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Abstract

This article describes the gridSVG package, which provides functions to convert grid-
based R graphics to an SVG format. The package also provides a function to associate
hyperlinks with components of a plot, a function to animate components of a plot, a
function to associate any SVG attribute with a component of a plot, and a function to
add JavaScript code to a plot. The last two of these provides a basis for adding interactivity
to the SVG version of the plot. Together these tools provide a way to generate dynamic
and interactive R graphics for use in web pages.
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1. Introduction

Interactive and dynamic plots within web pages are becomingly increasingly popular, as part
of a general trend towards making data sets more open and accessible on the web, for example,
GapMinder (Rosling 2008) and ManyEyes (Viegas, Wattenberg, van Ham, Kriss, and McKeon
2007).

The R language and environment for statistical computing and graphics (R Development Core
Team 2011) has many facilities for producing plots, and it can produce graphics formats that
are suitable for including in web pages, but the core graphics facilities in R are largely focused
on static plots.

This article describes an R extension package, gridSVG, that is designed to embellish and
transform a standard, static R plot and turn it into a dynamic and interactive plot that can
be embedded in a web page.

http://www.jstatsoft.org/
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1.1. R graphics

Several R packages are being developed to produce interactive and dynamic plots for inclusion
in web pages. For example, the googleVis package (Gesmann and de Castillo 2011) provides
an interface to the Google Visualization API and the webvis package (Conway 2010) produces
JavaScript code for the protovis (Bostock and Heer 2009) web visualization library. In both
cases, the graphics are produced by an external system rather than R. This abandons the
powerful graphical facilities that R possesses.

The gridSVG package provides a way to add dynamic and interactive features to plots that
are produced by R (specifically, plots that are based on the grid graphics package; Murrell
2011).

1.2. Vector graphics

It is straightforward to produce a static R graphic that can be included in a web page. For
example, a plot that is saved as a PNG file can be included via an HTML <img> element.
However, raster image formats such as PNG are only designed for a specific size and do not
scale well.

A better solution is possible with recent web browsers because they now have native support
for the SVG format (Eisenberg 2002). This allows vector graphics to be used for a web page,
which will produce better results because the plot should look good at any scale. The SVG
file can be included in a web page via an HTML <object> element.

Producing static SVG output from R is a little more complicated than producing PNG output
because it depends on the operating system. On Linux and MacOS X, there is an svg()
function, but on Microsoft Windows the Cairo package (Urbanek and Horner 2011) must be
installed to provide the CairoSVG() function.

Some R extension packages can be used to add some interactivity to an R plot in a PNG
format. These make use of the fundamental HTML image map technology whereby regions
of a raster image can be identified and have interactive behaviour associated with them. The
iWebPlots (Chatzimichali and Bessant 2011) package provides functions for producing image
maps with tooltips for some standard plot types and the imagemap package (Rowlingson
2008) provides similar functionality.

The gridSVG package targets the SVG format instead, to allow dynamic and interactive
features to be added to R plots in a vector format.

1.3. Smooth animation

The animation package (Xie 2011) can be used to animate standard R graphics. This works
by producing multiple static images, in a raster format, and then either stitching the images
together in a movie format, such as MPEG4, or playing the images rapidly one after the other.
A movie file can be embedded in a web page using an <object> element and the animation
package provides a convenience function to generate a web page with JavaScript controls for
playing a sequence of images.

One limitation of this approach is that the result is a raster image, with the disadvantages
mentioned above. It is also not possible to interact with this sort of dynamic plot. Further-
more, the animation is described in a “brute force” method, with every frame having to be
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drawn separately.

By targeting the SVG format, the gridSVG package allows both dynamic and interactive
features at once, in a vector graphics format, and it allows dynamic features to be described
more elegantly. For example, in order to make a single point move within a plot, it is only
necessary to describe the changing location of that point, and in simple cases only the start
and end locations are required.

1.4. Direct interaction

A number of R packages provide GUI toolkits, such as tcltk (R Development Core Team
2011), RGtk2 (Lawrence and Temple Lang 2010), and gWidgets (Verzani 2011). With regard
to graphics, these provide a way to allow user interaction with a plot via menus, dialogs,
buttons, and sliders.

However, these sorts of interfaces do not allow direct interaction with the components of a
plot, such as tooltips on data points and drill-down by clicking on a region of a plot.

The gridSVG package is designed to allow interaction with individual components of an R
plot.

1.5. Extensibility

The RSVGTipsDevice package (Plate 2011) provides an R graphics device that saves R plots in
an SVG format and allows tooltips and hyperlinks to be associated with different components
of the plot. The main limitation of this package is that it is hard-wired for these two sorts
of interaction (tooltips and hyperlinks). The package is not designed to be extended by the
user for other sorts of interaction.

The SVGAnnotation package (Temple Lang 2011) provides a much wider range of facilities for
adding dynamic and interactive features to an R plot (in an SVG format). It is possible to add
tooltips, animate points, and even link plots (so that clicking on a point in one plot highlights
the corresponding point in a separate plot). This package will be discussed in more detail in
a later section, once we have established the structure of the gridSVG package. For now, it
will just be stated that although the SVGAnnotation package provides some very powerful
functions for adding interaction to some plots, it is not straightforward for a non-expert to
extend the package to plots that are not currently supported.

One aim of the gridSVG package is to provide general tools that can be easily adapted by
non-experts to add interactivity to any plot or indeed any graphic in general that has been
produced by R’s grid graphics system.

In summary, the gridSVG package is aimed at producing dynamic and interactive R graphics,
in a vector format, for inclusion in web pages, using a transparent mechanism that can be
easily adapted and extended by the non-expert user.

2. The gridSVG package

This section gives a brief introduction to the main features of the gridSVG package.

The main function in the gridSVG package is gridToSVG(), which copies the current grid
scene to an SVG document. An example of a simple grid scene, consisting of two rectangles,
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Figure 1: A simple grid scene consisting of two rectangles, one above the other.

one above the other, is shown in Figure 1. The code to produce this scene is shown below.

R> library("grid")

R> topvp <- viewport(y=1, just="top", name="topvp",

R+ height=unit(1, "lines"))

R> botvp <- viewport(y=0, just="bottom", name="botvp",

R+ height=unit(1, "npc") - unit(1, "lines"))

R> grid.rect(gp=gpar(fill="grey"), vp=topvp, name="toprect")

R> grid.rect(vp=botvp, name="botrect")

The following call to gridToSVG() creates an SVG document from this scene. The resulting
document is called "gridscene.svg" and Figure 2 shows this document as it appears in a
web browser.

R> library("gridSVG")

R> gridToSVG("gridscene.svg")

The current grid scene could be produced from raw grid calls, as above, or it could be produced
from calls to functions from packages that are built on top of grid, such as lattice, ggplot2,
vcd, and partykit. Sections 2.3 and 4 provide some more complex examples.

The result of calling gridToSVG() is just a static SVG version of the static grid scene, but
the gridSVG package provides other functions to add dynamic and interactive features.

2.1. Animation

The grid.animate() function allows the components of a grid scene to be animated. For
example, the following code animates the two rectangles in the simple grid scene above so
that they both shrink to a width of 1 inch over a period of 3 seconds (see Figure 3). The
widths begin with a value of 1npc and end with a value of 1in.
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Figure 2: The simple grid scene from Figure 1 in an SVG format, viewed in Firefox.

