and is widely used in web
technologies. SVG is commonly used in web documents to produce dynamic
and interactive graphics.

There are a number of important differences between SVG and raster graphics
formats such as JPG and PNG. Raster graphics formats store an image as a fixed
number of pixels, and so these types of images become pixelated when we zoom
in. Pixelation is where the individual pixels become visible, and it makes an
image look poor quality. The main difference between SVG and raster graphics
is what happens when we zoom in. In SVG, graphical objects are defined by
paths and curves, so that when we zoom in these objects are simply rescaled.
This rescaling means that there is no pixelation or loss of quality like there is
with raster graphics.

SVG documents can be scripted, which allows us to make interactive animated
images. Interactive images are more successful in capturing a viewer’s attention
and interest than plain images (raster graphics). This makes SVG ideal for
presenting information graphically on the internet. All major web browsers
(Mozilla Firefox, Internet Explorer, Google Chrome, Safari and Opera) now
support SVG. Support in Internet Explorer was added in version 9.

2.2 An SVG example

In this section we give a very basic example of an SVG document. Figure 2.1
shows what this document looks like when displayed in a web browser.

4

<?xml version="1.0" encoding="ISO8859-1"?>

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="700px" height="300px">

<circle id="circle1" cx="150" cy="150" r="110" stroke="black"

stroke-width="2" fill="red" fill-opacity="0.4">

</circle>

<rect id="rect1" x="340" y="70" width="300" height="160"

stroke="blue" stroke-width="2" fill="green"

fill-opacity="0.2">

</rect>

</svg>

The first line declares that this document is in XML format. The svg tag
starts the SVG document. The xlmns and xmlns:xlink attributes point to
specifications. The width and height are called attributes of the svg element.
They set the document to have a width of 700 pixels and a height of 300 pixels.
These dimensions define a ’canvas’ where all of the SVG objects are drawn;
any element that extends beyond the edges would be cut off. The circle

element defines a circle, which is given an id of ’circle1’ in this example. IDs
are unique identifiers for elements and are very useful for accessing SVG elements
when scripting (see Section 4.1). The cx and cy attributes define the x- and y-
coordinates of the centre of the circle, specified in pixels from the top-left corner
of the SVG document. Note that the coordinate system in SVG defines the (0,
0) point at the top-left corner, with increasing x going from left to right and
increasing y going from top to bottom. The r attribute defines the radius of the
circle (in pixels). The stroke and stroke-width attributes define the colour
and width of the circle border, respectively. The fill attribute defines the
fill colour and the fill-opacity attribute defines the opacity (transparency)
of the fill colour; this value ranges from 0 (completely transparent) to 1 (no
transparency). The rect element defines a rectangle. For rect elements, the x

and y attributes specify the x- and y-coordinates of the top-left corner of the
rectangle. Then we close the <rect> tag and end the SVG document. In SVG,
every element has an opening tag and a closing tag. An opening tag is of the
form <rect> and a closing tag is of the form </rect>. Some elements such as
the <rect> element are allowed to have self-closing tags that use the <tag />

syntax. For example, the following two lines define identical rectangle objects
and are both written in valid syntax:

<rect id=rectangle1" x="100" y="100" width="70" />

<rect id=rectangle1" x="100" y="100" width="70"></rect>

Other SVG elements we will commonly use are <g> elements, used to group
elements together; <text> elements, used to display text; <a> elements, used
to turn elements into hyperlinks; <polygon> elements, used to draw arbitrary

5

Figure 2.1: The example SVG document viewed in a web browser

shapes; <path> elements, used to define a path (which can be curved); and
<polyline> elements, used to draw lines composed of straight-line segments.

6

Chapter 3

The gridSVG package for R

3.1 Why use gridSVG?

The gridSVG package is an R package that provides functions for creating SVG
images from images built using the grid graphics system within R [24]. Although
using gridSVG requires knowledge of how to work with grid graphics, there are
a number of advantages in choosing this package rather over other alternatives.
The main alternative is the SVGAnnotation package, which may be used with
either grid graphics or traditional graphics [27]. We will compare differences
between the two packages in the following example. The image we want to
export to SVG format is shown in Figure 3.1. We will make export this figure
to an SVG document using both SVGAnnotation and gridSVG.

> library(SVGAnnotation)

>

> filename = "svgDocs/hello_svgannotation.svg"

> svgPlot({
+ grid.newpage()

+ grid.rect(width = 0.5, height = 0.5, name = "border")

+ grid.text("Hello", name = "helloLabel")

+ }, filename)

The contents of the file hello_svgannotation.svg are printed below. Long
lines have been truncated.

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://

<r:display xmlns:r="http://www.r-project.org" usr="0,1,0,1

grid.newpage()

grid.rect(width = 0.5, height = 0.5)

grid.text("Hello")

}

7

Hello

Figure 3.1: The image we want to export to SVG format

]]></r:display>

<defs>

<g>

<symbol overflow="visible" id="glyph0-0">

<path style="stroke:none;" d="M 1 0 L 1 -8.949219 L

</symbol>

<symbol overflow="visible" id="glyph0-1">

<path style="stroke:none;" d="M 5.261719 -2.085938 L

</symbol>

<symbol overflow="visible" id="glyph0-2">

<path style="stroke:none;" d="M 0.800781 0 L 0.80078

</symbol>

<symbol overflow="visible" id="glyph0-3">

<path style="stroke:none;" d="M 0.414063 -3.242188 C

</symbol>

</g>

</defs>

<g id="surface6">

<rect x="0" y="0" width="432" height="432" style="fill:

<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);

<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">

<use xlink:href="#glyph0-0" x="201.757813" y="220.4726

<use xlink:href="#glyph0-1" x="210.784912" y="220.4726

<use xlink:href="#glyph0-2" x="217.736816" y="220.4726

<use xlink:href="#glyph0-2" x="220.513916" y="220.4726

<use xlink:href="#glyph0-3" x="223.291016" y="220.4726

</g>

</g>

</svg>

8

> library(gridSVG)

>

> grid.newpage()

> grid.rect(width = 0.5, height = 0.5, name = "border")

> grid.text("Hello", name = "helloLabel")

> gridToSVG("hello_gridsvg.svg")

The contents of the file hello_gridsvg.svg are shown below (with long lines
truncated).

<?xml version="1.0" encoding="ISO8859-1"?>

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://

<g transform="translate(0, 252) scale(1, -1)">

<g id="gridSVG" fill="none" stroke="rgb(0,0,0)" stroke-d

<g id="GRID.rect.78">

<rect id="GRID.rect.78.1" x="63" y="63" width="126"

</g>

<g id="GRID.text.79">

<g id="GRID.text.79.1" stroke-width=".1" transform="

<g transform="scale(1, -1)">

<text x="0" y="0" text-anchor="middle" fill="rgb

<tspan dy="4.31" x="0">Hello</tspan>

</text>

</g>

</g>

</g>

</g>

</g>

</svg>

To anyone unfamiliar with SVG, neither of these documents will look easy to
read. But there are some major differences. The main difference in this example
is how the text ’Hello’ has been coded as SVG. In the document produced by
SVGAnnotation, there are four <symbol> elements which use path elements to
define each unique letter in the phrase ’Hello’. Note that these paths are actually
very long and are not shown in their entirety in this document. The text string
itself is created by defining five <use> elements which use the symbols defined
previously to form the word ’Hello’. In the document produced by gridSVG, the
text string is defined by a <text> element with one child <tspan> element. The
<tspan> element defines a single line of text within the <text> element. The line
corresponding to the start of the <text> element has been truncated but is not
much longer than what is shown here, and thus it is much shorter than the lines
that had been truncated in the previous SVG document. Hence this example
demonstrates how gridSVG output is more readable than the SVGAnnotation
output. This is important because occasionally we will need to refer to the
source code of our SVG documents and we would like it to be as readable as
possible.

9

3.2 The format of gridSVG output

A big advantage of using gridSVG is that it makes scripting (see next chapter)
much easier because of the way it creates and formats SVG documents.

Each grob drawn on the current R graphics device has its own <g> (group)
element wrapped around the corresponding SVG element. This group element
has id equal to the name of that grob - this is a good reason for us to give
suitable names to all of our grobs. Note that <g> elements are used to group
similar elements together in SVG. Within each <g> element is an SVG element
that corresponds directly to the grob we have drawn in R, for example a <text>

element corresponds to a textGrob. This SVG element is given id equal to
the grob name with a .1 suffix added to it. This can be seen by inspecting
the gridSVG output given in section 3.1. The fact that gridSVG gives elements
id attributes that match the names of grobs in R means that we can write
scripts for our SVG document without having to spend great amounts of time
inspecting the SVG document source code.

10

Chapter 4

Scripting with SVG

4.1 The Javascript Language

Javascript is a cross-platform, object-based client-side web language, used to
add interactivity to a web document. We can use javascript to access the SVG
DOM (Document Object Model). The SVG DOM allows access to all elements
of the document and their attributes. We will use javascript extensively to add
interactivity to our SVG documents. SVG does its own <animate> element
which allows an element to be changed in some way over some duration of time,
but there are many more very specific interactive features we will want to add
to our SVG documents, which makes use of javascript essential.

Objects are the core concept of javascript. An object may have several properties
and methods. Properties contain information about an object, and methods are
functions that are specific to a certain type of object. We can access an objects
properties with the syntax object.property1, and we call a method with the
syntax object.method().

Javascript statements and functions are defined within <script> elements. As-
sigments that occur outside functions define global variables. Within a function,
the var keyword can be used to define local variables which are not accessible
from outside that function. The var keyword can be left out if we desire to
define global variables within a function.

Single line comments in javascript are indicated with //. Multi-line comments
begin with /* and end with */. We use comments to help explain what is going
on within our javascript code.

4.2 Event Handlers

An event handler describes what should happen when a certain event occurs.
We provide an event handler with a javascript statement or function call that is

11

to be executed every time the event occurs. In SVG, there are are several useful
event handlers that we can attach to any element within an SVG document. The
most common event handlers include onclick, onmouseover and onmouseout.
These are attached to elements as attributes, demonstrated below:

<rect id="rectangle1" x="100" y="100" width="70"

onclick="func1()" onmouseover="func2()" />

The code above defines a rectangle element with two event handlers attached to
it. When the mouse moves over the rectangle, the func2() javascript function
is called, and when the rectangle is clicked, the func1() function is called. We
will see how to attach event handlers to elements using gridSVG in section 4.4.

4.3 Javascript examples

In this section, we present several examples of how we can use javascript within
a web document.

In this first example, we use javascript to give a message when we click on
a circle. The document called circleAlert.svg is shown below. In this
example, clicking on the circle with the mouse calls the javascript function
displayInfo(), as specified by the onclick event handler. The displayInfo()
function simply brings up a dialogue box containing some information about the
circle we clicked. The evt argument is an object representing the event that
called the function. evt.target defines the object which triggered the event
(an object can contain other objects as properties). In this case it is the circle
element that we clicked on. We use the getAttribute() method to obtain the
values of any attributes that the circle element has. Here we grab the id at-
tribute and include it within our message. Note that string concatentation in
javascript is done with the + operator. The pop-up dialogue box is created via
the alert() function. Figure 4.1 shows this SVG document in Google Chrome,
straight after clicking on the circle.

