TS-621

Multinomial Logit,
Discrete Choice Modeling

An Introduction to Designing Choice Experiments,
and Collecting, Processing, and Analyzing Choice Data
with the SAS® System

Warren F. Kuhfald
SAS Institute I nc.

January 1, 2000

62

Contents

Introduction 66

Preliminaries 68
Experimental Design Terminology e e e e 68
Efficiency of an Experimental Design e 69
Efficiency of aChoiceDesign 69
Customizing the Multinomial Logit Output 71

Candy Example 73
TheMultinomia Logit Model 73
ThelnputData e 75
Fitting the Multinomial LogitModel 77
Multinomial Logit Model Results. 78
Fitting the Multinomial Logit Model, All Levels o 80
Probability of Choice 82

Fabric Softener Example 84
SEUD © o et e e, 84
Designingthe Choice Experiment 85
Examiningthe Design e e 87
Understandingthe YbMKTDESMaCro o e e e e e e e e e e e e e 89
Randomizingthe Design, POStProcessing v v v i i i e e e e e e e 91
Generatingthe Questionnaire e e 92
EnteringtheData 94
ProcessingtheData 94
Binary Coding 97
Fitting the Multinomial LogitModel 98
Multinomial LogitModel Results. e 99
Probability of Choice e 101
Custom QUESLIONNAITES v v v e e e e e e e e e e e 102
Processing the Datafor Custom Questionnaires i i it 105

Vacation Example, Big Designs 107
SEEUD « o o e e 108

Candidate Setsand How PROCOPTEX Works
GeneratingtheFinal Design e
ExaminingtheDesign.
Blocking and RandomizingtheDesign
Generatingthe Questionnaire
Enteringand ProcessingtheData
Binary Coding e
QuantitativePriceEffect e
QuadraticPrice Effect e
EffectsCoding
Alternative-SpecificEffects
PROC FACTEX Code Generated by the %MKTDESMacro

Vacation Example, Big Designs and Asymmetry
Choosingthe Number of ChoiceSets
Designingthe Choice Experiment
UsingaTabled DesignasaCandidateSet
Ensuring that Certain Key InteractionsareEstimable
ExaminingtheDesign.
Blockingan ExistingDesign e
GeneratingtheQuestionnaire e
Generating Artificial Data. e
Reading, Processing, and AnalyzingtheData
AggregatingtheData

Brand Choice Example With Aggregate Data
ProcessingtheData e
SimplePriceEffects.
Alternative-Specific PriceEffects o
Mother LogitModel
AggregatingtheData e
Choiceand Breslow LikelihoodComparison

Food Product Example with Asymmetry and Availability Cross Effects
TheMultinomial Logit Model

Designingthe Choice Experiment e 189
When You Have aLong Timeto Search for an EfficientDesign 191
Recreatingthe Best Design o o 193
ExaminingtheDesign. 194
Examiningthe Submatrices 195
Examining the Information and VarianceMatrices oo 196
Examiningthe Aliasing Structure e 197
TheFinal Design e e e e e 199
Generating Artificial Data. e 200
ProcessingtheData 202
CrossEffects o e 205
Coding and Fitting the Cross EffectsModel 210
Multinomial Logit Model Results. L 211
Modeling Subject Attributes L 214
When Balanceisof Primary Importance e e e 221
Allocation of Prescription Drugs 225
Designingthe Allocation Experiment 225
ProcessingtheData e e 229
Codingand AnalysiS e e e 234
Multinomial LogitModel Results. 235
Analyzing Proportions e e e e 237
Chair Design with Generic Attributes 239
Purely Generic Attributes, Alternative Swappingo e 239
Generic Attributes, a Constant Alternative, and Alternative Swapping. 243
Generic Attributes, a Constant Alternative, and ChoiceSet Swapping 246
Design Algorithm Comparisons o ot o e 248
Other Design Strategies 250
Very BigDesigNS e e 250
Improvingan EXisting Design e e 252
When Some Choice Setsare FixedinAdvance. 254
Six-Level Factors 256

Ten-Level Factors e e 259

TheMacros
%MKTDESMacroOverviewo v it e
%MKTDESMacroOptions.
%MKTDESE MacroOverview oo
%MKTDES6 MacroOptions
%MKTDES10 MacroOverview
%MKTDESIOMacroOptions v v vt e oo e
%MKTRUNSMacroOverview oo v oot
%MKTRUNSMacroOptions.
%CHOICEFF MacroOverview oo oo v oo e
%CHOICEFF MacroOptions.o oo
%MKTROLL MacroOverview
%MKTROLL MacroOptions.
%MKTMERGE MacroOverview
%MKTMERGE MacroOptions
WMKTALLO MacroOverview oo oo i i e
%MKTALLOMacroOptions
%PHCHOICE MacroOverviewo v
%PHCHOICE MacroOptions

Concluding Remarks

References

Multinomial Logit Models (SUGI Paper)

Modeling Discrete ChoiceData.
Fitting DiscreteChoiceModels
Cross-AlternativeEffects,
FinalComments.