R> widthValues <- unit(c(1, 1), c("npc", "in"))

R> widthValues

[1] 1npc 1in

The component of the grid scene that is to be animated is specified by name. For example,
the first call to grid.animate() below modifies the rectangle called "toprect".

R> grid.animate("toprect", width=widthValues, duration=3)

R> grid.animate("botrect", width=widthValues, duration=3)

R> gridToSVG("gridanim.svg")

2.2. Interactivity

The grid.hyperlink() function associates a hyperlink with a component of a grid scene. For
example, the following code adds some text to the top rectangle in the simple grid scene so
that when the text is clicked the web browser will navigate to the R home page (see Figure 4).
Again, the component that is to be turned into a hyperlink is specified by name; in this case,
it is the text component called "hypertext".

R> grid.text("take me there", vp=topvp, name="hypertext")

R> grid.hyperlink("hypertext", "http://www.r-project.org")

R> gridToSVG("gridhyper.svg")

The grid.garnish() function allows general SVG attributes to be associated with a compo-
nent of a grid scene. For example, the following code adds an event handler to the bottom
rectangle in the simple grid scene above so that, when the mouse is clicked over the bottom
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Figure 3: A simple animated grid scene. The scene starts off as shown on the left (the same
as Figure 2), but then the rectangles shrink over three seconds until they end up only 1 inch
wide, as shown on the right.

Figure 4: A simple grid scene containing hyperlinked text. If the text is clicked on with the
mouse, the web browser will navigate to the R home page.
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Figure 5: A simple interactive grid scene. When the mouse is clicked over the bottom rect-
angle, an alert dialog pops up.

rectangle, an alert dialog pops up (see Figure 5). The onmousedown attribute specifies what
action to take when the mouse is clicked and the pointer-events attribute makes sure that
the rectangle notices mouse clicks within its interior (not just on its drawn border).

R> grid.garnish("botrect",

R+ onmousedown="alert('ouch!')",

R+ "pointer-events"="all")

R> gridToSVG("gridmouse.svg")

More complex interaction requires adding JavaScript (Flanagan 2006) to the SVG output.
This is achieved via the grid.script() function, which can be given either JavaScript code
as a character vector or the name of a file that contains JavaScript code. For example, the
following code adds an event handler to the top rectangle in the simple grid scene so that,
when the mouse is clicked within the top rectangle, the interior of the rectangle is filled black
(see Figure 6). The design of the JavaScript code will be described in Section 3 and Section
4 contains some more sophisticated examples of interaction.

R> grid.garnish("toprect",

R+ onmousedown="allblack()",

R+ "pointer-events"="all")

R> grid.script("

R+ allblack = function() {

R+ rect = document.getElementById('toprect.1');

R+ rect.setAttribute('style', 'fill:black');

R+ }")

R> gridToSVG("gridscript.svg")
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Figure 6: A slightly more complex interactive grid scene. When the mouse is clicked over the
top rectangle, the top rectangle is filled with black.

2.3. Graphics based on grid

The examples so far have used direct calls to grid functions to draw a scene, but the techniques
described will also work with plots drawn by packages that are built on grid, such as lattice
(Sarkar 2008), ggplot2 (Wickham 2009), vcd (Meyer, Zeileis, and Hornik 2010), and partykit
(Hothorn and Zeileis 2011).

For example, the following code generates a multipanel conditioning plot using the lattice
package.

R> library("lattice")

R> xyplot(Sepal.Length ~ Sepal.Width | Species, iris)

The next piece of code uses the grid.hyperlink() function to add hyperlinks to the strip labels
in that plot.

R> grid.hyperlink("plot_01.textr.strip.1.1",

R+ "http://en.wikipedia.org/wiki/Iris_flower_data_set")

R> grid.hyperlink("plot_01.textr.strip.1.2",

R+ "http://en.wikipedia.org/wiki/Iris_virginica")

R> grid.hyperlink("plot_01.textr.strip.2.1",

R+ "http://en.wikipedia.org/wiki/Iris_versicolor")

The plot can now be converted to SVG using gridToSVG() so that clicking on the strip labels
in a web browser will navigate to the relevant pages of Wikipedia (see Figure 7).

R> gridToSVG("latticehyper.svg")
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Figure 7: A lattice plot with hyperlinks on the strip labels.
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3. The design of gridSVG

This section describes some of the details about how the gridSVG package works. It is
necessary to understand some of these details in order to be able to produce more complex
dynamic and interactive plots with gridSVG.

3.1. The components of a grid scene

The gridSVG package works by looking at what has been drawn on the current page and
converting that drawing to SVG. The gridSVG package works off the grid display list, which
is a record of all grid output on the current page. This display list consists of grid viewports
and grobs (graphical objects).

The grid.ls() function can be used to list the grobs and viewports in the current scene and
the following code demonstrates this for the simple scene from Figure 1. There are two rect
grobs, called toprect and botrect, and each rectangle is drawn in a its own viewport (topvp
and botvp, respectively).

R> grid.ls(viewports=TRUE, fullNames=TRUE, print=grobPathListing)

viewport[ROOT]::viewport[topvp] | rect[toprect]
viewport[ROOT]::viewport[botvp] | rect[botrect]

3.2. Converting grobs to SVG

The main function in the gridSVG package is called gridToSVG(). This function takes each
grob in the current scene and converts it to one or more SVG elements.

R> gridToSVG("gridscene.svg")

In the simple grid scene shown in Figure 1, each rect grob is converted to an SVG <rect>
element, as shown below.

<rect id="toprect.1" x="0" y="129.6" width="144" height="14.4"/>

<rect id="botrect.1" x="0" y="0" width="144" height="129.6"/>

Most grobs have an obvious correspondence to an SVG element like this (see Table 1), but
there are some exceptions. For example, the many different sorts of grid line grobs all get
converted to an SVG <polyline> element. This includes open xspline grobs (the smooth
curve is stored as a series of short straight lines).

Another exception is the text grob, which converts to a series of nested SVG elements. This
is necessary in order to get the size and orientation of the text correct. For example, the
following grid code produces a text grob.

R> grid.text("take me there", name="sampleText")
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Table 1: The SVG elements that basic grid grobs are converted into.

grid grob SVG element
rect <rect>
circle <circle>
lines <polyline>
polyline <polyline>
segments <polyline>
xspline <polyline> or <path>
polygon <polygon>
path <path>
raster <image>
text <g><g><text><tspan>

●

●

●
●

●

Figure 8: Three simple grid scenes: on the left, two data symbols (one a simple circle and the
other a combination of a circle and two lines); in the middle, a line segment with an arrow
head on the end; on the right, three circles which are drawn from a single grob.

The gridToSVG() function converts this text to SVG elements shown below.

<g id="sampleText.1" stroke-width=".1" transform="translate(72, 72) ">
<g transform="scale(1, -1)">
<text x="0" y="0" text-anchor="middle">
<tspan dy="4.31" x="0">take me there</tspan>

</text>
</g>

</g>

A points grob is also handled differently because different data symbols consist of different
shapes, so the SVG element that is produced will depend on the choice of data symbol. Some
data symbols also consist of more than one shape, for example, a circle with a plus inside it. In
those cases, the points grob is converted to a <g> element with several other elements inside
it. For example, the following grid code draws two data symbols, one a simple circle and one
a combination of a circle and a plus (a vertical line and a horizontal line; see Figure 8).