<?xml version="1.0" encoding="ISO8859-1"?>

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="300px" height="300px">

<circle id="circle1" cx="150" cy="150" r="110" stroke="black"

stroke-width="2" fill="yellow" fill-opacity="0.5"

onclick="displayInfo(evt)">

</circle>

<script type="text/javascript">

function displayInfo(evt) {

alert("I'm a circle. My ID is " + evt.target.getAttribute("id"));

12

Figure 4.1: The result we get from clicking on the circle

}

</script>

</svg>

In the next example we demonstrate how to use javascript to clone nodes
(SVG elements) within an SVG document. We use node cloning in Chapter
7. The SVG document is shown below, with javascript embedded internally via
a <script> element. Note the text/ecmascript value of the type attribute.
This and text/javascript can be used interchangeably - javascript is actu-
ally an implementation of ECMAscript. Just like the previous example, we
have a circle element with an onclick event handler attached to it. Clicking
on the circle calls the javascript function colourRings(). This function cre-
ates four more circles via clones, and modifies some of the properties of the
clones. Node cloning is done with the cloneNode() method. Each time we run
through the for loop, we create a new circle by cloning the previous clone, and
set its radius 40 pixels less than the radius of the previous clone. Then using
the setAttribute() method, we modify the radius and fill colour attributes
of the new circle clone. At the end of each run through the loop, we use the
appendChild() method to add the clone to the document. We add the clone
to the parent node of the original circle, which is the <g id=''circles''> el-
ement. Using the appendChild() method on a parent node attaches the new
node at the end, after any other child nodes that may exist within that par-
ent node. In SVG, elements defined at the same level as one another follow
the rule that later-defined elements will obscure previously-defined elements if
there is any overlap. Thus in our example we should expect the result to be a
small cyan circle in the middle surrounded by rings of different colours, because
each time we created a circle, we decreased the radius and changed its colour

13

before drawing it on top of previously drawn elements. Figure 4.2 shows this
behaviour.

<?xml version="1.0" encoding="ISO8859-1"?>

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="440px" height="440px" version="1.0">

<g id="circles">

<circle cx="220" cy="220" r="200" fill="red"

onclick="colourRings(evt)" />

</g>

<script type="text/ecmascript">

<![CDATA[

function colourRings(evt) {

var circle = evt.target;

var par = circle.parentNode;

var clone = circle;

var radius = circle.getAttribute("r");

var cols = ["orange", "yellow", "lawngreen", "cyan"];

for (i=0; i<cols.length; i++) {

radius = radius - 40;

clone = clone.cloneNode(true);

clone.setAttribute("fill", cols[i]);

clone.setAttribute("r", radius);

par.appendChild(clone);

}

}

]]>

</script>

</svg>

The two examples given demonstrate only a small amount of what we can do
with javascript - quite complex and interactive web graphics can be created with
SVG-javascript combinations.

4.4 Adding javascript with gridSVG

There are two functions in gridSVG that we can use to add javascript to the
SVG document to be created. The first one, grid.script(), can be used to
create a <script> element within the SVG document. The function allows the
code to be inserted inline or referenced by a filename.

The second function is the grid.garnish() function. We can use this function
to add extra information to any grob we have drawn. When we export to SVG,

14

Figure 4.2: The SVG document in Firefox, before and after clicking on the red
circle

this extra information is included in attributes of the corresponding elements.
As an example, say we have a red-filled circle grob named ’redCircle’, whose fill
colour will change to blue when hovered over in our SVG document, and change
back to red when the mouse leaves the circle element. Then before calling the
gridToSVG() function, we do the following:

> grid.garnish("redCircle",

> "onmouseover" = "changeColour('blue')",

> "onmouseout" = "changeColour('red')")

> grid.script(filename = "functions.js", name = "jsFile")

> gridToSVG("circleColour.svg")

The functions.js file:

function changeColour(col) {

var theCircle = document.getElementById("redCircle.1");

theCircle.setAttribute("fill", col);

}

The section of SVG output that is relevant in this example:

<g id="redCircle" onmouseover="changeColour('blue')"

onmouseout="changeColour('red')" >

<circle id="redCircle.1" cx="336" cy="336" r="201.6"

fill="rgb(255,0,0)" fill-opacity="1" />

</g>

<script type="text/ecmascript" id="jsFile"

xlink:href="functions.js">

</script>

The above example shows how we can use these two functions together to make
our SVG documents interactive.

15

4.5 Adding hyperlinks and animation with gridSVG

SVG is primarily used in web documents, so we want to be able to add hyperlinks
to certain SVG elements. In gridSVG, the grid.hyperlink() function allows
us to do this, as shown below.

> grid.hyperlink("textLabel", "http://www.google.com")

Running the above R command before calling the gridToSVG() function will
mean that the corresponding text element in the exported SVG document will
have an <a> (anchor) element wrapped around it. The anchor element will have
a xlink:href attribute, with the value http://www.google.com. This turns
the text element into a hyperlink, so that when it is clicked the user’s web
browser navigates to the Google home page.

The grid.animate() function allows us to animate certain elements by creating
<animate> elements in the output SVG document. As mentioned earlier in this
chapter, the <animate> element allows an element to be changed in some way
over a period of time. The grid.animate() function lets the user specify options
such as the duration, start-time and interpolation type of the animation, and
whether or not to repeat the animation indefinitely.

16

Chapter 5

Application 1: Statistics
Course Pathways

5.1 Introductory information

The first idea we decided to explore with gridSVG was whether we could create
interactive flow diagrams of course pathways for statistics courses. This idea
came from a PDF document on the Department of Statistics (University of
Auckland) website. This document presents the the required and recommended
courses for a variety of career fields in table format. Figure 5.1 shows a small
portion of this table, take from the PDF document. Note that this figure only
shows 7 columns (career fields) out of 15 columns in the original document due
to restricted width here.

Figure 5.1: A small part of the course pathways table

We want to produce graphs of this data. Here we talk about graphs in the math-

17

ematical sense. A graph is a set of nodes/vertices and edges, where some pairs
of nodes are connected by edges. Edges may be curved; there is no restriction
on them being straight lines.

There are some important features we want to be able to include in our graphs,
such as distinguishing between courses that a student is required to have com-
pleted before taking a certain course (prerequisites) and courses that are recom-
mended but not required (also described as ’Nice to have’). For some courses,
there is a choice between prerequisites: only one course is required to have been
successfully completed out of a group of courses. In this chapter we use the
term ’prerequisite groups’. When we say this we mean a group of one or more
prerequisites where only one of them is required. In our graphs, we want to
be able to highlight prerequisite groups with more than one member so that is
is obvious only one of them is required. It would also make sense to split the
nodes of our graphs into three parts, with Stage 1 courses on the top line, Stage
2 courses on the line below and Stage 3 courses below that.

5.2 Getting the data into an R-readable format

All of the data was contained within a PDF file and we could not see any other
formats for this data. So we hand-coded small plain-text files for each career
field, in such a way that R could accurately read the file and thus interpret the
content of each graph. An example of one of these files is shown below. This
file corresponds to the bioinformatics career field.

10X::

_125::

20X:10X:

210::

220::

302:20X:

330:20X:

_331:20X:

_340:20X:

_380:20X,220:

Each line of the file represents a node. The first course code on each line is the
name each course that will feature in the graph (the course codes). Courses that
are recommended but not required have had an underscore added at the start of
the course code. So for bioinformatics, STATS 380 for example is not a required
course. Each colon marks the start of a new prerequisite group. The maximum
number of prerequisite groups is two, so there are two colons per line. Where
only one prequisite group exists, nothing follows the second colon; where there
are no prerequisites at all there is nothing following either colon. Members of
prerequisite groups are separated by commas. Hence STATS 210 and STATS
220 have no prequisites, STATS 302 and STATS 330 require STATS 20X only,
and STATS 380 (not a required course) requires a pass grade in either STATS
20X or STATS 220.

18

Figure 5.2: An example graph with nodes and edges

Note that prerequisites for each course do not change across the different career
fields - only the sets of required and recommended courses change.

5.3 Using R to produce graphs of this data

For each career field we wanted to produce a graph using grid graphics in R. This
is made possible using the graph and Rgraphviz packages [14, 15]. We intend
to use gridSVG to create SVG documents, so we need two additional packages,
gridGraphviz and gridDebug [23, 25], that allow us to plot graphs from the
previous two packages using grid graphics. Figure 5.2 shows an example of the
sort of graphs we can produce with these packages. This example graph was
created using the randomGraph() function from the graph package.

We can read the plain-text files we created earlier into R using the read.table()
function. This reads the data into a data frame object. A data frame is like a
set of equal-length variables that shares similar properties to lists and matrices.
Using this data frame we define the nodes by extracting information from the
first column, and we define a list of edges using information extracted from the
second and third columns. We can detect which courses are required and which
are not by checking for underscores. In R this can be done with the grep()

function.

For any given node, it is much easier to determine the incoming edges that it
is to determine the outgoing edges. This is because each line in our source file
describes a node and the nodes that point to it, not the nodes that it points
to. Thus when we form the edge list for the graph, we define it in terms of
incoming edges for each node. However the functions that allow us to produce
graphs expect the edge list defined in terms of outgoing edges for each node. This
means that when we create our graph object, the edges are pointing in the wrong

19

directions. Fortunately for us, a function called reverseEdgeDirections()

exists within the graph package. This function takes a graph object, reverses
all directed edges in that graph, and returns a modified graph.

Next we want to implement some styles that distinguish between required and
recommended courses, and that highlight prerequisite groups which contain
more than one member. First we set the fill colour of all nodes to be light yellow
and all edges to have a black colour. For recommended courses we set the node
fill colour to white. Detection of the course status (whether it is required or
recommended) was fairly simple; finding the groups of edges that correspond to
each prerequisite group was more complex. Each such group of edges was given
a unique colour. The colours were picked carefully so that they were easy to tell
apart - this was necessary since some of our graphs contain several prerequisite
groups with more than one member. Figure 5.5 shows how colour has been used
to highlight such prerequisite groups. All these styles are created using named
lists; we call these ’lists of attributes’. Once all the attributes had been speci-
fied, we can create a laid-out styled graph using the agopen() function from the
graph package. We then use the grid.graph() function from the gridGraphviz
package to draw the laid-out graph using the grid graphics system. Figure 5.3
shows the final graph that we export to SVG (next section).

The graph in Figure 5.3 has not separated out the courses into the three distinct
groups of stages. To implement this we can use the subGraph() function from
the graph package. This function allows us to specify a set of node names that
correspond to nodes within the main graph object, and it returns a subgraph
which consists of those nodes and any edges that were defined between them
in the main graph object. The R code below shows how we go about forming
subgraphs and implementing them in our laid-out graph. Figure 5.4 shows the
new graph.