References. e

Index

66

Multinomial L ogit, Discrete Choice Modeling

This report shows how to use the multinomial logit model (Manski and McFadden, 1981; Louviere and Wood-
worth, 1983) to investigate consumer’sstated choices. The multinomial logit model isan alternativeto full-profile
conjoint analysis and is extremely popular in marketing research (Louviere, 1991; Carson et. a., 1994). The
purpose of this report is to illustrate designing a choice experiment, preparing the questionnaire, inputting and
processing the data, performing the analysis, and interpreting the results. Discrete choice, using the multinomial
logit model, is sometimesreferred to as “ choice-based conjoint.” However, discrete choice uses adifferent model
from full-profile conjoint analysis. Discrete choice applies a nonlinear model to aggregate choice data, whereas
full-profile conjoint analysis applies alinear model to individual-level rating or ranking data.

This report is the January 1, 2000 edition, and it is a mgjor revision of the May 1996 report and other earlier
reports. This report uses macros and features of the SAS System that are new in Version 8, whereas the May
1996 and earlier reportswere written for Version 6 of the SAS System. Thisreport isavailable asaPDF filefrom
the Technical Support web site as http://ftp.sas.com/techsup/downl oad/technote/ts621.pdf. It isalso availablevia
anonymous FTP from ftp.sas.com, file techsup/downl oad/technote/ts621.pdf. SAS code examples are available
viaWWW by connecting to http://www.sas.com/techsup/downl oad/stat/ and getting mlogit8.sas; via anonymous
ftp, from ftp.sas.com, get techsup/download/stat/mlogit8.sas. Thisinformation is provided by SAS Institute Inc
asaservicetoitsusers. Itisprovided“asis.” Thereare no warranties, expressed or implied, asto merchantability
or fitness for a particular purpose regarding the accuracy of the materials or code contained herein.

If you are familiar with the May 1996 or earlier editions of thisreport, you will see several important differences.
Much of our work is now done with autocall macros. See page 261 for more information on autocall macros.

e We now use the autocall macro %MKTDES to generate most of our experimental designs. It is easier
to use and usually produces better results than the methods suggested in earlier reports. The macro is
documented starting on page 261 of this report.

o We use the %MK TRUNS autocall macro to suggest design sizes. See page 268 for documentation.

¢ We use the %CHOICEFF autocall macro to generate certain specialized choice designs. See page 270 for
documentation.

e We use the autocall macros %MKTROLL, %MKTMERGE, and %MKTALLO to prepare the data and
design for analysis. These macros are not part of the autocall library for Version 8.0 but will befor Version
8.10 and subsequent releases of the SAS System. For Version 8.0, you can obtain these macros by writing
saswfk@wnt.sas.com or by getting the code as described previously. See pages 281, 285, and 286 for
documentation.

¢ We use PROC TRANSREG to do all of our design coding. With Version 7 and Version 8 of the SAS®
System, PROC TRANSREG has new options and long names and labels, which makes it well suited for
coding choice models.

e We use the autocall macro %PHCHOICE to customize our printed output. This macro uses PROC TEM-
PLATE and ODS (Output Delivery System) to customize the output of PROC PHREG, which fits the
multinomial logit model. See page 288 for documentation.

Several examples are discussed including some new ones. *

e The candy example is afirst, very simple example that discusses the multinomial logit model, the input
data, analysis, results, and computing probability of choice.

e The fabric softener example is a small, more realistic example that discusses designing the choice exper-
iment, randomization, generating the questionnaire, entering and processing the data, analysis, results,
probability of choice, and custom questionnaires.

*All of the sample data sets are artificially generated.

67

Thefirst vacation exampleis alarger, symmetric example that discusses designing the choice experiment,
how PROC OPTEX works, blocks, randomization, generating the questionnaire, entering and processing
the data, coding, and alternative-specific effects.

The second vacation example is a larger, asymmetric example that discusses designing the choice exper-
iment, coding down, pseudo-factors, using a tabled design as a candidate set, evaluating the efficiency of
agiven design, blocks, blocking an existing design, interactions, generating the questionnaire, generating
artificial data, reading, processing, and analyzing the data, aggregating the data to save time and memory.

The brand choice exampleis a small example that discusses the processing of aggregate data, the mother
logit model, and the likelihood function.

The food product example is amedium sized example that discusses asymmetry, coding, availability cross
effects, interactions, overnight design searches, modeling subject attributes, and designs when balance is
of primary importance.

The drug allocation example is a small example that discusses data processing for studies where respon-
dents potentially make multiple choices.