R> pushViewport(viewport())

R> grid.points(1:2/3, 1:2/3, pch=c(1, 10), name="symbols")

The gridToSVG() function converts these data symbols to the SVG elements shown below.
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<circle id="symbols.1" cx="48" cy="48" r="4.31"/>

<g id="symbols.2">
<polyline id="symbols.2.1" points="91.69,96 100.31,96"/>
<polyline id="symbols.2.2" points="96,91.69 96,100.31"/>
<circle id="symbols.2.3" cx="96" cy="96" r="4.31"/>

</g>

All line grobs in grid can have arrow heads at either end. These are implemented in SVG
using <marker> elements, which are then referred to using marker-start and marker-end
attributes in the <polyline> element. The following grid code draws a line segment with an
arrow at the end (see Figure 8).

R> grid.segments(0, 0, 1, 1, arrow=arrow(), name="lineWithArrow")

This segments grob, with its arrow, is converted to the following SVG code.

<defs>
<marker id="lineWithArrow.1.markerEnd" refX="18" refY="10.39"

overflow="visible" markerUnits="userSpaceOnUse" markerWidth="18"
markerHeight="20.78" orient="auto">

<path d="M 0 0 L 18 10.39 L 0 20.78"/>
</marker>

</defs>

<polyline id="lineWithArrow.1" points="0,0 144,144"
marker-end="url(#lineWithArrow.1.markerEnd)"/>

3.3. Converting grobs that draw multiple shapes

A single grid grob may produce several distinct shapes. For example, the following code
creates a single circle grob, but three distinct circles are drawn (see Figure 8).

R> grid.circle(x=1:3/4, y=1:3/4, r=0.1, name="circles")

When this grob is converted to SVG, three distinct <circle> elements are created. Because
it may be useful to treat the three elements as a coherent group, the conversion nests the
three <circle> elements within a <g> element. The resulting SVG code for this example is
shown below.

<g id="circles">
<circle id="circles.1" cx="36" cy="36" r="14.4"/>
<circle id="circles.2" cx="72" cy="72" r="14.4"/>
<circle id="circles.3" cx="108" cy="108" r="14.4"/>

</g>
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For consistency in the SVG code, this <g> element is added whether a grob produces multiple
shapes or not. For example, the toprect grob from Figure 1, which produces only a single
<rect> element, is actually recorded in SVG as shown below.

<g id="toprect">
<rect id="toprect.1" x="0" y="129.6" width="144" height="14.4"/>

</g>

3.4. Converting grob names

Each grid grob has a name and this name gets recorded as the id attribute of the corresponding
SVG element. This conversion is slightly complicated by the fact that a single grob always
generates multiple SVG elements (as described in the previous section), so some “mangling”
of the original grob name is necessary.

The general rule is that the parent <g> element has an id attribute that is identical to the
original grob name. The children of that <g> element have id attributes based on the original
grob name, but with a numeric suffix appended. The sample SVG code in the previous section
demonstrates this idea.

Some cases are more complicated, for example, determining the id attributes of <marker>
elements when converting lines with arrow heads (see Section 3.2), but in all cases the id
value is based upon the original grob name, with a sensible extension added.

3.5. Converting graphical parameters

The detailed appearance of grid grobs—things like colours, line widths, and fonts—is con-
trolled by a set of graphical parameters, such as col and fill (border and fill colours), lwd
(line width), and fontface and fontfamily.

When a grid grob is converted to an SVG element, these graphical parameter settings are
converted to presentation attributes in the SVG element.

There are always default graphical parameter settings in place so that a grob will only specify
explicit settings where necessary. This is reflected in SVG, with presentation attributes only
recorded when they are explicitly set. A top level <g> element establishes a full set of defaults.

For example, in the simple grid scene from Figure 1, the toprect grob explicitly specifies a
grey fill via the gp argument.

R> grid.rect(gp=gpar(fill="grey"), vp=topvp, name="toprect")

The top level <g> element and the <rect> element for the toprect grob are shown below.
Many default presentation attribute settings are established in the <g> element and the grey
fill for the <rect> element is recorded as fill="rgb(190,190,190)".

<g id="gridSVG"
fill="none"
stroke="rgb(0,0,0)"
stroke-dasharray="none" stroke-width="1px"
font-size="12px"
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font-family="Helvetica,Arial,FreeSans,Liberation Sans,Nimbus Sans L,sans-serif"
opacity="1"
stroke-linecap="round" stroke-linejoin="round" stroke-miterlimit="10"
stroke-opacity="1" fill-opacity="0">

<rect id="toprect.1" x="0" y="129.6" width="144" height="14.4"
fill="rgb(190,190,190)"
fill-opacity="1"/>

</g>

In all other code samples in this article, these presentation attributes have been removed to
aid readability of the SVG code.

3.6. Converting viewports

A grid scene consists not only of grobs, but also viewports, which provide contexts for drawing
the grobs. The conversion of grobs to SVG makes use of the viewports to determine the
correct locations and sizes to use within the SVG elements, but the viewports themselves are
also recorded in the SVG code as <g> elements, with an id attribute set from the viewport
name.

If a viewport sets the clipping region, a <clipPath> element is added to the SVG output and
this is referenced in the <g> element for the viewport using the clip-path attribute.

We now have enough information to understand the complete SVG code that is produced by
gridToSVG() for the simple grid scene in Figure 1. This SVG code is shown in Figure 9.

3.7. Converting gTrees

A gTree is a grob that can have other grobs as its children. For example, the following code
creates a gTree that has a text grob and a rect grob as its children.

R> tg <- textGrob("this is a gTree", name="textchild")

R> rg <- rectGrob(width=grobWidth(tg) + unit(2, "mm"),

R+ height=unit(1, "lines"),

R+ gp=gpar(col=NA, fill="grey"), name="rectchild")

R> textWithBG <- gTree(children=gList(rg, tg), name="gtree")

When a gTree is drawn, it draws all of its children. For example, the following code calls the
above function to create a gTree and then draws it, which has the effect of drawing both the
text grob and the rect grob (see Figure 10).

R> grid.draw(textWithBG)

The output from grid.ls() shows the hierarchical nature of the scene just created.

R> grid.ls(fullNames=TRUE)
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<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"
width="144px" height="144px" version="1.0">

<g transform="translate(0, 144) scale(1, -1)">
<g id="gridSVG" font-size="12px">
<g id="topvp.1">
<g id="toprect">
<rect id="toprect.1" x="0" y="129.6" width="144" height="14.4"/>

</g>
</g>
<g id="botvp.1">
<g id="botrect">
<rect id="botrect.1" x="0" y="0" width="144" height="129.6"/>

</g>
</g>

</g>
</g>

</svg>

Figure 9: The SVG code that is generated by gridToSVG() from the simple grid scene in
Figure 1. All style attributes have been removed to improve readability.

this is a gTree

Figure 10: A grid scene consisting of a gTree, with a rectangle and a piece of text as its
children.
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rect[toprect]
rect[botrect]
text[sampleText]
segments[lineWithArrow]
gTree[gtree]
rect[rectchild]
text[textchild]

When a gTree is exported to SVG, the gTree itself creates a <g> element, with the child grobs
exported as SVG elements within that. The SVG code from the gTree created above is shown
below.