> ## info is the data frame containing our data

> papers <- info$Course

> papers <- gsub("_", "", papers)

> ## Now papers contains course numbers, e.g. 125, 220

>

> ## Determine the stage of each course (1, 2 or 3)

> papers.stage <- as.numeric(substring(papers, 1, 1))

>

> ## Separate sets of courses for each stage

> level1 <- papers[which(papers.stage == 1)]

> level2 <- papers[which(papers.stage == 2)]

> level3 <- papers[which(papers.stage == 3)]

>

> ## Create three subgraphs for each stage.

> ## gnel is our initial graph object (not laid out yet)

> stage1 <- subGraph(paste("STATS", level1), gnel)

> stage2 <- subGraph(paste("STATS", level2), gnel)

> stage3 <- subGraph(paste("STATS", level3), gnel)

>

> ## Create the laid-out styled graph, containing the subGraphs.

20

Figure 5.3: The laid-out graph with styles applied

21

Figure 5.4: The laid-out graph with subgraphs implemented

> ## globalA, edgeA and nodeA are lists that we use to apply

> ## styles to certain components of our graph.

> rag <-

> agopen(gnel, "graph1", attrs = globalA,

> edgeAttrs = edgeA, nodeAttrs = nodeA,

> subGList = list(list(graph = stage1),

> list(graph = stage2),

> list(graph = stage3)))

>

> grid.newpage()

> grid.graph(rag)

22

Figure 5.5: Finance course pathways (SVG), showing 3 prerequisite groups

5.4 Exporting to SVG

Before exporting the graph to an SVG document, we add the hyperlinks to each
node using the grid.hyperlink() function. We want each node to be linked to
its corresponding course webpage on the Department of Statistics website. We
also garnish the nodes in the graph with a pointer-events="all" attribute.
When this attribute is given the value ’all’ on a certain SVG element, it makes
sure that event handlers attached to that element trigger within the interior
of the element and not just on the border. When we add event handlers like
onmouseover and onmouseout to an element, we usually want them to apply
to the whole interior area spanned by that element. The code below adds the
pointer-events attributes, adds the hyperlinks and then exports our graph to
an SVG document. Note that the syntax node::box is used in grid graphics to
reference the grob named ’box’ within the gTree named ’node’.

> ## This statement has been abbreviated here as it is not

> ## necessary to show all the links.

> courseLinks <-

> c("STATS 10X" = "stage1/STATS_101/G",

> "STATS 125" = "stage1/STATS_125",

> "STATS 150" = "stage1/STATS_150",

>

> "STATS 370" = "stage3/STATS_370",

23

> "STATS 380" = "stage3/STATS_380")

>

> ## The full URLs

> courseLinks <-

> paste("http://www.stat.auckland.ac.nz/courses/",

> courseLinks, sep = "")

>

> courseNames <- paste("STATS", papers)

> for (course in courseNames) {
> grid.garnish(paste(course, "::box", sep = ""),

> "pointer-events" = "all")

> grid.hyperlink(course, courseLinks[pap])

> }
>

> ## Export to SVG

> gridToSVG("bioinformatics.svg")

We have shown how we produced the Bioinformatics SVG document. The
process is then repeated for the other 14 career fields, making a total of 15 SVG
documents.

5.5 Making an interactive index page

With a total of 15 SVG documents, it is a good idea to have an index page
linking to all of them. We wanted to have a collection of named bubbles, with
each linking to one of the SVG documents produced earlier. It would also be
good to have some sort of interactivity, such as changing a bubbles appearance
when it is moused over.

To produce the bubbles we used a graph as before. This graph will have 15 nodes
and no edges. However, using the same tools as earlier, we cannot get a circular
cloud of nodes when they are no edges connecting them. So we connected every
node to every other node, giving a total of 14 + 13 + ...+ 1 = 105 edges. To give
the impression that no edges are present we will set the edge colour to white,
the same colour as the background fill. To get our graph occupying a circular
shaped region, we use the neato layout algorithm. The creation of the graph
and the process of exporting to SVG is shown below. The code is explained
with embedded comments.

> topics <-

> c("Finance", "Actuary", "Marketing", "Market Research",

> "Org Psych", "Ecology", "Bioinformatics", "Medical Stats",

> "Statistician", "Academic Research", "Education",

> "Government", "Ops Research", "Engineering", "Energy")

>

> ## Every possible pair of nodes is connected

> ## So for each node, the edge list contains all other nodes

24

> edgeList <- vector("list", length(topics))

> for (i in 1:length(topics))

> edgeList[[i]] <- list(edges = topics[-i])

> names(edgeList) <- topics

>

> ## Create a graph object

> gnel <- new("graphNEL",

> nodes = topics,

> edgeL = edgeList,

> edgemode = "directed")

>

> ## Global node attributes - apply to all nodes

> allNodeA <- list(fillcolor = "#ffedf4",

> color = "#ffedf4")

> ## Global edge attributes - apply to all edges

> allEdgeA <- list(color = "white")

> ## List of global attributes

> globalA <-

> getDefaultAttrs(list(graph = list(),

> node = allNodeA,

> edge = allEdgeA))

>

> ## Return a laid-out graph, using the neato layout

> rag <- agopen(gnel, "", layoutType = "neato",

> attrs = globalA)

>

> ## The URLs to the other SVG documents

> links <- paste(gsub(" ", "_", tolower(topics)), ".svg",

> sep = "")

> names(links) <- topics

>

> ## Draw the graph

> grid.newpage()

> grid.graph(rag)

>

> ## Make some changes, add links, add javascript event handlers

> for (topic in topics) {
> ## Grab the label and set its font size, change its name

> grid.edit(paste(topic, "::label", sep = ""),

> gp = gpar(cex = .9),

> name = paste(topic, "label", sep = ""))

>

> ## Grab the bubble and change its name (explained later)

> grid.edit(paste(topic, "::box", sep = ""),

> name = paste(topic, "box", sep = ""))

>

> ## Add javascript event handlers to the bubbles

> grid.garnish(paste(topic, "box", sep = ""),

> "pointer-events" = "all",

25

> "onmouseover" = paste("highlight('", topic,

> "')", sep = ""),

> "onmouseout" = "dim()")

>

> ## Add javascript event handlers to the labels

> grid.garnish(paste(topic, "label", sep = ""),

> "pointer-events" = "all",

> "onmouseover" = paste("highlight('", topic,

> "')", sep = ""),

> "onmouseout" = "dim()")

>

> ## Add the hyperlinks to the nodes. By adding these to

> ## the nodes both bubbles and labels become hyperlinks

> grid.hyperlink(topic, links[topic])

> }
>

> ## Add external javascript file

> grid.script(filename = "topicsFunctions.js")

>

> ## Export to SVG

> gridToSVG("topics.svg")

The reason we change the names of the labels and boxes is related to id at-
tributes in SVG. The grid.graph() function draws each node of the graph as a
gTree (see Section A.6), naming the label ’label’ and the circle ’box’. So we have
multiple grobs with the same names. In R this does not cause conflict because
the gTrees themselves have unique names. However when we export to SVG,
elements recieve id equal to their corresponding grob name in R, regardless of
whether or not they are contained within a gTree. As a result, we get multiple
elements with id ’label’ and multiple elements with id ’box’. This would make
scripting much more difficult because it violates the unique element identifier
requirement of SVG. By changing the grob names before we export to SVG, so
that they are unique, we avoid these problems.

The javascript file topicsFunctions.js contains the functions highlight()

and dim() functions, which are not shown here. The highlight() function,
which is called when a bubble is moused over, simply increases bubble size and
changes the label style to have bold font and red colour, while dim() simply
removes these changes when the mouse cursor leaves the bubble. Figure 5.6
shows the interactive SVG document.

This index page can be found online at http://www.stat.auckland.ac.nz/

~paul/Projects/DavidBanks/Courses/topics.svg.

5.6 Summary

We achieved a successful result in producing interactive web documents for this
application. There was a fair amount of initial work required however, such

26

http://www.stat.auckland.ac.nz/~paul/Projects/DavidBanks/Courses/topics.svg
http://www.stat.auckland.ac.nz/~paul/Projects/DavidBanks/Courses/topics.svg

Figure 5.6: Interactive index page for Course Pathways application

as coding 15 plain-text files by hand (with careful inspection of the Course
Pathways PDF so we made no mistakes), and then generating R code that
would read these text files and interpret exactly what they are describing. This
application also required learning how to use extra packages which produce
graphs. Some of our graphs appear somewhat chaotic, but that is to be expected
when the number of nodes and edges is not very small. Once we had created
our graphs it was fairly simple to produce SVG documents and add hyperlinks
and basic interactivity using the gridSVG functions.

27

Chapter 6

Application 2: Health Data
for Victoria, Australia

6.1 Background Information

We were contacted by Steve Vander Hoorn, who is a statistical consultant at
the Statistical Consulting Centre of the University of Melbourne, Australia. He
wanted to use gridSVG to create an interactive map of the state of Victoria that
could be used to display health statistics. The map was to be split up into Local
Government Areas (LGAs), with the fill colour of each region representing the
value of a single health statistic. Steve also suggested that it would be useful
to have a scatter plot of two health variables (one of them being the variable
represented in the map), and that this scatter plot would be interactively linked
to the map.

The two statistics in this application are related to the human heart and were
given to us with the names ’SIR’ and ’SEIFA’. In R, these were coded as
sir.heart and obs.heart. The map was to display the SIR variable only, and
the scatter plot was to display SIR versus SEIFA. Note that the real data was
not supplied to us so we worked with random data generated by R. We used
uniformly distributed random data for SIR and normally distributed random
data for SEIFA, produced with the runif() and rnorm() R functions.

6.2 Making the map with R

The map coordinates were supplied to us within a shapefile, and the code used
to read this data into R and draw a map with them were also supplied to us.
A collection of polygon grobs are used to draw the map. This process involved
using a number of mapping packages, including maps [13], maptools [19] and
rgdal [16]. These contained all the functions we needed to make the grid polygon
grobs in R. We used the RColorBrewer package [26] to find a colour palette for

28

our map, and we used the classInt [12] package to split our health statistic
data by quantiles into 8 intervals and to assign colours from the palette to each
interval of the health statistic. Splitting by quantiles means the intervals are
not necessarily of equal size, it just means we have a similar number of regions
that fall within each of the intervals.

After applying the colour scheme to the polygon grobs, we can then create
the map using the spplot() function from the sp package [29] (which is a
dependency of the maptools package). This function also allows us to specify
that we want a colour key on the side of our map.

6.3 Creating an image to export

We want more than just a map in our SVG document, so there are several more
steps before we are ready to export to SVG. Firstly, we want a scatter plot of
sir.heart versus obs.heart underneath the map. To do this we created an object
representing this plot using the xyplot() function from the lattice package [30].
The lattice package provides functions for drawing standard plots in R using
grid graphics instead of base graphics.