The chair exampleis a purely generic-attributes study, and it uses the %CHOICEFF macro to create exper-
imental designs.

The next section contains miscellaneous examples including designs with many factors, improving an
existing design, when some choice sets are fixed in advance, six-level factors, and ten-level factors.

This report would not be possible without the help of Randy Tobias who contributed to the discussion of
experimental design, and Ying So who contributed to the discussion of analysis.

68

Preliminaries

This section defines some design terms that we will use later and shows how to customize the multinomial logit
output listing. Impatient readers may skip ahead to the candy example on page 73 and refer back to this section
as needed.

Experimental Design Terminology

An experimental design is a plan for running an experiment. The factors of an experimental design are variables
that have two or more fixed values, or levels. Experiments are performed to study the effects of the factor levels
on the dependent variable. In a discrete-choice study, the factors are the attributes of the hypothetical products
or services, and the response is choice. For example, the following table contains an experimental design with
three factors, Brand 1 price, Brand 2 price, and Brand 3 price. Each factor has two levels, $1.99 and $2.99.

Linear Design
For a Choice Model
Brand1l Brand2 Brand3
1.99 1.99 1.99
1.99 1.99 2.99
1.99 2.99 1.99
1.99 2.99 2.99
2.99 1.99 1.99
2.99 1.99 2.99
2.99 2.99 1.99
2.99 2.99 2.99

The most obvious example of an experimental design is the full-factorial design, which consists of all possible
combinations of the levels of the factors. For example, with five factors, two at four levels and three at five
levels (denoted 425%), thereare 4 x 4 x 5 x 5 x 5 = 2000 combinations. In a full-factorial design, all main
effects, all two-way interactions, and all higher-order interactions are estimable and uncorrelated. The problem
with a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to have
subjects consider all possible combinations. For this reason, researchers often use fractional-factorial designs,
which have fewer runs than full-factorial designs. The price of having fewer runs is that some effects become
confounded. Two effects are confounded or aliased when they are not distinguishable from each other.

A specid type of fractional-factorial design is the orthogonal array. An orthogonal array or orthogonal design
isoneinwhich all estimable effects are uncorrelated. Orthogonal arrays are categorized by their resolution. The
resolution identifies which effects, possibly including interactions, are estimable. If resolution (r) is odd, then
effects of order e = (r — 1)/2 or less are estimable free of each other. However, at least some of the effects
of order e are confounded with interactions of order e + 1. If r is even, then effects of order e = (r — 2)/2
are estimable free of each other and are also free of interactions of order e + 1. For example, for resolution
Il designs, all main effects are estimable free of each other, but some of them are confounded with two-factor
interactions. For resolution V designs, all main effects and two-factor interactions are estimable free of each
other. Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of runs (such as
16, 18, 20, 24, 27, 28, ...) for specific numbers of factors with specific numbers of levels.

Resolution 111 orthogonal arrays are frequently used in marketing research. The term “orthogonal array,” as it
is used in practice, isimprecise. It refers to designs that are both orthogonal and balanced, and hence optimal.
It also refers to designs that are orthogonal but not balanced, and hence potentially nonoptimal. A design is
balanced when each level occurs equally often within each factor, which means the intercept is orthogonal to
each effect. Imbalanceis ageneralized form of nonorthogonality, which increases the variances of the parameter
estimates.

69

Efficiency of an Experimental Design

The goodness or efficiency of an experimental design can be quantified. Common measures of the efficiency
of an (Np x p) design matrix X are based on the information matrix X'X. The variance-covariance matrix of
the vector of parameter estimates 3 in a least-squares analysisis proportional to (X 'X)~1. An efficient design
will have a “small” variance matrix, and the eigenvalues of (X'X) ! provide measures of its “size.” The two
most prominent efficiency measures are based on the idea of quantifying size by averaging (in some sense) the
eigenvalues or variances. A-efficiency is a function of the arithmetic mean of the eigenvalues, which is also
the arithmetic mean of the variances and is given by trace ((X'X)~1)/p. (The trace is the sum of the diagonal
elements of amatrix, whichisthe sum of the eigenvalues.) D-efficiency isafunction of the geometric mean of the
eigenvalues, which is given by |(X'X)~!|*/?. (The determinant, |(X'X) |, is the product of the eigenval ues of
(X'X)~1.) A third common efficiency measure, G-efficiency, is based on o 5, the maximum standard error for
prediction over the candidate set. All three of these criteria are convex functions of the eigenvalues of (X 'X) !
and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency; conversely,
the more efficient a design is, the more it tends toward balance and orthogonality. A design is balanced and
orthogona when (X'X) ! is diagonal (for a suitably coded X). A design is orthogonal when the submatrix of
(X'X) "1, excluding the row and column for the intercept, is diagonal; there may be off-diagonal nonzeros for
the intercept. A design is balanced when all off-diagonal elementsin the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (for a suitably coded X):