<g id="gtree">
<g id="rectchild">
<rect id="rectchild.1" x="212.21" y="244.8" width="79.59" height="14.4"/>

</g>
<g id="textchild">
<g id="textchild.1" stroke-width=".1" transform="translate(252, 252) ">
<g transform="scale(1, -1)">
<text x="0" y="0" text-anchor="middle">
<tspan dy="4.31" x="0">this is a gTree</tspan>

</text>
</g>

</g>
</g>

</g>

3.8. Fonts

The gridSVG package does not embed fonts in the SVG document that it produces. It only
records the name of the font that should be used to render text. Because there is no guarantee
that a web browser (or the operating system of its host) has access to a particular font,
gridSVG also records additional font names so that if the first font cannot be found, there
are alternatives that can be used.
The collection of font names is called a font stack and the gridSVG package maintains three
font stacks: one for serif fonts, one for sans-serif fonts, and one for monospace fonts. In each
case, the final font name in each stack is a generic name, like "monospace" so that the web
browser should always be able to find something to use.
When text is exported to SVG, the font stack that is recorded is the one that contains the
font family used for that text. For example, the following code draws text with a Helvetica
font.

R> grid.text("font test", gp=gpar(fontfamily="Helvetica"),

R+ name="font")

The Helvetica font is part of the sans-serif font stack, so the SVG code records the sans-serif
font stack, as shown below (see the font-family attribute within the <text> element).
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<g id="font">
<g id="font.1" stroke-width=".1" transform="translate(252,252) ">
<g transform="scale(1,-1)">
<text x="0" y="0" text-anchor="middle"

font-family="Helvetica,Arial,FreeSans,Liberation Sans,Nimbus Sans L,sans-serif"
fill="rgb(0,0,0)" fill-opacity="1">

<tspan dy="4.31" x="0">font test</tspan>
</text>

</g>
</g>

</g>

The default font stacks only contain some common font names (on the major operating
systems). However, the setSVGFonts() function is provided to allow further fonts to be
added to the font stacks. The getSVGFonts() function can be used to obtain the current
font stacks. For example, the following code adds the Inconsolata font to the monospace font
stack.

R> fontstacks <- getSVGFonts()

R> fontstacks$mono <- c("Inconsolata", fontstacks$mono)

R> setSVGFonts(fontstacks)

The new monospace font stack is shown below.

R> getSVGFonts()$mono

[1] "Inconsolata" "Courier" "Courier New" "Nimbus Mono L"
[5] "monospace"

Again, this does not guarantee that the Inconsolata font will be used to display the text in a
browser; that will only happen if the browser has access to the Inconsolata font.

This concludes the discussion of how standard grid objects are converted to SVG. The following
sections describe how gridSVG adds dynamic and interactive features to a grid scene and
exports those features to SVG code.

3.9. Hyperlinks

The grid.hyperlink() function allows hyperlinks to be associated with a component of a
grid scene. This function works by modifying the appropriate grob to add information about
the hyperlink. The modified grob is also given the class linked.grob so that it can be handled
differently when it is converted to SVG. The conversion of a linked.grob to SVG creates an
<a> (anchor) element around the normal SVG elements that would otherwise be generated.

For example, the following code draws a piece of text and associates a hyperlink with the text
so that when the text is clicked with the mouse in a web browser, the browser will navigate
to the R home page.

R> grid.text("take me there", name="hypertext")

R> grid.hyperlink("hypertext", href="http://www.r-project.org")
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The text grob is now a linked.grob.

R> grid.get("hypertext")

linked.grob[hypertext]

The gridToSVG() function converts this linked.grob to a set of <tspan>, <text>, and <g>
elements as normal, plus an <a> element around the outside, as shown below.

<a xlink:href="http://www.r-project.org">
<g id="hypertext">
<g id="hypertext.1" stroke-width=".1" transform="translate(252, 252) ">
<g transform="scale(1, -1)">
<text x="0" y="0" text-anchor="middle">
<tspan dy="4.31" x="0">take me there</tspan>

</text>
</g>

</g>
</g>

</a>

Placing the SVG anchor around the outside of the normal SVG output from a grob means
that we should be able to associate an anchor with any component of a grid scene.

3.10. Animation

The gridSVG package provides the grid.animate() function for animating a grid grob. This
function works by modifying the appropriate grob to add attributes that contain information
about the animation. The modified grob is also given the class animated.grob so that it
can be handled differently when it is converted to SVG. The conversion of an animated.grob
to SVG creates an <animate> element in addition to the normal SVG elements that would
otherwise be generated.

For example, the following code draws a circle on the left of the screen and then animates it
so that it moves across to the right of the screen.

R> grid.circle(x=.2, r=.1,

R+ gp=gpar(fill="black"), name="oneCircle")

R> grid.animate("oneCircle", x=c(.2, .8))

The circle grob is now an animated.grob.

R> grid.get("oneCircle")

animated.grob[oneCircle]

The gridToSVG() function converts this grob to a <circle> element as normal, plus an
<animate> element, as shown below.
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<animate xlink:href="#oneCircle.1" attributeName="cx"
begin="0s" calcMode="linear" dur="1s"
values="100.8;403.2" repeatCount="1" fill="freeze"/>

<g id="oneCircle">
<circle id="oneCircle.1" cx="100.8" cy="252" r="50.4"/>

</g>

A more complex situation arises when a grob generates more than one shape, and thereby
generates more than one SVG element. In this case, animation values can be given for each
individual shape by specifying a matrix of animation values. For example, the following
code draws two circles, one at the bottom-left of the screen and one at the top-right, then
animates the circles so that the bottom-left circle moves to the bottom-right of the screen
and the top-right circle moves to the top-left of the screen.

R> grid.circle(x=c(.2, .8), y=c(.2, .8),

R+ r=.1, gp=gpar(fill="black"), name="twoCircles")

The first column of the matrix is used as animation values for the first circle and the second
column is used for the second circle. The first circle will transition from an x-value of .2 to
an x-value of .8, while the second circle transitions from .8 to .2.

R> animValues <- cbind(c(.2, .8), c(.8, .2))

R> animValues

[,1] [,2]
[1,] 0.2 0.8
[2,] 0.8 0.2

R> grid.animate("twoCircles", x=animValues)

The gridToSVG() function converts this grob to two <circle> elements plus two <animate>
elements, as shown below.

<animate xlink:href="#twoCircles.1" attributeName="cx"
begin="0s" calcMode="linear" dur="1s"
values="100.8;403.2" repeatCount="1" fill="freeze"/>

<animate xlink:href="#twoCircles.2" attributeName="cx"
begin="0s" calcMode="linear" dur="1s"
values="403.2;100.8" repeatCount="1" fill="freeze"/>

<g id="twoCircles">
<circle id="twoCircles.1" cx="100.8" cy="100.8" r="50.4"/>
<circle id="twoCircles.2" cx="403.2" cy="403.2" r="50.4"/>

</g>
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It is also possible to specify an animation for an entire set of shapes at once, by specifying
TRUE for the group argument. For example, the following code draws two circles which both
disappear after 1 second.

R> grid.circle(x=c(.2, .8), y=c(.2, .8),

R+ r=.1, gp=gpar(fill="black"), name="groupCircles")

R> grid.animate("groupCircles",

R+ visibility=c("visible", "hidden"),

R+ begin=1, duration=0.01,

R+ group=TRUE)

The SVG code produced for this example has an <animate> element that refers to the parent
<g> element rather than the individual <circle> elements, as shown below.