To arrange all the components of our image nicely we need to choose a suitable
page layout. We did this using the grid.layout() function to split the page
into two rows. We draw the map in the top row, and then draw the scatterplot
in the second row within a viewport that spans 70% of the available width.

We use the grid.garnish() and grid.script() functions to add event han-
dlers and javascript functions (discussed in next section) before exporting to an
SVG document with the gridToSVG() function.

6.4 Converting R variables to javascript vari-
ables

We want the names of all the LGAs to be available for us to use within our
javascript functions, so we need some way of converting from R variables to
javascript variables. We did this using the paste() function in R, which is used
to paste several character strings together into one character string. This was
done as follows:

> ## Get the region names

> regionNames = as.character(vlga2@data$LGA_name)

> ## Wrap single quotes around the region names

> regionNames = paste("'", regionNames, "'", sep = "")

> ## Paste the names into one string of comma separated names

> regionsArr = paste(regions, collapse = ", ")

This code uses paste() to wrap single quotes around each region name within
regionNames, and then uses paste() again to join all of the quoted region names

29

into one long character string, with each name separated by a comma followed
by a space (specified by the collapse argument). We can add this javascript
variable into our SVG document as follows:

> ## Include javascript internally

> grid.script(paste("regions = Array(",

> regionsArr, ");", sep = ""))

The section of code below shows how the resulting <script> element that ap-
pears in the SVG document. The code has been reformatted for readability.
Most of the region names have been excluded and replaced by, as it is
not necessary for us to list all the elements of the array here.

<script type="text/ecmascript" id="GRID.script.grob.19" >

<![CDATA[

regions =

Array('Alpine (S)', 'Ararat (RC)', 'Ballarat (C)', 'Banyule (C)',

'Bass Coast (S)', 'Baw Baw (S)', 'Bayside (C)', 'Benalla (RC)',

'Boroondara (C)', 'Brimbank (C)', 'Buloke (S)', 'Campaspe (S)',

.....

'West Wimmera (S)', 'Whitehorse (C)', 'Whittlesea (C)',

'Wodonga (RC)', 'Wyndham (C)', 'Yarra (C)', 'Yarra Ranges (S)',

'Yarriambiack (S)'

);

]]>

</script>

We can see this code has created a global javascript variable called regions.
Making it global means that it will be accessible from within any javascript
function contained within the same document. The <![CDATA[and]]> terms
are the opening and closing tags for a CDATA section. The grid.script()

function automatically wraps these around any javascript code that is added
internally into the SVG document. Without these, certain characters such as <
and & within javascript can cause parsing errors within our SVG document. In
this case we don’t have any problematic characters but they are always added
just to be safe. Note that each region name in the array has an abbreviation
inside brackets. This tells us more about the official name of each LGA. S stands
for Shire, C for City, B for Borough and RC for Rural City.

6.5 Making our SVG interactive

We wanted to link the map to the scatterplot, so that when we hover over a
region in the map the corresponding point in the scatterplot is highlighted, and
vice versa. Recall that we have used the xyplot() function from the lattice
package to produced our scatterplot. Since we did not name the grobs within

30

the scatterplot ourselves, we cannot be sure what lattice has named them, and
hence we do not know what IDs the corresponding SVG elements have been
given. Therefore we need to inspect the source code of the SVG document to
find out what the IDs of the elements corresponding to the scatterplot points are
- we need to know them for our javascript functions. From the source code we
see that individual points from our scatterplot have been coded as SVG circle
elements with IDs of the form plot.xyplot.points.panel.1.1.5 for point 5,
plot.xyplot.points.panel.1.1.24 for point 24 and so on.

The javascript document we used for the SVG document is shown below. The
embedded comments help to explain what each section is doing.

highlight = function(i, n) {

// Make n global so we can reuse it in dim().

// n is the number of polygons that define the region:

// Some regions are composed of multiple polygon elements

// (e.g. because of lakes, islands)

window["n"] = n;

// Check regionEl is defined, if it is not then define it.

// RegionEl is the text element at the top.

if (typeof(regionEl) == "undefined") {

gEl = document.getElementById("regionLabel.1").childNodes[1];

regionEl = gEl.childNodes[1];

}

// Find all polygons for the region we are highlighting and

// highlight them. We make them global variables for easier

// access later on in the dim() function. This gives us global

// variables called polygon1, polygon2, ...

for (j=1; j<=n; j++) {

pgName = "polygon" + j;

var pgID = "ID-" + (i - 1) + "-" + j + ".1";

window[pgName] = document.getElementById(pgID);

window[pgName].oFill = window[pgName].getAttribute("fill");

window[pgName].setAttribute("fill", "red");

}

// get the corresponding point in the scatterplot

var pointID = "plot.xyplot.points.panel.1.1." + i;

point = document.getElementById(pointID);

// Define some properties for the point object. Since point is

// global, we can access these properties later on in the dim()

// function.

point.originalStroke = point.getAttribute("stroke");

point.originalr = point.getAttribute("r");

point.originalFill = point.getAttribute("fill");

// Now change point properties with the setAttribute() method.

31

point.setAttribute("stroke", "red");

point.setAttribute("r", 4);

point.setAttribute("fill", "red");

point.setAttribute("fill-opacity", 1);

// Display the region name at the top (regionEl text element)

regionEl.textContent = regions[i-1];

}

dim = function() {

// Set all the polygons back to their original fill

for (j=1; j<=n; j++) {

pgName = "polygon" + j;

window[pgName].setAttribute("fill", window[pgName].oFill)

}

// Set the point back to its normal style

point.setAttribute("stroke", point.originalStroke);

point.setAttribute("r", point.originalr);

point.setAttribute("fill", point.originalFill);

}

We then garnish the grobs with SVG attributes using the grid.garnish()

function. Finally we use the grid.script() function to include the javascript
code shown above as an external file:

> ## Add onmouseover and onmouseout attributes to the points

> grid.garnish("plot.xyplot.points.panel.1.1", group = FALSE,

> "onmouseover" = paste("highlight(", 1:79, ",",

> numPolygons, ")", sep = ""),

> "onmouseout" = rep("dim()", 79))

>

> ## If we don't set point-events to all, onmouseover will only

> ## work on the border of the points and not inside

> grid.garnish("plot.xyplot.points.panel.1.1", group = TRUE,

> "pointer-events" = "all")

>

> ## Add onmousover and onmouseout attributes to the polygons

> for (i in 1:79) {
> n <- numPolygons[i]

> for (j in 1:n)

> grid.garnish(paste("ID", i-1, j, sep = "-"),

> "onmouseover" = paste("highlight(", i, ",",

> n, ")", sep = ""),

> "onmouseout" = "dim()")

> }
>

> ## Add javascript functions file to the SVG document

32

> grid.script(filename = "map.js")

An alternative way to get javascript representations of R variables is to use the
RJSONIO package. We use this method in the next application (Chapter 7).

6.6 Adding hyperlinks to the regions

We thought it would be useful to add hyperlinks to the regions of the map,
since we noticed that Wikipedia had pages on each LGA within Victoria. Con-
veniently the Wikipedia URLs were consistent, so that it would not take too
much work to automatically produce the URLs in R instead of copying and
pasting the links manually. There are some variations however - for example
the URLs can have either ’City of [LGA name]’ or ’[LGA name] City’. We
use the RCurl package [17] to help us identify which of the alternative URLs is
correct. This is done as follows. Embedded comments help explain what each
piece of code is doing.

> regions = as.character(vlga2@data$"LGA_name")

> numRegions = length(Regions)

> urls = character(numRegions))

> ## Replace any hyphens from the region names with spaces

> regions2 = gsub("-", " ", regions, fixed = TRUE)

> ## All the names follow this pattern

> patt = "([a-zA-Z]+) \\(([A-Z]*)\\)"
>

> ## Need to change the user agent string that RCurl provides.

> ## This prevents cases where Wikipedia returns a FALSE result

> ## when the URL does actually exist.

> curl <- getCurlHandle()

> curlSetOpt(.opts = list(useragent = "arbitraryString"),

> curl = curl)

>

> for (i in 1:numRegions) {
> ## Extracts the LGA name only

> place = gsub(patt, "\\1", regions2[i])

> ## Replace any spaces with underscores

> place = gsub(" ", "_", place, fixed = TRUE)

> ## Extracts abbreviated LGA type, i.e. B, C, RC, S

> place.type = gsub(patt, "\\2", regions2[i])

> ## Full type of LGA

> region.type = switch(place.type,

> S = "Shire",

> C = "City",

> B = "Borough",

> RC = "Rural_City")

>

> ## One possible URL ending

33

Figure 6.1: Interactive SVG document

34

> url.id = paste(place, region.type, sep = "_")

> ## A second possible URL ending

> url.id2 = paste(region.type, "of", place, sep = "_")

> ## Full URL

> url = paste("http://en.wikipedia.org/wiki/", url.id,

> sep = "")

>

> ## Run through the alternatives, checking which one is correct

> if (!url.exists(url))

> url = paste("http://en.wikipedia.org/wiki/", url.id2,

> sep = "")

> ## Some rural cities codied as cities, so check for this too

> if (!url.exists(url) & place.type == "RC")

> url = gsub("Rural_", "", url, fixed = TRUE)

> urls[i] = url

> }

This gives us a vector of 79 URLs, one for each LGA on our map of Victoria.
We convert the urls variable into a javascript variable and include it internally
in our SVG document as demonstrated earlier in Section 6.4.

6.7 Integrating into HTML

HTML (HyperText Markup Language) is the language used to write web pages
for the internet. It is an XML based language (like SVG) that is used to define
content and structure of web pages. There are several versions of HTML. We
used HTML5, which is the most recent version of HTML to be released. Of
particular importance for us is that HTML5 allows SVG to be embedded inline
within a web page. This means we can literally paste the contents of an SVG
file into the HTML document instead of having the SVG content in an external
file and using the HTML <embed> tag or <object> tag to include it at a cer-
tain point in the document. One advantage of including SVG inline is that is
makes scripting much more simple - interaction between HTML elements and
SVG elements becomes easier because they are both part of the same parent
document.

We decided to try to integrate this interactive SVG application into an HTML
web page with extra features, such as a scrollable/clickable list of region names
that interacts with the map and scatterplot. First we needed to get the SVG
inline within our HTML document. To do this, we decided to make a tem-
plate HTML file that contained tags of the form %tag%. Then we can use the
readLines() function to read the template into R, and we use the gsub() func-
tion to replace the tags with content before finally saving the modified content
to a new file using the writeLines() function. The template HTML document
is shown below.