1

A-efficiency = 100 x Np trace((X'X)~1)/p
. . 1

D-efficiency = 100 x Np [(X'X)-1|'/»
. . N

G-efficiency = 100 x @

oM

These efficiencies measure the goodness of the design relative to hypothetical orthogona designs that may be
far from possible, so they are not useful as absolute measures of design efficiency. Instead, they should be used
relatively, to compare one design to another for the same situation. Efficiencies that are not near 100 may be
perfectly satisfactory. Throughout this report, we will use the %MKTDES macro and PROC OPTEX to find
good, efficient experimental designs.

Efficiency of a Choice Design

All of the theory in the preceding section concerned linear models. In linear models, the variances of the pa-
rameter estimates 3 are proportional to (X'X) L. In contrast, the variances of the parameter estimates 3 in the
multinomial logit model are given by

- a?e(ﬁ)]l_ o[BS ep@B)nel (S exp(aB)e,) (S, exp(aB)z;) ||
Vi) =~ ‘lz’mlNl S, exp(@)0) (S, expl(a) 9))° H
where

o6) . SR 57)9)

(X7, exp(z;8))Y

70

m — brands
n — choice sets
N — people

We will often create experimental designs for choice models using efficiency criteriafor linear models. Consider
an extremely simple example of three brands and two prices. We might use linear model theory to create adesign
for afull-profile conjoint study. The full-profile conjoint design has two factors, one for brand and one for price.

Full-Profile
Conjoint Design
Brand Price
1.99
2.99
1.99
2.99
1.99
2.99

WWMNNPEFP P

For the same problem, we might use linear model theory to create a“linear” design from which we will construct
achoice design. This design has three factors. brand 1 price, brand 2 price, and brand 3 price.

Linear Design
Brand1l Brand2 Brand3
1.99 1.99 1.99
1.99 2.99 2.99
2.99 1.99 2.99
2.99 2.99 1.99

When we fit the choice model, we will construct a choice design from the linear design that looks quite different.
See the left panel of the next table. When we code the design, it could look something like the right panel.

Choice Design Choice Design Coding
Brand1l Brand2 Brand3
Brand Price || Brand1 Brand2 Brand3 Price Price Price
1 199 1 0 0 1.99 0.00 0.00
2 199 0 1 0 0.00 1.99 0.00
3 199 0 0 1 0.00 0.00 1.99
1 199 1 0 0 1.99 0.00 0.00
2 299 0 1 0 0.00 2.99 0.00
3 299 0 0 1 0.00 0.00 2.99
1 299 1 0 0 2.99 0.00 0.00
2 199 0 1 0 0.00 1.99 0.00
3 299 0 0 1 0.00 0.00 2.99
1 299 1 0 0 2.99 0.00 0.00
2 299 0 1 0 0.00 2.99 0.00
3 199 0 0 1 0.00 0.00 1.99

Each group of three rows in the choice design forms one choice set. The linear design has one factor for each
attribute of each aternative (or brand), and brand is not a factor in the linear design. Brand is a “bin” into
which the other factors are collected. In the choice design, brand and price are both factors, but they have been
rearranged from one row per choice set to one row per aternative per choice set. For this problem, with only
one attribute per brand, the first row of the choice design matrix correspondsto thefirst valuein the linear design
matrix, Brand 1 at $1.99. The second row of the choice design matrix corresponds to the second value in the
linear design matrix, Brand 2 at $1.99. The third row of the choice design matrix corresponds to the third value
in the linear design matrix, Brand 3 at $1.99, and so on. We will go through how to do al these things many

71

times in the examples. The point now is to notice that the design matrix for alinear model is different from the
design matrix for achoice model. They aren’t even the same sizel

We make a good design for a linear model by picking our x’s to minimize functions of (X 'X)~1. In the choice
model, ideally we would like to minimize functions of

= lg"‘lN S exp(@)) (s exple)

S exp(alB)zal, (ST, exp(a!B)z;) (S, exp(x;ﬂ)mj)'H o

We cannot do this unless we know 3, and if we knew 3, we would not need to do the experiment. (However, in
the chair example on pages 239—249, we will see how to make an efficient choice design when we arewilling to
make assumptions about (3.)

Certain assumptions must be made before applying ordinary general-linear-model theory to problems in mar-
keting research. The usual goa in linear modeling is to estimate parameters and test hypotheses about those
parameters. Typically, independence and normality are assumed. In full-profile conjoint analysis, each subject
rates all products and separate ordinary-least-squares analyses are run for each subject. Thisis not a standard
genera linear model; in particular, observations are not independent and normality cannot be assumed. Discrete
choice models, which are nonlinear, are even more removed from the general linear model.