<animate xlink:href="#groupCircles" attributeName="visibility"
begin="1s" calcMode="linear" dur="0.01s"
values="visible;hidden" repeatCount="1" fill="freeze"/>

<g id="groupCircles">
<circle id="groupCircles.1" cx="100.8" cy="100.8" r="50.4"/>
<circle id="groupCircles.2" cx="403.2" cy="403.2" r="50.4"/>

</g>

For some shapes, for example polygons, a single shape requires multiple x-values and multiple
y-values. This means that, even when animating a single shape, a vector of values is required
at each time point. For the simple case of a single shape of this sort, using a matrix for the
animation values will still work because grid.animate() will treat each column of the matrix
as a different time point (rather than each column being a different shape).

However, for the case of animating a grob that produces multiple shapes, where each shape
requires multiple values at each time point, specifying the animation values via vectors or
matrices becomes limiting. Furthermore, the animation examples shown so far have actually
only involved simple numeric vectors, but features like the x-location of a grob need to be
specified as unit objects, so grid.animate() has been doing some work behind the scenes
to extract an appropriate coordinate system for the animation.

A more explicit way to express the animation values is to use the animUnit() function to
create an animUnit object. For example, the simple set of animation values for a single circle
could be generated with the following code. This specifies a single value for each of two time
points.

R> animUnit(unit(c(.2, .8), "npc"))

$t1
[1] 0.2npc

$t2
[1] 0.8npc
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The following code generates a single value for each of two time points, for each of two shapes.
The id argument to the animUnit() function is used to associate different animation values
with different shapes.

R> animUnit(unit(c(.2, .8, .8, .2), "npc"), id=rep(1:2, each=2))

$id1
$id1$t1
[1] 0.2npc

$id1$t2
[1] 0.8npc

$id2
$id2$t1
[1] 0.8npc

$id2$t2
[1] 0.2npc

The following code demonstrates how to generate multiple values for each time point, by
specifying the timeid argument, which associates different animation values with different
time points.

R> animUnit(unit(c(.2, .8, .8, .2), "npc"), timeid=rep(1:2, each=2))

$t1
[1] 0.2npc 0.8npc

$t2
[1] 0.8npc 0.2npc

By specifying both timeid and id arguments, it is possible to specify multiple animation
values at each time point for different shapes, as shown below.

R> animUnit(unit(c(.2, .8, .8, .2, .1, .9, .9, .1), "npc"),

R+ timeid=rep(rep(1:2, each=2), 2),

R+ id=rep(1:2, each=4))

$id1
$id1$t1
[1] 0.2npc 0.8npc

$id1$t2
[1] 0.8npc 0.2npc
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$id2
$id2$t1
[1] 0.1npc 0.9npc

$id2$t2
[1] 0.9npc 0.1npc

Not all features of a grob are locations or dimensions (which require unit values), so there is
also an animValue() function for generating sets of non-unit animation values. The vignette
"animation" in the gridSVG package describes these functions in more detail.

3.11. Interactivity

The general mechanism for adding interactivity to a grid scene involves associating JavaScript
code (Flanagan 2006) with a component of the grid scene. This usually requires two steps:
adding JavaScript code to the scene and specifying which component of the scene will call
that JavaScript code (and when).
The first step is straightforward. The grid.script() function adds a script.grob object to
the current grid scene (nothing is drawn on screen, but the grob is added to the grid display
list). The JavaScript code for the script.grob object can be specified as a character vector
or as the name of a file that contains JavaScript code. For example, the following code adds
JavaScript code to a scene from the file called "script.js".

R> grid.script(filename="script.js", name="script")

The gridToSVG() function generates a <script> element from the script.grob object. By
default, if the JavaScript code is from an external file, the <script> element just provides a
reference to the external file, as shown below.

<script type="text/ecmascript" id="script" xlink:href="script.js">
</script>

If the JavaScript code is specified as a character vector or, if the code is in an external file,
but the inline argument is set to TRUE, then the JavaScript code is embedded in the SVG
document. For example, the following code creates a simple script that will be directly
embedded in the SVG output.

R> grid.script("document.onload = alert('hi');",

R+ name="embeddedScript")

The resulting SVG code is shown below. When the SVG document is loaded by a browser, an
alert dialog will immediately pop up.

<script type="text/ecmascript" id="embeddedScript"><![CDATA[
document.onload = alert('hi');
]]></script>
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The second step in adding interactivity to a grid scene is to specify which component of the
scene will run the JavaScript code (and when). This is achieved with the grid.garnish()
function, which works by modifying a grob to add attributes that specify when the grob will
call JavaScript code. The modified grob is also given the class garnished.grob so that it
can be handled differently when it is converted to SVG. The conversion of a garnished.grob
to SVG creates the normal SVG elements that would otherwise be generated, but adds extra
SVG attributes to the elements.

For example, the following code draws a circle in the middle of the screen and then adds an
attribute so that when the circle is clicked with the mouse in a web browser, an alert dialog
will pop up.

R> grid.circle(r=.1, gp=gpar(fill="black"), name="clickme")

R> grid.garnish("clickme",

R+ onmousedown="alert('ouch!')",

R+ "pointer-events"="all")

The gridToSVG() function converts the garnished grob to a <circle> element within a <g>
element as normal, but with onmousedown and pointer-events attributes added to the <g>
element, as shown below.

<g id="clickme" onmousedown="alert('ouch!')" pointer-events="all">
<circle id="clickme.1" cx="252" cy="252" r="50.4"/>

</g>

The following code shows how grid.script() and grid.garnish() can be combined so that
a component of a grid scene can be set up to call JavaScript code from a script that has been
added to the scene. In this case, a circle grob will call the JavaScript function allwhite()
when the mouse is clicked within the circle and the allwhite() function is defined in a
script.grob object within the scene.

R> grid.circle(r=.1, gp=gpar(fill="black"), name="clickme")

R> grid.garnish("clickme", onmousedown="allwhite()")

R> grid.script("

R+ allwhite = function() {

R+ circle = document.getElementById('clickme.1');

R+ circle.setAttribute('style', 'fill:white');

R+ }", name="allwhite")

The SVG generated from this scene is shown in Figure 11. An important feature of the
JavaScript code is that it refers to the relevant SVG element by name ("clickme.1"). We will
return to this point in Section 5.

Another important feature of the code in Figure 11 is that the onmousedown attribute has been
added to the <g> element parent, not the <circle> element itself. In some circumstances,
this is very useful. For example, the following code draws three circles with one grid call and
then associates an interaction with all three circles at once.
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<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"
width="504px" height="504px" version="1.0">

<g transform="translate(0, 504) scale(1, -1)">
<g id="gridSVG" font-size="12px">
<g id="clickme" onmousedown="allwhite()">
<circle id="clickme.1" cx="252" cy="252" r="50.4"/>

</g>
<script type="text/ecmascript" id="allwhite"><![CDATA[

allwhite = function() {
circle = document.getElementById('clickme.1');
circle.setAttribute('style', 'fill:white');

}
]]></script>
</g>

</g>
</svg>

Figure 11: The SVG code that is generated by gridToSVG() from a grid scene consisting of a
garnished circle grob and a script.grob.

R> grid.circle(x=1:3/4, r=.1, gp=gpar(fill="black"),

R+ name="threeCircles")

R> grid.garnish("threeCircles",

R+ onmousedown="alert('ouch')")

The SVG version of this scene is shown below, with three <circle> elements nested within
a <g> element. Because the onmousedown attribute is added to the <g> parent of the the
<circle> elements, an alert dialog will pop up when any of the three circles is clicked with
the mouse.