<!DOCTYPE html>

35

<html>

<head>

<title>Interactive map</title>

<link rel="stylesheet" href="styles.css" />

<script type="text/javascript">

%js%

</script>

<script type="text/javascript" src="map.js"></script>

</head>

<body>

<div id="h1Wrapper">

<h1>sir.heart for LGAs of Victoria</h1>

</div>

<table id="outerTable">

<tr>

<td>

<table id="columnHeadings">

<col style="width:200px" />

<col style="width:70px" />

<tr>

<th>Region</th>

<th>sir.heart</th>

</tr>

</table>

<div id="regionTableWrapper">

<table id="regionTable">

<col style="width:200px" />

<col style="width:70px" />

%tr%

</table>

</div>

</td>

<td>

%svg%

</td>

</tr>

</table>

</body>

</html>

There are three tags in this file which mark places where we need to insert
content from R. In place of the %js% tag we substitute javascript variables that
have been created as described in Section 6.4. The %tr% tag is where we will
insert HTML table rows from within R. We use a <table> HTML element to

36

create our list of region names. Therefore there will be a table row for each
region, and we do not want to type all 79 of these out manually. The %svg%

tag is where we will insert the contents of our SVG document. Substituting
content in place of the tags is done as shown below. Just like in the we have
done previously with javascript variables, the tableRows R variable is created
using the paste() function.

> ## Read in the template

> template = readLines("svgmapTemplate.html")

>

> ## Substitute the javascript and table rows in

> htmlCode = gsub("%js%", javascript, template)

> htmlCode = gsub("%tr%", tableRows, htmlCode)

>

> ## Read the SVG document in

> svg = readLines("map_modified.svg")

>

> ## Remove XML declaration on first line - invalid for inline svg

> svg = svg[-1]

>

> ## Substitute the SVG inline

> htmlCode <- gsub("%svg%", paste(svg, collapse = "\n"), htmlCode)

>

> ## Write the results to a new file

> writeLines(htmlCode, "svgmap.html")

For those unfamiliar with HTML, we include a brief summary of how to interpret
the above document. The <head> section defines the head of the document. This
is where we include CSS styles, javascript and other information about the docu-
ment like the title. The line <link rel="stylesheet" href="styles.css" />

defines an external CSS stylesheet. CSS stands for Cascading Style Sheets. It is
the language used for styling HTML elements. CSS can also be included inline
by adding style attributes to elements. The <body> section contains all of the
visible content of the document. A <div> element is basically just a container
element. They are useful for breaking a page up into sections, positioning con-
tent and applying styles to large blocks of content. To create a list of region
names we use the <table> element. The <tr> element defines a table row, the
<td> element defines a table cell, and the <th> element defines a table heading
(basically the same as a <td> element but with bold text styling by default).
We use <col> elements to specify the width of each column in the table. The

 element defines a line break.

Using HTML, we have arranged the content of our document as such: A heading
at the top, then a table underneath it. This top-level table contains one table
row with two cells (one row and two columns). Within the first cell is a table
that contains only two headings (<th> elements). The second cell contains a
second table which has 79 rows and 2 columns containing the region names and
the values of sir.heart (the variable which is colour-coded in the map). There is
a good reason for splitting the table headings into a separate table. The list of
region names is quite long, so we opt for a fixed-height list with a scrollbar. If

37

we include the table headings inside the scrolling section, they are hidden when
we scroll down the list. It is best to have the table headings always visible. To
make it look like one table, we used <col> elements to make the column widths
in each of the tables indentical. The second cell (column) of the top-level table
contains the SVG content of this document. We have put our scrollable list of
the left hand side of the Victoria map.

We can use CSS styles to improve the appearance of the document, though its
use is minimal here. We used CSS styling to specify that the <div> element
that contains the table of region names and values should not exceed 700 pixels
in height, which is how we achieve scroll bars. The title bar at the top also has
styling applied. Refer to Figure 6.2 to see what the HTML document looks like
in a web browser.

Now we discuss changes we have made to our javascript functions. The high-
lighting has changed slightly from the standalone SVG we made earlier (Figure
6.1). Filling the regions in with red obscures what category the region belongs
to in respect to the colour scale. We changed this so that the border is now
highlighted red instead of the fill colour. This change applies to both polygons
on the map and the points in the scatterplot. There is some hidden complexity
here because polygon borders overlap each other. To successfully highlight the
border we need to bring the polygon to the front so that nothing else overlaps its
borders. We used the cloneNode() javascript method demonstrated in Section
4.3. The clone is made to have no fill colour and a thick red border. Appending
the clone as the last child of the polygon-parent <g> element (the element that
contains all the polygons of the map as child elements) allows us to effectively
bring the polygon border to the front of the SVG image, so that none of it is
obscured and our highlighting works as desired. Finally a completely new inter-
active feature has been added. Clicking on a category of the colour scale on the
right of the map highlights all regions that fall into that category. Clicking the
selected category again de-selects that category and removes the highlighting.
Figure 6.3 shows this feature in action.

The HTML document is online at http://www.stat.auckland.ac.nz/~paul/
Projects/DavidBanks/Victoria/svgmap.html.

6.8 Summary

We produced a fairly interactive HTML document for this application, which
we regard as a very successful outcome. For this application, much of the initial
work in importing spatial data into R and drawing the map of Victoria was
already given to us when we were contacted by Steve Vander Hoorn. This part
would have involved learning how to use extra R packages for mapping spatial
data. Some additional tasks that were not necessary in the Course Pathways
application were the conversion of R variables into javascript variables using
the RCurl package to generate valid web links that we could add to our map.
The first extra task was fairly simple. We were fortunate with the hyperlinks in
that the URLs on the Wikipedia website were generally consistent in the way
they were named. The majority of work for us in the Victoria Health Data

38

http://www.stat.auckland.ac.nz/~paul/Projects/DavidBanks/Victoria/svgmap.html
http://www.stat.auckland.ac.nz/~paul/Projects/DavidBanks/Victoria/svgmap.html

Figure 6.2: HTML version of the Victoria health data application

39

Figure 6.3: Category selection by clicking on the colour scale

40

application was in writing the javascript functions that provide interactivity,
and integration into an HTML web document. Our javascript functions make
use of more advanced javascript capabilities such as node cloning. Producing an
interactive HTML document allowed us to add even more interactive features,
like a scrollable list of regions. This involved a few clever tricks such as inserting
information from R into a template HTML document via use of tags, and also
including SVG inline. For the web development novice, this task would require
learning a fair bit of new material, such as how to write a web document in
HTML, and how to successfully blend SVG, HTML, CSS and javascript together
to produce a high quality web document.

41

Chapter 7

Application 3: NZ Price
Kaleidoscope

7.1 Origin of the idea

We recieved interest from Statistics New Zealand in having a New Zealand Price
Kaleidoscope. The idea came from the Germany Price Kaleidoscope [6], which
has been produced by the German Statistical Office. Figure 7.1 is a screenshot of
the German Price Kaleidoscope. The German Price Kaleidoscope can be found
online at https://www.destatis.de/Voronoi/PriceKaleidoscope.svg.

7.2 Using the German Price Kaleidoscope

The circular shape in the middle is split into multiple regions; these regions
are subdivided further into sub-regions. Each chunk (sub-region) of the circle
represents a category used in the calculation of the CPI (Consumer Price Index).
The area of a chunk approximates the weighting that the corresponding category
has in the calculation of the CPI, and the fill colour describes the price change
between two time periods. From each top-level region, lines run out to the sides
of the kaleidoscope. These lines link the top-level regions to labels, which also
contain weight and price change information for these categories. When we
mouse over the chunks of the kaleidoscope in a web browser, a tooltip appears
and follows the direction the mouse cursor moves in. The contents of the tooltip
give the category name, the CPI weighting for that category and the price change
for that category. The tooltip disappears when the cursor leaves the boundary
of the kaleidoscope.

Our aim was to produce something with similar functionality and interactivity,
but with New Zealand data instead.

42

https://www.destatis.de/Voronoi/PriceKaleidoscope.svg

Figure 7.1: The German Price Kaleidoscope

7.3 Acquiring New Zealand CPI data

Before attempting to use gridSVG to see if we could replicate this for New
Zealand data, we needed to find CPI weights and price changes for New Zealand.
These were found on the Statistics New Zealand website, on the Infoshare feature
of their website [3]. The data was composed of groups, which were split up into
subgroups. Some of the subgroups were further split up into classes. The
data was collected at quarterly intervals, with the most recent set of weights
spanning from 2006 to 2012. The file containing the weights had to be manually
reformatted to get it into a format that R could read.

7.4 Making our own circle of regions

The next step was to figure out how we could use this information from Statistics
New Zealand to produce a segmented circle like in the German Price Kaleido-
scope. We achieve this using a Voronoi Treemap diagram. A Treemap is used
to present hierarchical data in graphical format, by dividing and subdividing
rectangular regions up into smaller rectangular regions. A Voronoi Treemap
uses non-rectangular regions, and allows regions of any shape to be subdivided
into smaller parts. This is done by an iterative algorithm. The algorithm starts
with an initial set of points in two-dimensional space and then tries to define
borders around the points which split the total area up into multiple regions.
The points and borders are shifted around in an attempt to minimise the dif-
ference between the desired areas and the calculated areas. Once the algorithm

43

has converged, the solution is saved into an RDA file, which is file that stores R
objects. The solution is saved as a set of R polygon objects. The objects can be
read into R again later using the load() function. The objects we saved contain
all the information about the polygons that we need to draw the regions. All of
the R code for making the Voronoi Treemap can be found in the online article
Voronoi Treemaps in R [21].

7.5 Creating a suitable page layout

Now we needed to define a suitable page layout for our kaleidoscope. This was
done using a viewport tree (see Appendix A). We define a main central viewport
to draw all of our polygons, viewports on the left and right sides of this to be
used for labelling (like in the German Price Kaleidoscope), and top and bottom
viewports for titles and extra information that we may decide to include. The
following code defines an appropriate layout:

> ## The respect matrix

> respect.mat = matrix(0, nrow = 3, ncol = 3)

> respect.mat[2, 2] = 1

>

> ## The page layout

> layout =

grid.layout(3, 3,

heights = unit(c(1.1, 1, 0.4),

c("inches", "null", "inches")),

widths = unit(c(0.5, 1, 0.5), "null"),

respect = respect.mat)

>

> ## The parent viewport, with layout specified above

> parent.vp = viewport(name = "parent", layout = layout)

>

> main.vp =

viewport(name = "main",

xscale = c(-1000, 1000),

yscale = c(-1000, 1000),

layout.pos.row = 2,

layout.pos.col = 2)

> top.vp =

viewport(name = "top",

layout.pos.row = 1,

layout.pos.col = 1:3)

> bottom.vp =

viewport(name = "bottom",

layout.pos.row = 3,

layout.pos.col = 1:3)

> left.vp =

viewport(name = "left",

layout.pos.row = 2,

44

mainleft right

top

bottom

Figure 7.2: How the page has been split into regions

layout.pos.col = 1)

> right.vp =

viewport(name = "right",

layout.pos.row = 2,

layout.pos.col = 3)

>

> ## Put the viewports into a viewport tree

> vp.tree =

vpTree(parent.vp,

vpList(main.vp, top.vp, bottom.vp,

left.vp, right.vp))

>

> ## Apply the page layout and push all the viewports

> grid.newpage()

> pushViewport(vp.tree)

A brief explanation of this code may be useful. The respect matrix is a matrix of
zeroes except for the [2,2] entry which has value 1. When giving this argument
to the grid.layout() function, we are forcing the viewport main to have equal
width and height. We define a parent viewport and apply the layout to it. Then
we define the 5 viewports we want in our layout and what parts of the layout
they should each occupy. Once these have been defined we put them into a
viewport tree. This viewport tree sets the 5 viewports as children of the parent
viewport. Then we can call pushViewport() once to draw the whole layout and
push all the viewports within the viewport tree.