Marketing researchers have always made the critical assumption that designs that are good for general linear
models are also good designs for conjoint analysis and discrete choice. We also make this assumption. We
will assume that an efficient design for a linear model is a good design for the multinomial logit model used
in discrete choice studies. We assume that if we array the design in the linear fashion (one row per choice set
and all of the attributes of all of the alternatives comprise that row) and if we strive for linear-model efficiency
(near balance and orthogonality), then we will have a good design for measuring the utility of each alternative
and the contributions of the factorsto that utility. The design techniques discussed in this book are based on this
assumption and have been used quite successfully in the field for many years.

In most of the examples, we will use the %MK TDES macro or PROC OPTEX to create a good linear design,
fromwhich wewill construct our choice design. This seemsto be a good safe strategy. It is safe in the sense that
you have enough choice sets and collect enough information so that very complex model s, including modelswith
alternative-specific effects, availability effects, and cross-effects, can be fit. However, it is good to remember that
when you run the %MKTDES macro or PROC OPTEX and you get an efficiency value, it corresponds to the
linear design, not the choice design. It is a surrogate for the criterion of interest, the efficiency of the choice
design, which is unknowable unless you know the parameters.

Customizing the Multinomial Logit Output

The multinomial logit mode! for discrete choice experiments is fit using the SAS/STAT ® procedure PHREG
(proportional hazards regression), with the ties=breslow option. Thelikelihood function of the multinomial
logit model hasthe sameform asasurvival analysis model fit by PROC PHREG. The output from PROC PHREG
isprimarily designed for survival analysis studies. Before wefit the multinomial logit model with PROC PHREG,
we can customize the output to make it more appropriate for choice experiments. We will use the autocall macro
%PHCHOICE macro. See page 261 for information on autocall macros. You can run the following macro to
customize PROC PHREG outpuit.

%phchoice (on)

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output of PROC
PHREG. Running this code edits the templates and stores copies in SASUSER. These changes will remain in
effect until you delete them, so typically, you only have to run this macro once. Note that these changes assume
that each effect in the choice model has a variable label associated with it so there is no need to print variable
names. If you are coding with PROC TRANSREG, this will usually be the case. To return to the default output
from PROC PHREG, run the following macro.

72

%phchoice (off)

See page 288 for more information on the %PHCHOICE macro.

Candy Example

73

We begin with a very simple example. In this example, each of ten subjects was presented with eight different
chocolate candies and asked to choose one. The eight candies consist of the 22 combinations of dark or milk
chocolate, soft or chewy center, and nuts or no nuts. Each subject saw al eight candies and made one choice.
Experimental choice data such as these are typically analyzed with a multinomial logit model.

The Multinomial Logit Model

The multinomial logit model assumesthat the probability that an individual will choose one of them alternatives,

c;, fromchoiceset C' is

exp(U(ci)) _ exp(x:3)
Yiiexp(Uley)) 0L, exp(x;3)

p(a|C) =

where x; isavector of alternative attributes and 3 is a vector of unknown parameters. U (c;) = x;3 isthe utility
for aternative c;, which is alinear function of the attributes. The probability that an individual will choose one
of the m alternatives, ¢;, from choice set C' is the exponential of the utility of the alternative divided by the sum

of al of the exponentiated utilities.

There are m = 8 attribute vectors in this example, one for each aternative. Let x = (Dark/Milk, Soft/Chewy,
Nuts/No Nuts) where Dark/Milk = (1 = Dark, 0 = Milk), Soft/Chewy = (1 = Soft, 0 = Chewy), Nuts/No Nuts =

(1 = Nuts, 0= No Nuts). The eight attribute vectors are

x; =(000) (Milk, Chewy, No Nuts)
x2=(001) (Milk, Chewy, Nuts)
x3 =(010) (Milk, Soft, No Nuts)
x4 =(011) (Milk, Soft, Nuts)

x5 = (100) (Dark, Chewy, No Nuts)
x¢ =(101) (Dark, Chewy, Nuts)
x7 =(110) (Dark, Soft, No Nuts)
xgs =(111) (Dark, Soft, Nuts)

Say, hypotheticallythat 3’ = (4 —2 1). Thatis, the part-worth utility for dark chocolateis 4, the part-worth
utility for soft center is -2, and the part-worth utility for nutsis 1. Then the utility for each of the combinations,

x;(3, would be as follows.