<g id="threeCircles" onmousedown="alert('ouch')">
<circle id="threeCircles.1" cx="126" cy="252" r="50.4"/>
<circle id="threeCircles.2" cx="252" cy="252" r="50.4"/>
<circle id="threeCircles.3" cx="378" cy="252" r="50.4"/>

</g>

However, it is also possible to make grid.garnish() add attributes to the child elements
rather than to the parent <g>. For example, the following code again draws three circles,
but then associates a different interaction with each circle, by specifying three values for the
onmousedown attribute and setting the group argument to FALSE.

R> grid.circle(x=1:3/4, r=.1, gp=gpar(fill="black"),

R+ name="diffCircles")



Journal of Statistical Software 25

R> grid.garnish("diffCircles",

R+ onmousedown=c("alert('click me!')",

R+ "alert('no, click me!')",

R+ "alert('no, no, click me!')"),

R+ group=FALSE)

The SVG version of this scene is shown below, with the onmousedown attributes set on
<circle> elements rather than on the <g> element.

<g id="diffCircles">
<circle id="diffCircles.1" cx="126" cy="252" r="50.4"

onmousedown="alert('click me!')"/>
<circle id="diffCircles.2" cx="252" cy="252" r="50.4"

onmousedown="alert('no, click me!')"/>
<circle id="diffCircles.3" cx="378" cy="252" r="50.4"

onmousedown="alert('no, no, click me!')"/>
</g>

3.12. Custom grobs

It is possible to create a new class of grob, typically when the grob has to perform calculations
every time it is drawn. For example, the following code defines a new boxedtext class that
consists of nothing but a label.

R> bt <- grob(label="this is a label", name="bt",

R+ cl="boxedtext")

This grob will create a text and rect grob every time it is drawn, which is one way to make
sure that the rect grob is always the right size for the text. This is achieved by writing a
drawDetails() method for the boxedtext class, as shown below.

R> btgrob <- function(x) {

R+ tg <- textGrob(x$label, name="text")

R+ rg <- rectGrob(width=grobWidth(tg) + unit(2, "mm"),

R+ height=unit(1, "lines"),

R+ gp=gpar(col=NA, fill="grey"), name="box")

R+ gTree(children=gList(rg, tg), name=x$name)

R+ }

R> drawDetails.boxedtext <- function(x, ...) {

R+ grid.draw(btgrob(x))

R+ }

Whenever the boxedtext grob is drawn, the drawDetails() method is called. The following
code draws bt and then edits it to change the label and, because the text and rect grobs
are recreated each time, the rect grob automatically scales to accommodate the text (see
Figure 12).
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this is a label New label!

Figure 12: A grid scene consisting of a new boxedtree grob (on the left). On the right, the
boxedtree grob has been edited to change the label (and the rectangle has automatically
scaled to fit the new label).

R> grid.draw(bt)

R> grid.edit("bt", label="New label!")

This sort of new grob class presents a problem for gridSVG because it does not know how
to convert the boxedtext grob (which only consists of a label) into SVG code. The solution
is to define a primToDev() method for the boxedtext grobs. This is the generic function
that converts grobs into SVG code and a new method can be written quite easily by generat-
ing standard grid grobs and calling primToDev on those grobs (much like a drawDetails()
method). The following code does this for the boxedtext class.

R> primToDev.boxedtext <- function(x, ...) {

R+ primToDev(btgrob(x), ...)

R+ }

With that method defined, gridSVG will export SVG code based on the text and rect grobs
produced by the btgrob() function, as shown below.

<g id="bt">
<g id="box">
<rect id="box.1" x="214.49" y="244.8" width="75.03" height="14.4"/>

</g>
<g id="text">
<g id="text.1" stroke-width=".1" transform="translate(252, 252) ">
<g transform="scale(1, -1)">
<text x="0" y="0" text-anchor="middle">
<tspan dy="4.31" x="0">this is a label</tspan>

</text>
</g>

</g>
</g>

</g>

In addition to the generic function primToDev(), there are also generic functions animate()
and garnish() to allow new grob classes to be animated and garnished. The "extensibility"
vignette in the gridSVG package describes these functions in more detail.
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4. Examples

This section describes two, more advanced examples of using the gridSVG package.

4.1. Animations for teaching

Wild, Pfannkuch, Regan, and Horton (2011) describe a number of animations to be used in
developing students’ intuition about inference. One example (Figure 10 of Wild et al. 2011)
shows a barplot of samples from a single categorical variable. The bars transition from one
sample to the next and leave a “footprint” consisting of a horizontal line at the top of the bar.

To produce an SVG version of this animation using gridSVG, we start with data that consists
of a list of counts for each of five categories.

R> samples[1:3]

[[1]]

bike bus car other walk
8 21 42 3 26

[[2]]

bike bus car other walk
5 28 34 2 31

[[3]]

bike bus car other walk
6 31 35 6 22

The following code generates a lattice barplot from the first set of sample data to provide the
basis of the animation (see Figure 13).

R> boxWidth <- unit(2, "cm")

R> barchart(samples[[1]],

R+ col=rgb(0,0,1,.2),

R+ ylim=c(0, max(sapply(samples, max))),

R+ horizontal=FALSE,

R+ box.width=boxWidth)

The next code shows how the heights of the bars can be animated using the gridSVG package.
This code identifies the grob to animate, which is a rect grob that draws the five bars in the
plot, and provides a set of animation values for the heights of those bars (a matrix with five
columns; each column provides animation values for one bar).

R> time <- 10

R> grid.animate("plot_01.barchart.rect.panel.1.1",
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Figure 13: A lattice barplot that provides the basis for an animated barplot (see Figure 15).

R+ height=do.call("rbind", samples),

R+ duration=time, interpolate="discrete")

The “footprints” left behind after each step in the animation are horizontal line segments.
The following code adds these segments to the basic plot (see Figure 14).

R> trellis.focus("panel", 1, 1)

R> count <- 1

R> samplefun <- function(samp) {

R+ grid.segments(unit(1:5, "native") - 0.5*boxWidth,

R+ unit(samp, "native"),

R+ unit(1:5, "native") + 0.5*boxWidth,

R+ unit(samp, "native"),

R+ gp=gpar(lwd=2, col=rgb(0,0,1,.2)),

R+ name=paste("sample.line", count, sep="."))

R+ count <<- count + 1

R+ }

R> lapply(samples, samplefun)

R> trellis.unfocus()

The footprints are made to appear at the appropriate times by animating their visibility
attribute, as shown by the following code.

R> for (i in 1:n) {

R+ grid.garnish(paste("sample.line", i, sep="."),

R+ visibility="hidden")

R+ grid.animate(paste("sample.line", i, sep="."),

R+ visibility=c("hidden", "visible"),

R+ group=TRUE,

R+ begin=i/n*time,

R+ duration=.01)

R+ }
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Figure 14: The lattice barplot from Figure 13, with horizontal line segments added. These
line segments will be animated to leave “footprints” in the animated barplot (see Figure 15).

Figure 15: Some snapshots from an animation showing barplots of samples from a single
categorical variable.

Figure 15 shows snapshots of the animation and the live SVG file, plus full R code, is available
with the online resources for this paper.

4.2. A grid object browser

One of the obstacles to overcome when animating or garnishing a grid scene is determining
the name of the grob that we wish to animate or garnish. For example, the following code
generates a relatively complex plot using ggplot2 (see Figure 16).