Figure 7.2 shows how our page has been split and where the viewports are
located.

7.6 Presenting price changes using colour

We will present price changes as a percentage change between a comparison
quarter and a baseline quarter. The baseline quarted is earlier in time than

45

Figure 7.3: Our colour scale

the comparison quarter. We represent the price changes in each category using
a fill colours. We want a scale that assigns cool colours (blue for example) to
categories that have a price drop, and assigns hot colours (red for example) to
categories that have a price rise. We chose to make the boundaries of categories
on the colour scale at the points -20, -10, -5, -2, 0, 2, 5, 10 and 20. This gives
us 5 colours either side of zero, which we choose with the help of the hcl()

function. The following code does this. See Figure 7.3 for the colours we will
use. Note that for classes/subgroups with a zero price change, we use a very
pale grey fill colour that is not shown as part of the colour scale (because zero
is a point value and not an interval).

> ## Form the cool colours and warm colours

> numCols = 10

> negCols = hcl(250, 70, seq(25, 95, length = numCols/2))

> posCols = hcl(0, 70, seq(25, 95, length = numCols/2))

The colour scale is drawn on the right hand side within the top viewport of our
page layout. A title is also drawn in the centre of the same top viewport.

7.7 Positioning the labels

The next task was to figure out how to position the side labels automatically.
We want to add side labels for the top level groups only (we have 11 of these).
We aim to show labels for the subgroups inside tooltips within our interac-
tive SVG document. To help with this label positioning task we used the
TT.polygon.centroids() function from the soiltexture package [20]. Given
a polygon object, this function calculates the centroid of the polygon. Based on
the 11 centroids, We use the median x-coordinate to decide which regions will
have their labels on the left side and which will regions have their labels on the
right side. Using the median rather than the mean ensures we have a similar
number of labels on each side (impossible to get an equal number with a total of
11). Our initial y-coordinates for label positions set equal to the y-coordinates
of the polygon centroids. Using the centroid coordinates we draw straight lines
from the centroids out to the side panels. But then when we add the labels,
weights and price changes in the left and right panels we see there is a problem
with overlap (Figure 7.4).

To fix this we developed an iterative algorithm with a number of steps that
calculates suitable positions for the y-coordinates of the line-endings. The y-
coordinates for these depend on the label height, because long labels get bro-

46

Figure 7.4: The group labels and information overlap

ken onto multiple lines. Our algorithm takes this into account. To calculate
label widths and heights we form a set of temporary text grobs with initial
y-coordinates equal to the y-coordinates of the polygon centroids. Then we cal-
culate the top and bottom y-coordinates of these grobs based on label height,
and use them to determine whether any pair of labels overlap. Labels are shifted
up or down if necessary. This process runs a number of times, since shifting a
label to fix one overlap may create another. After all overlaps have been reme-
died, we check if any of the labels have been pushed up or down too far (beyond
the boundaries of the page). If they have, we run through another process which
reduces unused space between labels. We shift labels vertically up or down to
fill in these spaces and hopefully get all the labels back within the boundaries
of the page. The final locations of the y-coordinates are shown as black dots in
Figure 7.5.

With this final set of coordinates, we can then create a new set of text grobs
(with the final coordinates), and we can also create line grobs that join labels
to the polygon centroids. Since we have adjusted the y-coordinates on the side
panels from their initial values, the y-coordinate for a given label may not match
the y-coordinate for the corresponding polygon centroid. As a results some of
the lines are draw with two line grobs, so that they appear as lines with a single
bend in them. See Figure 7.6 for the complete kaleidoscope with no overlapping
labels.

7.8 Exporting to an SVG document

Once the polygons, labels, lines, colour scale and title had been drawn, the
next step was to export the image to SVG format. This step is once again
made simple with gridSVG: we use the gridToSVG() function and provide it the
filename that we want our SVG code to be written saved in. The conversion to

47

Figure 7.5: Final set of coordinates for the labels and centroids

Figure 7.6: The final kaleidoscope)

48

SVG does not change the appearance of the kaleidoscope at all when compared
to the image we drew in R. See Figure 7.6 in the previous section. This figure
also shows what the resulting SVG document looks like when viewed in a web
browser.

7.9 Converting R variables to javascript vari-
ables

Before we begin to write javascript functions which add interactivity to our SVG
document, we need certain information to be available to our functions, such as
category names, CPI weightings and quarterly prices. All of this data is available
to us in R variables - we just need to convert them into javascript variables.
In the Victoria Health Application we did this ourselves using the paste()

function. This time around we used the toJSON() function from the RJSONIO
package [18]. This function takes an R variable and returns a character string
that contains a valid javascript representation of this variable. Two simple
examples are given below:

> toJSON(1:10)

[1] "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]"

>

> z = list(item1 = 1:2, item2 = "abc")

> toJSON(z)

[1] "{\n \"item1\": [1, 2],\n\"item2\": \"abc\" \n}"

> ## \n means newline

> cat(toJSON(z))

{

"item1": [1, 2],

"item2": "abc"

}

After we have created javascript variables with RJSONIO, we saved them into
a file using the writeLines() function. Later on we can create a reference to
this external file from our SVG document using the grid.script() function.

49

7.10 Adding interactivity

Now that we have the price kaleidoscope in SVG format, we can start to add
interactivity with javascript.

The first thing we want to do is to add tooltips to our categories, so that
when we hover over a polygon we get a tooltip that displays category name, its
CPI weighting and its price change. We did this by creating SVG <rect> and
<text> elements that define the tooltips, and then appended them to the end
of the SVG document. Each polygon element in the SVG (each class/subgroup)
was given three event handlers: onmouseover, onmouseout and onmousemove.
The onmouseover event handler calls a function which changes the visibility of
the tooltip elements to’visible’ and updates the information displayed within
the tooltip. The onmousemove event handler calls a function that updates the
location of the tooltip, so that it follows the mouse cursor as it moves over a
region. The onmouseout event handler calls a function which sets the visibility
of the tooltip elements back to ’hidden’.

To emphasise which region is being moused over, the function called by onmouseover

also sets the border of the polygon to thick and black. This is not done directly
by changing the polygon attributes - it is more complicated than that because
polygon borders overlap each other. This is the same problem we ran into in
the Victoria Health Data application. To get the desired effect, we cloned the
polygon element and then changed the clone so that it has no fill colour and
a thick black border. This uses the cloneNode() method we used before. By
appending this clone onto the end of the document, the cloned polygon has
effectively been brought to the front (nothing can overlap it) and it acts like a
wire-frame around the original polygon, thus achieving the desired border effect.
Figure 7.7 shows the tooltips and border highlighting in action.

A second feature we decided to add was zooming. We wrote our code to pro-
duce the kaleidoscope so that it was general enough to be able to produce
kaleidoscopes for subsets of the data as well. This enabled us to produce ’sub-
kaleidoscopes’ for all 11 top-level groups (and thus 11 more SVG document).
We used the grid.hyperlink() function to add hyperlinks to the side labels
of the full kaleidoscope, so that clicking a label takes us to the SVG document
containing a sub-kaleidoscope for that group. Mousing over a linked label will
show a tooltip that says ’Click to zoom’, which lets the user know that this
zooming functionality exists. Within each sub-kaleidoscope we added a ’Back’
link which takes the user back to the full kaleidoscope. Refer back to Figure ??.
Clicking on the Food side label takes us to the document seen in Figure 7.8.

7.11 Integrating into HTML for further func-
tionality

Finally, we decided to see if we could add further functionality with drop down
lists that let the user pick which two quarters to calculate the price changes
from. To do this required integrating the SVG document into an HTML web

50

Figure 7.7: Tooltip and border highlighting

51

Figure 7.8: Zooming in on the Food group

page like we did previously.

The drop down lists can be created using HTML <select> elements within a
<form> element. In HTML, the <form> element contains other elements that
allow the user to select and/or enter data, such as text boxes, check boxes
and drop down lists and radio buttons. A form can either be submitted and
processed by a web server, or we can use javascript functions to complete actions
based on user input. We will use an <input type="button"> element to create
a clickable button for our form, which will execute some javascript code. To add
two drop down lists and a clickable button, this is what we needed to include
in our form (shortened here with indicators):

<form>

<select id="comparison">

<option value="2012Q2">2012Q2</option>

<option value="2012Q1">2012Q1</option>

....

<option value="2006Q2">2006Q2</option>

</select>

<select id="baseline">

<option value="2012Q2">2012Q2</option>

<option value="2012Q1">2012Q1</option>

....

<option value="2006Q2">2006Q2</option>

</select>

52

<input type="button" onclick="updateValues()" value="Update" />

</form>

There are 24 quarters, so to save us typing out 24 <option> elements within
our HTML document, we used the same method discussed in Section 6.7. A
template HTML document was read into R, and tags in it were replaced with
HTML content using gsub(). The input element in the code above defines
a button with the text ’Update’ printed on it. When the button is clicked
its onclick event handler calls the javascript function updateValues(). This
function looks at what options are selected in the two drop down lists, grabs the
price data for the corresponding quarters, calculates the percentage change in
price for all groups, subgroups and classes, and then assigns new colours to all
the polygons and updates the side labels with the new price change information.
It also updates a global javascript variable with the new price changes, so that
the tooltips have access to these new values. The javascript functions used in
this application are quite long and complicated, so they are not displayed here.

A final addition to our HTML form were ’Back one’ and ’Ahead one’ hyper-
links that both call javascript functions when clicked. The backOne() function
changes the selected options in both drop down lists to the previous (time-wise)
options if possible, and then calls updateValues(). Similarly the aheadOne()

function selects the next option in both drop lists if possible and then calls
updateValues().

The addition of an HTML form to our kaleidoscope meant we had to change how
zooming was done. Otherwise, when we click a side label to zoom in, we lose
the information that was selected in our form. To get around this, we decided
to use AJAX (Asynchronous Javascript And XML) which is a web technology
that enables us to exchange information with a web server without reloading
the page (or loading a new page). In order to use AJAX we had to upload our
work to a web server and continue from there. We set up a simple PHP script
on the server that accepts a single parameter, and sends back SVG content and
based on its value. PHP (Hypertext Preprocessor) is a server-side language that
allows us to run scripts within a web document before sending the results to the
client after it has been processed. Now when we zoom in, a javascript function
creates an AJAX request which returns the corresponding SVG document. This
SVG document replaces the current SVG content that is shown, and then the
updateValues() function is called to ensure the price changes and polygon fill
colours reflect the options currently selected in our HTML form. Due to the
size of the main SVG document, the SVG content for the main kaleidoscope is
actually saved into a global javascript variable. This means that when we zoom
back out after zooming in we don’t have to request the document from the
server and wait for it to be sent back over the internet every time. The changes
we have made by implementing AJAX means that we stay on the same page
the whole time, unlike the SVG-only version of the kaleidoscope we produced
earlier.