U(Milk, Chewy, NoNuts) = 0x4
U(Milk, Chewy, Nuts) = 0x4
U(Milk, Soft, No Nuts) = 0x4
U(Milk, Soft, Nuts) = 0x4
U(Dark, Chewy, NoNuts) = 1x4
U(Dark, Chewy, Nuts) = 1x4
U(Dark, Soft, No Nuts) = 1x4
U(Dark, Soft, Nuts) = 1x4

0x -2
0x —2
1x -2
1x -2
0x —2
0x -2
1x -2
1x -2

+ 4+ + + 4+ + + o+

+ + 4+ + 4+ + + o+

0x1
1x1
0x1
1x1
0x1
1x1
O0x1
1x1

WNUOOPREFEPNEO

The denominator of the probability formula, >=7" , exp(x;/3), is exp(0) + exp(1) + exp(—2) + exp(—1) +
The probability that each alternative is chosen,

exp(4) + exp(5) + exp(2) + exp(3)+ = 234.707.
exp(x:8)/ T/, exp(x;), is

74

p(Milk, Chewy, NoNuts) = exp(0) / 234.707 = 0.004
p(Milk, Chewy, Nuts) = exp(l) /234707 = 0.012
p(Milk, Soft, No Nuts) = exp(-2) / 234.707 = 0.001
p(Milk, Soft, Nuts) = exp(-1) / 234.707 = 0.002
p(Dark, Chewy, NoNuts) = exp(4) / 234.707 = 0.233
p(Dark, Chewy, Nuts) = exp(d) /234707 = 0.632
p(Dark, Soft, No Nuts) = exp(2) /234707 = 0.031
p(Dark, Soft, Nuts) = exp(3) /234.707 = 0.086

Note that even combinations with a negative or zero utility have a nonzero probability of choice. Also note that
adding a constant to the utilities will not change the probability of choice, however multiplying by a constant
will.

Probability of choiceis a nonlinear and increasing function of utility. The following plot shows the relationship
between utility and probability of choice for this hypothetical situation.

data x;
dou = -2 to5 by 0.1;
p = exp(u) / 234.707;
output;
end;
run;

proc gplot;
title ’'Probability of Choice as a Function of Utility’;
plot p * u;
symboll i=join;
run; quit;

Probability of Choice as a Function of Utility

Thisplot showsthefunctionexp(—2) toexp(5), scaledinto the range zero to one, the range of probability values.
For the small negative utilities, the probability of choiceis essentially zero. As utility increases beyond two, the
function starts rapidly increasing.

In this example, the chosen alternatives are x5, xg, X7, X5, X2, Xg, X2, X6, Xg, Xg. Alternative x, was chosen 2
times, x5 was chosen 2 times, x5 was chosen 5 times, and x; was chosen 1 time. The choice model likelihood
for these data is the product of ten terms, one for each choice set for each subject. Each term consists of the
probability that the chosen alternative is chosen. For each choice set, the utilities for al of the alternatives enter
into the denominator, and the utility for the chosen alternative enters into the numerator. The choice model

likelihood for these datais

75

exp(xsB) emixeB) ewm(xiB) exp(xsB)
[SiemB)] [Siew8)| [TiaeweB)] [T e8]
exp(x2/3) % exp(xs3) % exp(x28) % exp(xq/3)
[SiemB)] [Siiew8)| [TiaeweB)] [T e8]
exp(xs/3) % exp(xs8)
S5 emB)] [T exp(x8)]
exp((2x2 + 2x5 + 5x6 + x7)0)
(2, exp(,8)]

ﬂc X

X

The Input Data

The data set consists of one observation for each alternative of each choice set for each subject. (A typical choice
study has more than one choice set per person. This first example only has one choice set to help keep it smple.)
All of the chosen and unchosen alternatives must appear in the data set. The data set must contain variables that
identify the subject, the choice set, which aternative was chosen, and the set of alternatives from which it was
chosen. In this example, the data set contains 10 x 1 x 8 = 80 observations: 10 subjects each saw 1 choice set
with 8 alternatives.

Typicaly, two variables are used to identify the choice sets, subject ID and choice set within subject. In this
simple case where each subject only made one choice, the choice set variable is not necessary. However we use
it hereto illustrate the general case. The variable Sub3j is the subject number, and Set identifies the choice set
within subject. The chosen alternativeisindicated by e¢=1, which meansfirst choice. All second and subsequent
choices are unobserved, so the unchosen aternatives are indicated by ¢=2, which means that all we know is
that they would have been chosen after the first choice. Both the chosen and unchosen alternatives must appear
in the input data set since both are needed to construct the likelihood function. The e¢=2 observations enter
into the denominator of the likelihood function, and the c¢=1 observations enter into both the numerator and the
denominator of the likelihood function. In this input DATA step, the data for four alternatives appear on one
line, and al of the data for a choice set of eight aternatives appear on two lines. The DATA step shows data
entry in the way that requires the fewest programming statements. Each execution of the input statement reads
information about one alternative. The @e in the input statement specifies that more data may follow on the
sameline.