R> library("ggplot2")

R> qplot(disp, mpg, data=mtcars) + facet_wrap(~ cyl)

This plot has many components (over 100). The first few are shown below (the indenting of
some of the lines in that display indicates that the grobs are collected together in a gTree).

R> grid.ls()
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Figure 16: A relatively complex ggplot2 plot.
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GRID.gTree.952
plot.background.rect.951
plot.title.text.945
axis.title.x.text.947
axis.title.y.text.949

One way to help explore the many grobs in this plot is to generate an SVG version of the plot
with tooltips so that when the mouse hovers over a grob a tooltip is displayed to show the
name of the grob. The following code performs this task. First of all, the names of all “leaf”
grobs are obtained (all grobs that are not gTrees).

R> grobs <- grid.ls()

R> names <- grobs$name[grobs$type == "grobListing"]

Now we garnish all of those grobs so that they will respond to the mouse by showing a tooltip.

R> for (i in unique(names)) {

R+ grid.garnish(i,

R+ onmouseover=paste("showTooltip(evt, '", i, "')"),

R+ onmouseout="hideTooltip()")

R+ }

Finally, we add a script file that contains the JavaScript code to draw the tooltips and export
the whole scene to SVG. A snapshot of the result, as viewed in a browser, is shown in Figure
17.

R> grid.script(filename="tooltip.js")

R> gridToSVG("qplotbrowser.svg")

A live version of this plot is available with the online resources for this paper.

5. Discussion

The gridSVG package is not the only package that provides tools for generating dynamic and
interactive R graphics for inclusion in web pages. This section looks more closely at where
the approach taken in gridSVG provides advantages over other approaches and where it is
weaker than other approaches.

5.1. Avoiding the R graphics engine

An important feature of the gridSVG package is that it works directly from the grid display
list. This is in contrast to packages that provide an R graphics device, like RSVGTipsDevice,
which work from the graphics calls made by the R graphics engine. Figure 18 shows a diagram
of this difference.

The significance of this approach is that gridSVG is working with much richer information.
The grid display list contains a higher-level description of the current scene than the R graphics
engine. For example, the following code draws a set of three data symbols (see Figure 19).
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Figure 17: An SVG version of the plot in Figure 16 with tooltips added to show the name of
the grob over which the mouse is hovering.

graphics

grid

grDevices

RSVGTipsDevice

SVG

PNG

PDF

gridSVG

Figure 18: The organisation of graphics packages, which shows that gridSVG works directly
from the grid display list whereas graphics devices work from the R graphics engine (the
grDevices package).
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Figure 19: A set of three data symbols (left) is recorded as a single named grob on the grid
display list, but gets reduced to 9 separate shapes in the R graphics engine.

R> grid.points(1:3/4, 1:3/4, pch=10, name="points")

On the grid display list, these data symbols are represented as a single grob, called points,
but the R graphics engine breaks them into 9 separate unnamed shapes (3 circles, 3 vertical
lines, and 3 horizontal lines). In the latter case, it is very difficult to identify the 9 shapes as
a coherent set, but by working off the grid display list, it is straightforward for the gridSVG
package to identify the data symbols, which makes it possible to animate or garnish the data
symbols as a coherent set of shapes.

Because gridSVG has richer information to work with, there are more things that it can (eas-
ily) do and, at the same time, gridSVG’s internal algorithms can be relatively straightforward.
That in turn means that the low-level infrastructure of gridSVG can be exposed and explained
to the user (as shown in Section 3), which means that the user can participate in the develop-
ment of new uses for gridSVG. This is also reflected in the small set of fundamental gridSVG
functions (grid.hyperlink(), grid.animate(), grid.garnish(), and gridToSVG()).

5.2. Generating SVG code directly

Another consequence of working directly off the grid display list is that gridSVG has complete
control over the SVG code that it generates. This is in contrast to the SVGAnnotation package,
which works off the SVG code that is generated by the R graphics engine. Figure 20 shows a
diagram of this difference.

Two main advantages flow from this: the structure of the SVG code that gridSVG produces
can reflect the structure of the original image; and the SVG elements that gridSVG produces
have id attributes that reflect the names of the grobs in the original scene. Together, these
make it much easier to work with the SVG code that is produced by gridSVG. Figure 9, which
shows the SVG code generated by gridSVG for the simple grid scene in Figure 1, demonstrates
both of these ideas.

By way of comparison, Figure 21 shows the SVG code that the R graphics engine produces
from the simple grid scene in Figure 1. The SVGAnnotation package has to work much harder
to identify meaningful components of the original scene from the SVG because the structure
of the code does not relate as well to the structure of the original scene and because there are
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R graphics engine → SVG → SVGAnnotation → SVG

grid display list → gridSVG → SVG

Figure 20: A comparison of gridSVG, which works off the grid display list and produces SVG
directly, and SVGAnnotation, which works with the SVG that is produced by the R graphics
engine and produces new SVG code from that.

no useful id attributes to label components. As a specific example, the two rectangles in the
original scene in Figure 1 are represented by four path elements in the SVG code in Figure 21.

The predictable structure and useful labelling of the SVG code that is produced by gridSVG
makes it possible to convey the structure (as shown in Section 3), which makes it possible for
non-expert users to work with the SVG code that is produced by gridSVG. This is important in
understanding the grid.animate() and grid.garnish() functions and in writing JavaScript
code to implement interactive features of a scene and in working with the SVG code more
generally (see Section 5.4).

5.3. Generality

The two previous sections have emphasized that it is not enough to be able to export SVG out-
put from R graphics; a great deal can be gained if that SVG output is also sensibly structured
and labelled.

The gridSVG approach provides a general solution to exporting SVG output in the sense that
it will export the structure and labelling of any grid scene. As long as the grid scene has
a clear hierarchical structure (as in ggplot2 plots) or a clear labelling scheme (as in lattice
plots), that structure and labelling will be translated to the SVG document that gridSVG
creates.

This is a significant step forward from packages that work off the R graphics engine because,
in that case, almost all structure and labelling from the original scene is lost. The solutions
provided by these packages cannot be as general because the package has to be told what
functions were used to draw a scene in order to know how to recover structure from the
neutered information that is provided by the R graphics engine.

For example, the SVGAnnotation package has to be “trained” to handle the output from
different sorts of plots. An impressive amount of work has been done to provide useful high-
level functions for a range of plots already, but expanding the scope of the package requires
extra effort and detailed expert knowledge.