The final HTML interactive kaleidoscope can be viewed at the following URL:
http://www.stat.auckland.ac.nz/~paul/StatsNZ/HTML/htmlkaleid.html.

53

http://www.stat.auckland.ac.nz/~paul/StatsNZ/HTML/htmlkaleid.html

7.12 Summary

The NZ Price Kaleidoscope application was the most complicated application
we worked on. Initially we had to make manual edits to the Statistics New
Zealand data files to get them into a format that could be read into R and to
fix up a few mismatching category names. Thankfully, already-existing code
allowed us to produce a Voronoi treemap using this data without too much
difficulty. Writing our own label positioning algorithm was quite time consum-
ing and proved more difficult than first thought. Our algorithm produced an
acceptable solution, which saved us having to manually place labels and lines.
This was particularly useful for when we had to change the shapes of the regions
part way through. With good label positions calculated we then drew every-
thing and used the standard gridSVG functions to garnish grobs, add scripts
and hyperlinks. Conversion to SVG using gridSVG gave us the foundations to
start building an interactive web document. Just like in the Victoria Health
Data application we had to convert R variables into javascript variables, but
this was easy using the RJSONIO package. Our javascript functions were much
more complicated than what we used previously, utilising advanced concepts
including node cloning, SVG element creation, and positioning tooltips so that
they always remain within the boundaries of the document and AJAX requests.
Integration into HTML was a large task in itself, and requires a certain level of
web-development experience, especially with concepts like AJAX and PHP be-
ing used. This application was certainly the most difficult and time consuming
out of the three applications presented in this report. However with the help
of gridSVG we were successful in crafting a professional quality interactive web
document.

54

Chapter 8

Summary and Conclusion

We have presented three applications that demonstrate how gridSVG can be
used to produce SVG documents from within R. We have shown how these SVG
documents can be modified, with javascript and other web technologies, and
how we can develop professional interactive web applications based on gridSVG
output. Through gridSVG, we can script SVG images to provide features such as
hyperlinks, highlighting and tooltips, to name a few. We can add just about any
functionality we like by using gridSVG to embed javascript and event handlers in
our SVG documents. In conclusion, the gridSVG package presents R users with
an alternate way of presenting statistical data, by allowing images drawn with
the grid graphics system to be made interactive and saved in a commonly used
web format. These documents can be uploaded to a website so that they can be
viewed and explored by anyone with an internet connection. Interactive images
are not only able to efficiently present a vast amount of information compared
to their static image counterparts, they also hold the viewer’s attention and
interest more successfully. The gridSVG package should not be overlooked for
anyone wanting to use R to present interactive graphics on the web.

55

Appendix A

Appendix 1: An
introduction to grid

A.1 The basics of grid

Grid is an alternative graphics system in R. It has a number of differences from
the traditional (base) graphics system. The grid graphics system in R provides
only low level graphics functions. For example grid.rect() and grid.text()

draw rectangles and text, respectively. There are no high-level functions that
draw whole plots, however there are still slightly higher level functions such as
grid.xaxis() which draws an x-axis. Complex images and plots are created
by making a series of calls to these lower level functions. Grid has a set of
graphical parameters used to control settings such as colour, line type and line
width. Like the base graphics system, output drawn with grid will cover any
previously drawn output that it overlaps with. To start a blank page of grid
output we call grid.newpage().

Some basic low-level functions are demonstrated in the following example. The
result is shown in Figure A.1.

> grid.rect(x = 0.5, y = 0.5)

> grid.circle(x = 0.5, y = 0.5, r = 0.4)

>

> ## A hexagon

> angles = seq(0, 2*pi, length = 7)

> grid.polygon(x = 0.5 + 0.25*cos(angles),

y = 0.5 + 0.25*sin(angles))

>

> grid.text("The\nmiddle")

It is a good idea to name graphical objects that you draw with grid. This makes
it easier to identify objects and modify them later on, especially when there are
a lot of objects. Naming is done like this:

56

The
middle

Figure A.1: Some low-level grid graphics functions

> grid.text("Some text", name = "myLabel")

The names of all the graphical objects that have been drawn on the graphics
device can be obtained by calling the grid.ls() function.

Because every object in grid is named, we can edit output after it has already
been drawn, using the grid.edit() function. Suppose we have drawn a circle
named circle1 with a red fill colour, but we decide we want to change the fill
colour to yellow. Instead of editing our code and then running it again, we can
do this:

> grid.edit("circle1", gp = gpar(fill = "yellow"))

The previous example uses graphical parameters which are discussed in the next
section.

A.2 Graphical parameters

We can change the appearance of graphical objects in grid by changing graphical
parameters. The following example demonstrates how to do this. The result is
a hexagon with each of the six segments filled in a different colour, with some
transparency added by setting alpha to 0.5.

> grid.newpage()

>

> angles = seq(0, 2*pi, length = 7)

57

Figure A.2: Using graphical parameters in grid

> xc = 0.5*cos(angles)

> yc = 0.5*sin(angles)

> j = c(1:7, 1)

>

> for (i in 1:6) {
+ grid.polygon(x = 0.5 + c(0, xc[j[i + 0:1]]),

+ y = 0.5 + c(0, yc[j[i + 0:1]]),

+ gp = gpar(fill = i, col = i, alpha = 0.5))

+ }

A.3 Using units

There are a number of different units we can use in grid to specify locations
and sizes of graphical objects. The default units are npc (Normalized Parent
Coordinates), which set the bottom-left corner to be (0,0) and the top-right
corner to be (1,1). Some of the other units are native units, inches, cm and
mm. We use the unit() function to specify units. We can also add (or subtract)
different units. An example of using units is given below, see Figure A.3 for the
result.

> grid.newpage()

> vp1 = viewport(height = unit(4, "cm"))

> pushViewport(vp1)

> grid.rect()

>

> ## Add labels on each side

58

4mm from top

4mm from bottom

1cm from left 1cm from right

Figure A.3: Using units in grid

> grid.text("4mm from top", y = unit(1, "npc") - unit(4, "mm"))

> grid.text("4mm from bottom", y = unit(4, "mm"))

> grid.text("1cm from left", x = unit(1, "cm"), just = "left")

> grid.text("1cm from right", x = unit(1, "npc") - unit(1, "cm"),

just="right")

A.4 Grobs

Grid functions also produce objects that describe output. These are called
grobs (shorthand for graphical objects). All grobs in grid are named, which
makes them accessible for modification even after they have been drawn. Every
drawing function in grid has an accompanying function that returns a grob and
does not add anything to the display list, i.e. does not draw anything. (the
display list is a list of grobs that have been drawn in the R graphics device).

For example, we can do the following:

> circ = circleGrob()

> grid.draw(circ)

This is equivalent to the single statement:

> grid.circle()

By using grob functions, we can define and modify all of the components of
a plot without actually drawing them. Any grob can be drawn by calling

59

grid.draw(g), where g is the grob to be drawn on the current graphics de-
vice.

It is a good idea to give all grobs suitable names, especially when we are planning
to use gridSVG to make an interactive SVG image. The difficulties that arise by
not giving grobs meaningful names is demonstrated by the following example.
The following code is the same as the code used in section A.3. Refer back to
Figure A.3. Suppose we want to change the colour of the label at the top to
blue. We need to identify which grob to edit:

> grid.newpage()

> vp1 = viewport(height = unit(4, "cm"))

> pushViewport(vp1)

> grid.rect()

>

> ## Add labels on each side

> grid.text("4mm from top", y = unit(1, "npc") - unit(4, "mm"))

> grid.text("4mm from bottom", y = unit(4, "mm"))

> grid.text("1cm from left", x = unit(1, "cm"), just = "left")

> grid.text("1cm from right", x = unit(1, "npc") - unit(1, "cm"),

just="right")

>

> ## Print the names of the grobs that have been drawn

> grid.ls()

GRID.rect.58

GRID.text.59

GRID.text.60

GRID.text.61

GRID.text.62

We can see that it is not clear which names correspond to which text objects.
Let us modify our code so that we give all grobs suitable names.

> grid.newpage()

> grid.rect(gp = gpar(lty = "dashed"))

> vp1 = viewport(height = unit(4, "cm"))

> pushViewport(vp1)

> grid.rect(name = "myRect")

>

> ## Add labels on each side

> grid.text("4mm from top", y = unit(1, "npc") - unit(4, "mm"),

+ name = "topLabel")

> grid.text("4mm from bottom", y = unit(4, "mm"),

+ name = "bottomLabel")

> grid.text("1cm from left", x = unit(1, "cm"), just = "left",

+ name = "leftLabel")

> grid.text("1cm from right", x = unit(1, "npc") - unit(1, "cm"),

+ just="right", name = "rightLabel")

60

Now it is obvious which grob we need to edit. Then we can change the top label
to have a blue colour as follows.

> grid.edit("topLabel", gp = gpar(col = "blue"))

We can also remove graphical objects from the graphics device, using the grid.remove()
function.

A.5 Viewports

A strong feature of grid is the concept of viewports. A viewport defines a region
where output is drawn. There may be multiple viewports on a graphics device,
and they may have different scales and coordinate systems. Viewports can be
contained within other viewports, and they may overlap.

A basic example showing how we can use viewports to position elements on
the graphics device is shown below. First we define two viewports, vp1 and
vp2, both with width and height equal to 30% of the graphics device. In this
example we have put vp1 at the top left and vp2 at the bottom right. Next we
’push’ vp1 onto the graphics device using the function pushViewport(). We
can think of this function as setting the viewport to be our current drawing area
on the graphics device. We give the viewport a border and draw a text label
in it before ’popping’ it. Popping a viewport sets the drawing area back to the
parent viewport, i.e. the viewport that we pushed from. We repeat the same
for the second viewport vp2. The result of this code is shown in Figure A.4.

> grid.newpage()

> grid.rect()

> vp1 = viewport(x = 0.25, y = 0.75, width = 0.4, height = 0.4)

> vp2 = viewport(x = 0.75, y = 0.25, width = 0.4, height = 0.4)

>

> pushViewport(vp1)

> grid.rect()

> grid.text("vp1")

> popViewport()

>

> pushViewport(vp2)

> grid.rect()

> grid.text("vp2")

> popViewport()

We can also nest viewports within each other. In the following example, we
define a viewport vp1 which has width and height equal to half that of the
graphics device. Then we push it onto the graphics device draw a blue border
around it. Next, we push vp1 again from within the current viewport, which
defines a new viewport half the width and height of the previous one. We give
this viewport a red border. Finally we push vp1 again, creating a viewport with

61

vp1

vp2

Figure A.4: A basic example of using viewports

one eighth the height and width of the graphics device, and fill it in with yellow.
The final command popViewport(0) pops all viewports and brings us back to
the top-level viewport. The final result is shown in Figure A.5.