76

'Choice of Chocolate Candies’;

title

data chocs;

input Subj ¢ Dark Soft Nuts @@;

o~

Set 1
datalines;

12000
11100
22000
22100
32000
32100
4 2000
4 1100
52000
52100
6 2000
62100
72000
72100
82000
82100
92000
92100
102 00O

12011
12111
22011
22111
32011
32111
42011
42111
52011
52111
62011
62111
72011
72111
82011
82111
92011
92111
102 011
102 111

12010
12110
22010
22110
32010
31110
42010
42110
52010
52110

12001
12101
22001
21101
32001
32101
42001
42101
51001
52101
6 2001
61101
71001
72101
82001
81101
92001
91101
102 0 01

6 2010
6 2110
72010
72110

82010
82110
92010
92110
102 010

101101 102110

102 100

7

i

chocs noobs

where subj <= 2;

proc print data

var subj set c dark soft nuts;

run;

Choice of Chocolate Candies

Set c Dark Soft Nuts

Subj

set from the choices and is merged with the choices as the data are read, which produces the same results as the

preceding steps.

These next steps illustrate a more typical form of data entry. The experimental designis stored in a separate data

77

* Alternative Form of Data Entry;

data combos; /* Read the design matrix. */
input Dark Soft Nuts;
datalines;

000
001
010
011
100
101
110
111
data chocs; /* Create the data set. */
input Choice @@; drop choice; /* Read the chosen combo number. */
Subj = n ; Set = 1; /* Store subject, choice set number. */
do i =1 to 8; /* Loop over alternatives. */
¢ =2 - (i eq choice); /* Designate chosen alternative. */
set combos point=i; /* Read design matrix. */
output; /* Output the results. */
end;

datalines;
56 75262666

12

Thevariable Choice isthe number of the chosen alternative. For each choice set, each of the eight observations
in the experimental designisread. Thepoint= optionin the set statement is used to read the ith observation
of the data set COMBOS. When i (the alternative index) equals Choice (the number of the chosen alterna-
tive), thelogical expression (i eq choice) equalsl; otherwiseitis0. Sothestatementc = 2 - (i eq
choice) sets c to 1 (two minus one) when the alternative is chosen and 2 (two minus zero) otherwise. The
entire eight observationsin the COMBOS data set is read 10 times, once per subject. Theresulting data set isthe
same as the one we created previously. In all of the remaining examples, we will simplify this process further by
using the %MK TMERGE macro to merge the design and data. The basic logic underlying this macro is shown
in the preceding step. The number of a chosen alternative is read, then each alternative of the choice set is read,
the chosen alternative is flagged (¢ = 1), and the unchosen alternatives are flagged (e = 2). One observation per
choice set per subject is read from the input data stream, and one observation per alternative per choice set per
subject is written.

Fitting the Multinomial Logit Model

The data are now in the right form for analysis. In the SAS System, the multinomial logit model is fit with
the SAS/STAT procedure PHREG (proportional hazards regression), with the ties=breslow option. The
likelihood function of the multinomial logit model has the same form as a survival analysis model fit by PROC
PHREG.

In a discrete choice study, subjects are presented with sets of alternatives and asked to choose the most preferred
aternative. The datafor one choice set consist of onealternative that was chosen and m — 1 aternativesthat were
not chosen. First choice was observed. Second and subsequent choices are not observed; it is only known that
the other alternatives would have been chosen after the first choice. In survival analysis, subjects (rats, people,
light bulbs, machines, and so on) are followed until a specific event occurs (such as failure or death) or until the
experiment ends. The data are event times. The data for subjects who have not experienced the event (such as
those who survive past the end of amedical experiment) are censored. The exact event timeis not known, butitis
known to exceed the censored time. In a discrete choice study, first choice occurs at time one, and all subsequent
choices (second choice, third choice, and so on) are unobserved or censored. The models are the same. To fit the
multinomial logit model, use PROC PHREG as follows.

78

proc phreg data=chocs outest=betas;
strata subj set;

model c*c(2) = dark soft nuts / ties=breslow;
label dark = ’‘Dark Chocolate’ soft = ’Soft Center’ nuts = ‘With Nuts’;
run;

The data= option specifies the input data set. The outest= option requests an output data set called BETAS
with the parameter estimates. The strata statement specifies that each combination of the variables set and
Subj forms a set from which a choice was made. Each term in the likelihood function is a stratum. Thereis
oneterm or stratum per choice set per subject, and each is composed of information about the chosen and all the
unchosen alternatives.