The iWebPlots package has a similar problem because it has to match the calculations done
by the original plot in order to reverse engineer the locations of elements of the plot within a
raster image. This means not only training the package for each different sort of plot, but it
also limits the components that can be made interactive. For example, it is difficult to recover
the positions of axis labels within a raster image.
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<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"
width="144pt" height="144pt" viewBox="0 0 144 144" version="1.1">

<defs>
<clipPath id="clip0">
<rect width="144" height="144"/>

</clipPath>
<clipPath id="clip1">
<path d="M 0 0 L 145 0 L 145 145 L 0 145 Z M 0 0 "/>

</clipPath>
<clipPath id="clip2">
<path d="M 0 0 L 145 0 L 145 145 L 0 145 Z M 0 0 "/>

</clipPath>
</defs>
<g id="surface0" clip-path="url(#clip0)">
<rect x="0" y="0" width="144" height="144"/>
<g clip-path="url(#clip1)" clip-rule="nonzero">
<path d="M 0 14.399994 L 144 14.399994 L 144 0 L 0 0 Z M 0 14.399994 "/>
<path d="M 0 14.399994 L 144 14.399994 L 144 0 L 0 0 Z M 0 14.399994 "

transform="matrix(1,0,0,1,0,0)"/>
</g>
<g clip-path="url(#clip2)" clip-rule="nonzero">
<path d="M 0 144 L 144 144 L 144 14.399994 L 0 14.399994 Z M 0 144 "/>
<path d="M 0 144 L 144 144 L 144 14.399994 L 0 14.399994 Z M 0 144 "

transform="matrix(1,0,0,1,0,0)"/>
</g>

</g>
</svg>

Figure 21: The SVG code that is generated by the Cairo-based svg() graphics device from the
simple grid scene in Figure 1. All style attributes have been removed to improve readability.
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Figure 22: A snapshot of an interactive ggplot2 scene. The user slides the blue rectangle in
the lower plot and the upper plot shows a zoomed view corresponding to the blue rectangle.

5.4. The power of XML

The fact that gridSVG produces SVG code, and the fact that the SVG code is predictable,
coherently structured, and labelled, means that there are significant opportunities for working
with an SVG document after it has been produced by gridSVG.
This opportunity arises because SVG is a dialect of XML (Harold and Means 2004) and there
are extremely powerful tools for working with XML code, such as XPath and XPointer (Simpson
2002).
As an example, we will look at some of the set up of an interactive ggplot2 plot. The scene
consists of two plots, one above the other, where the upper plot shows a zoomed region of
the lower plot. The lower plot has a “thumb” rectangle which the user can slide to determine
which region of the lower plot is shown in the upper plot (a snapshot of this interactive scene
is shown in Figure 22).
The data used in this scene is a data frame version of the Nile time series and the plot is just
a simple line plot.

R> df <- data.frame(time=as.numeric(time(Nile)),

R+ flow=as.numeric(Nile))

R> thePlot <- ggplot(df, aes(x=time, y=flow)) +
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R+ geom_line()

R> botPlot <- thePlot

The arrangement of the plots is achieved using grid viewports and an SVG version is generated
with the code below (see top plot in Figure 23).

R> doplot <- function() {

R+ pushViewport(viewport(y=1, height=.8, just="top",

R+ name="topvp"))

R+ print(thePlot, newpage=FALSE)

R+ upViewport()

R+ pushViewport(viewport(y=0, height=.25, just="bottom",

R+ name="bottomvp"))

R+ print(botPlot, newpage=FALSE)

R+ upViewport()

R+ }

R> pdf(width=4, height=4)

R> doplot()

R> gridToSVG("normalplot.svg")

R> dev.off()

A zoomed version of the scene is generated by drawing the same scene on a much wider device
(see the middle plot in Figure 23).

R> pdf(width=12, height=4)

R> doplot()

R> gridToSVG("wideplot.svg")

R> dev.off()

Now we can begin to take advantage of the fact that the SVG code is XML code. The XML
package (Temple Lang 2010) provides access to several of the XML processing tools.

R> library("XML")

The first step is to read the normal scene and the zoomed scene into R.

R> normalSVG <- xmlParse("normalplot.svg")

R> wideSVG <- xmlParse("wideplot.svg")

Next, we identify the section of SVG code that corresponds to the data region in the top plot
of the normal scene. This makes use of XPath to find the <g> element with an id attribute
of panel-3-3.1 (determined by inspecting the SVG code).

R> normalPlotSVG <-

R+ getNodeSet(normalSVG,

R+ "//svg:g[@id='panel-3-3.1']",

R+ c(svg="http://www.w3.org/2000/svg"))[[1]]
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We can identify the contents of the same region in the zoomed scene with similar code.

R> widePlotSVG <-

R+ getNodeSet(wideSVG,

R+ "//svg:g[@id='panel-3-3.1']/svg:g[@id='panel-3-3']",

R+ c(svg="http://www.w3.org/2000/svg"))[[1]]

Now all we have to do is remove the original data region and replace it with the zoomed data
region. The following code does that and writes out the result to a new SVG document (see
the bottom plot in . Figure 23).

R> removeChildren(normalPlotSVG, "g")

R> addChildren(normalPlotSVG, widePlotSVG)

R> saveXML(normalSVG, file="customplot.svg")

The complete interactive plot, plus R code, is available with the online resources for this
paper.

5.5. Drawbacks

The first major limitation of the gridSVG package is that it can only export grid scenes.
It will completely ignore any drawing done by the traditional graphics system (the graphics
package). This is not a limitation suffered by the packages SVGAnnotation, RSVGTipsDevice,
or iWebPlots.

A secondary issue is that the usefulness of the package depends on grobs being sensibly named.
This is fortunately not an issue if we call grid functions directly to draw a scene (because
we can simply supply names ourselves), and the lattice package and (to a lesser extent) the
ggplot2 package have named most of the grobs that they create when drawing. However,
there are other packages that do not name grobs and that will limit what can be done to
animate or interact with scenes drawn by those packages.

Another major weakness of the gridSVG approach is that it is focused on producing self-
contained SVG documents; the document has to contain all of the data and graphics required
for any animation or interaction. This has several negative consequences: there is a limit
to how much interactivity can be added to a plot, because the document has to contain all
possible graphics that might be generated in response to user input, and the documents that
are produced tend to be large. The verbosity of the SVG format does not help with the latter
problem (though compression to an SVGZ format can be very effective).

It is in theory possible to have R in the background, either on a web server or embedded
in the web browser, so that the content of the SVG document can be generated or updated
on-the-fly, but the generation of scenes is almost certainly too slow to provide sufficiently
responsive interaction. This approach is never going to compete with interactive systems like
iplots (Urbanek and Wichtrey 2010) or GGobi (Swayne, Cook, Temple Lang, and Buja 2010).

Another issue with the gridSVG approach is that, in order to implement any non-trivial
interaction, we have to write JavaScript code. It also helps to have an basic understanding of
the structure of SVG code. These place an additional burden on the user, although some relief
may be provided if a body of generic JavaScript code can be built up and shared amongst users.
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Figure 23: The top plot shows a ggplot2 scene consisting of two plots, one above the other.
The middle plot shows the same scene, just drawn much wider. The bottom plot shows a
modification of the top scene, with the original plot region replaced with the plot region from
the middle scene.
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It should also be possible to build a layer of canned dynamic or interactive plot templates as
higher-level R functions.

There are some features still missing from the package. A significant one is a lack of support
for mathematical formulas (see ?plotmath). It is hoped that it will be possible to add support
based on the MathJax library (Cervone 2010).

It is also arguably a weakness that gridSVG only provides low-level infrastructure for creat-
ing animated and interactive plots; gridSVG does not contain any high-level functions that
generate complete animated or interactive plots.

Finally, because fonts are not embedded in the SVG document, the positioning of text in a
scene may not be exact.

6. Summary

The gridSVG package converts any grid scene to an SVG document. The grid.hyperlink()
function allows a hyperlink to be associated with any component of the scene, the grid.animate()
function can be used to animate any component of a scene, and the grid.garnish() function
can be used to add SVG attributes to the components of a scene. By setting event handler
attributes on a component, plus possibly using the grid.script() function to add JavaScript
to the scene, it is possible to make the component respond to user input such as mouse clicks.
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