> grid.newpage()

> vp1 = viewport(x = 0.4, y = 0.4, width = 0.6, height = 0.6)

>

> pushViewport(vp1)

> grid.rect(gp = gpar(col = "blue"))

>

> pushViewport(vp1)

> grid.rect(gp = gpar(col = "red"))

>

> pushViewport(vp1)

> grid.rect(gp = gpar(fill = "yellow"))

>

> popViewport(0)

Another feature of viewports that is sometimes useful is clipping. Suppose we
enable clipping on viewport A, and then draw a circle inside A whose radius is
larger than the width of A. The parts of the circle which overflow the boundaries
of A will not be shown - they will be clipped. If we drew this large circle in
a viewport without clipping enabled, the circle is allowed to flow outside the
viewport boundaries.

Viewports can also be rotated, so that everything drawn inside them is also
rotated relative to the parent viewport. This is demonstrated in the following
example, the result of which can be seen in Figure A.6.

62

Figure A.5: An example of viewport nesting

> grid.newpage()

> grid.rect()

> grid.text("Not rotated", x = unit(2, "mm"),

y = unit(1, "npc")- unit(2, "mm"),

just = c("left", "top"))

>

> pushViewport(viewport(width = 0.7, height = 0.3, angle = 20))

> grid.rect()

> grid.text("Rotated 20 degrees", x = unit(2, "mm"),

y = unit(1, "npc")- unit(2, "mm"),

just = c("left", "top"))

A.6 Viewport trees and grob trees

The final features of grid that we present in this introduction to grid are view-
port trees and grob trees. A viewport tree, or vpTree, can be thought of as a
single parent viewport which has any number of children viewports. When a
viewport tree is pushed using the pushViewport() function, the parent view-
port is pushed first and then the children viewports are pushed in parallel (at
the same level as each other). Viewport trees are often useful when using a grid
page layout. Using a page layout with the grid.layout() function allows us to
cut up a drawing area into rows and columns. We use these in conjunction with
viewport trees by applying a layout to a parent viewport, and then specifying
which cells/rows/columns each of the children viewports will occupy (refer to
Section 7.5 to see this idea applied in one of our applications).

A grob tree, or gTree, can be described a grob that contains other grobs. Each

63

Not rotated

Rotated 20 degrees

Figure A.6: A rotated viewport

grob in a gTree can contain a viewport path that specifies which viewport that
grob should be drawn in. gTrees are useful because we can change properties
and graphical parameters of higher level grobs so that they modify their children
to match those changes.

64

Bibliography

[1] Course pathways for undergraduate statistics students at the uni-
versity of auckland. http://www.stat.auckland.ac.nz/webdav/

site/stat/shared/for/future-undergraduates/documents/

CoursesncareerpathwaysforUG2012.pdf. Accessed on 17 September
2012.

[2] Health data for victoria - online resource. http://www.stat.auckland.

ac.nz/~paul/Projects/DavidBanks/Victoria/svgmap.html.

[3] Infoshare - statistics new zealand. http://www.stats.govt.nz/

infoshare/. Accessed on 16 September 2012.

[4] Mozilla developer network: Javascript guide. https://developer.

mozilla.org/en-US/docs/JavaScript/Guide. Accessed on 24 September
2012.

[5] Nz price kaleidoscope - online resource. http://www.stat.auckland.ac.

nz/~paul/StatsNZ/HTML/htmlkaleid.html.

[6] Price kaleidoscope of the federal statistical office of germany. https:

//www.destatis.de/Voronoi/PriceKaleidoscope.svg. Accessed on 24
September 2012.

[7] A programming Q and A community. http://stackoverflow.com. Was
helpful from time to time in finding solutions to small problems we came
across. Accessed on 24 September 2012.

[8] The SVG specification. http://www.w3.org/TR/SVG/. Accessed on 12
September 2012.

[9] W3schools online ajax tutorial. http://www.w3schools.com/ajax/

default.asp. Accessed on 4 October 2012.

[10] W3schools online javascript tutorial. http://www.w3schools.com/js/

default.asp. Accessed on 16 September 2012.

[11] W3schools online SVG tutorial. http://www.w3schools.com/svg/

default.asp. Accessed on 16 September 2012.

[12] Roger Bivand, with contributions by Hisaji Ono, and Richard Dunlap.
classInt: Choose univariate class intervals, 2012. R package version 0.1-18.

65

http://www.stat.auckland.ac.nz/webdav/site/stat/shared/for/future-undergraduates/documents/Courses n career pathways for UG 2012.pdf
http://www.stat.auckland.ac.nz/webdav/site/stat/shared/for/future-undergraduates/documents/Courses n career pathways for UG 2012.pdf
http://www.stat.auckland.ac.nz/webdav/site/stat/shared/for/future-undergraduates/documents/Courses n career pathways for UG 2012.pdf
http://www.stat.auckland.ac.nz/~paul/Projects/DavidBanks/Victoria/svgmap.html
http://www.stat.auckland.ac.nz/~paul/Projects/DavidBanks/Victoria/svgmap.html
http://www.stats.govt.nz/infoshare/
http://www.stats.govt.nz/infoshare/
https://developer.mozilla.org/en-US/docs/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/JavaScript/Guide
http://www.stat.auckland.ac.nz/~paul/StatsNZ/HTML/htmlkaleid.html
http://www.stat.auckland.ac.nz/~paul/StatsNZ/HTML/htmlkaleid.html
https://www.destatis.de/Voronoi/PriceKaleidoscope.svg
https://www.destatis.de/Voronoi/PriceKaleidoscope.svg
http://stackoverflow.com
http://www.w3.org/TR/SVG/
http://www.w3schools.com/ajax/default.asp
http://www.w3schools.com/ajax/default.asp
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/svg/default.asp
http://www.w3schools.com/svg/default.asp

[13] Original S code by Richard A. Becker and Allan R. Wilks. R version by Ray
Brownrigg. Enhancements by Thomas P Minka ¡surname@stat.cmu.edu¿.
maps: Draw Geographical Maps, 2012. R package version 2.2-6.

[14] R. Gentleman, Elizabeth Whalen, W. Huber, and S. Falcon. graph: graph:
A package to handle graph data structures. R package version 1.34.0.

[15] Jeff Gentry, Li Long, Robert Gentleman, Seth, Florian Hahne, Deepayan
Sarkar, and Kasper Hansen. Rgraphviz: Provides plotting capabilities for R
graph objects. R package version 1.34.2.

[16] Timothy H. Keitt, Roger Bivand, Edzer Pebesma, and Barry Rowlingson.
rgdal: Bindings for the Geospatial Data Abstraction Library, 2012. R pack-
age version 0.7-19.

[17] Duncan Temple Lang. RCurl: General network (HTTP/FTP/...) client
interface for R, 2012. R package version 1.91-1.1.

[18] Duncan Temple Lang. RJSONIO: Serialize R objects to JSON, JavaScript
Object Notation, 2012. R package version 1.0-1.

[19] Nicholas J. Lewin-Koh, Roger Bivand, contributions by Edzer J. Pebesma,
Eric Archer, Adrian Baddeley, Hans-Jrg Bibiko, Jonathan Callahan, Ger-
man Carrillo, Stphane Dray, David Forrest, Michael Friendly, Patrick
Giraudoux, Duncan Golicher, Virgilio Gmez Rubio, Patrick Hausmann,
Karl Ove Hufthammer, Thomas Jagger, Sebastian P. Luque, Don Mac-
Queen, Andrew Niccolai, Tom Short, Greg Snow, Ben Stabler, and Rolf
Turner. maptools: Tools for reading and handling spatial objects, 2012. R
package version 0.8-16.

[20] Julien MOEYS and contributions from Wei Shangguan. soiltexture: Func-
tions for soil texture plot, classification and transformation, 2012. R pack-
age version 1.2.9.

[21] Paul Murrell. Voronoi treemaps in r. http://www.stat.auckland.ac.nz/

~paul/Reports/VoronoiTreemap/voronoiTreeMap.html. Accessed on 24
September 2012.

[22] Paul Murrell. R Graphics. Chapman & Hall/CRC, 2006. Part of the
Computer Science and Data Analysis series.

[23] Paul Murrell. gridGraphviz: Drawing Graphs with Grid, 2012. R package
version 0.1.

[24] Paul Murrell. gridSVG: Export grid graphics as SVG, 2012. R package
version 0.9-1.

[25] Paul Murrell and Velvet Ly. gridDebug: Debugging Grid Graphics, 2012.
R package version 0.4-0.

[26] Erich Neuwirth. RColorBrewer: ColorBrewer palettes, 2011. R package
version 1.0-5.

66

http://www.stat.auckland.ac.nz/~paul/Reports/VoronoiTreemap/voronoiTreeMap.html
http://www.stat.auckland.ac.nz/~paul/Reports/VoronoiTreemap/voronoiTreeMap.html

[27] Deborah Nolan and Duncan Temple Lang. Interactive and animated scal-
able vector graphics and R data displays. Journal of Statistical Software,
46(1):1–88, 2012.

[28] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-
900051-07-0.

[29] Virgilio Gomez-Rubio Roger S. Bivand, Edzer J. Pebesma. Applied spatial
data analysis with R. Springer, New York, 2008.

[30] Deepayan Sarkar. Lattice: Multivariate Data Visualization with R.
Springer, New York, 2008. ISBN 978-0-387-75968-5.

67

	Introduction
	An introduction to SVG
	What is SVG
	An SVG example

	The gridSVG package for R
	Why use gridSVG?
	The format of gridSVG output

	Scripting with SVG
	The Javascript Language
	Event Handlers
	Javascript examples
	Adding javascript with gridSVG
	Adding hyperlinks and animation with gridSVG

	Application 1: Statistics Course Pathways
	Introductory information
	Getting the data into an R-readable format
	Using R to produce graphs of this data
	Exporting to SVG
	Making an interactive index page
	Summary

	Application 2: Health Data for Victoria, Australia
	Background Information
	Making the map with R
	Creating an image to export
	Converting R variables to javascript variables
	Making our SVG interactive
	Adding hyperlinks to the regions
	Integrating into HTML
	Summary

	Application 3: NZ Price Kaleidoscope
	Origin of the idea
	Using the German Price Kaleidoscope
	Acquiring New Zealand CPI data
	Making our own circle of regions
	Creating a suitable page layout
	Presenting price changes using colour
	Positioning the labels
	Exporting to an SVG document
	Converting R variables to javascript variables
	Adding interactivity
	Integrating into HTML for further functionality
	Summary

	Summary and Conclusion
	Appendix 1: An introduction to grid
	The basics of grid
	Graphical parameters
	Using units
	Grobs
	Viewports
	Viewport trees and grob trees