In the left side of the model statement, you specify the variables that indicate which alternatives were chosen
and unchosen. While this could be two different variables, we will use one variable ¢ to provide both pieces
of information. The response variable ¢ has values 1 (chosen or first choice) and 2 (unchosen or subsequent
choices). Thefirst ¢ of the c*c (2) inthemodel statement specifies that ¢ indicates which alternative was
chosen. The second ¢ specifies that ¢ indicates which alternatives were not chosen, and (2) means that obser-
vations with values of 2 were not chosen. When ¢ is set up with 1 equals choice and 2 equals unchosen, always
specify e*c (2) on theleft of the equal signinthemodel statement.* The attribute variables are specified after
the equal sign. Specify ties=breslow after aslash to explicitly specify the likelihood function for the multi-
nomial logit model.t The Label statement is added since we are using a template that assumes each variable
has alabel.

Multinomial Logit Model Results

The output is shown next. Recall that we used $phchoice (on) on page 71 to customize the output from
PROC PHREG.

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK.CHOCS
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

*This syntax allows second choice (c=2) and subsequent choices (c=3, c=4, ...) to be entered. Just enter in parentheses one plus the
number of choices actually made. For example with first and second choice data specify c¢*c (3) . Note however that some experts believe
that second and subsequent choice data are much less reliable than first choice data.

tDo not specify any other ties= options; ties=breslow specifies the most efficient and always appropriate way to fit the
multinomial logit model.

79

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen
1 1 1 8 1 7
2 2 1 8 1 7
3 3 1 8 1 7
4 4 1 8 1 7
5 5 1 8 1 7
6 6 1 8 1 7
7 7 1 8 1 7
8 8 1 8 1 7
9 9 1 8 1 7
10 10 1 8 1 7
Total 80 10 70
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSqg
Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Soft Center 1 -2.19722 1.054009 4.3450 0.0371
With Nuts 1 0.84730 0.69007 1.5076 0.2195

The first table, “Model Information,” contains the input data set name, dependent variable name, censoring
information, and tie handling option.

The " Summary of Subjects, Sets, and Chosen and Unchosen Alternatives’ tableis printed by default and should
be used to check the data entry. In general, there are as many strata as there are combinations of the Subj
and set variables. In this case, there are ten strata. Each stratum must be composed of m aternatives. In this
case, there are eight alternatives. The number of chosen alternatives should be 1, and the number of unchosen
aternativesism — 1 (in this case 7). Always check the summary table to ensure that the data are arrayed
correctly.

The next table, “Convergence Status,” shows the iterative algorithm successfully converged. The next tables,

80

“Model Fit Statistics” and “ Testing Global Null Hypothesis: BETA=0,” contain the overall fit of the model. The
-2 LOG L statistic under “With Covariates’ is28.727 and the Chi-Square statistic is 12.8618 with 3 df (p=0.0049),
which is used to test the null hypothesisthat the attributes do not influence choice. At common alphalevels such
as 0.05 and 0.01, we would reject the null hypothesis of no relationship between choice and the attributes. Note
that 41.589 (-2 LOG L Without Covariates, whichis-2 LOG L for amodel with no explanatory variables) minus
28.727 (-2LOG L With Covariates, whichis-2 LOG L for amodel with all explanatory variables) equals 12.8618
(Model Chi-Square, which is used to test the effects of the explanatory variables).

Next is the “Multinomial Logit Parameter Estimates” table. For each effect, it contains the maximum likelihood
parameter estimate, its estimated standard error (the square root of the corresponding diagonal element of the
estimated covariance matrix), the Wald Chi-Square statistic (the square of the parameter estimate divided by its
standard error), the degrees of freedom of the Wald Chi-Square statistic (1 unless the corresponding parameter is
redundant or infinite, in which case the valueis 0), and the p-value of the Chi-Squared statistic with respect to a
chi-squared distribution with one degree of freedom. The parameter estimate with the smallest p-valueis for soft
center. Since the parameter estimate is negative, chewy is the more preferred level. Dark is preferred over milk,
and nuts over no nuts, however only the p-value for Soft is less than 0.05.

Fitting the Multinomial Logit Model, All Levels

It isinstructive to perform some manipulations on the data set and analyze it again. These steps will perform the
same analysis as before, only now coefficients for both levels of the three attributes are printed. Binary variables
for the missing levels are created by subtracting the existing binary variables from 1.

data chocs2;
set chocs;
Milk = 1 - dark; Chewy = 1 - Soft; NoNuts = 1 - nuts;

label dark = ’‘Dark Chocolate’ milk = 'Milk Chocolate’
soft = ’Soft Center’ chewy = ’Chewy Center’
nuts = ‘With Nuts’ nonuts = ‘No Nuts’;

run;

proc phreg data=chocs2;
strata subj set;
model c*c(2) = dark milk soft chewy nuts nonuts / ties=breslow;
run;

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK.CHOCS2
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

81

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Subj Set Alternatives Alternatives Chosen
1 1 1 8 1 7

2 2 1 8 1 7

3 3 1 8 1 7

4 4 1 8 1 7

5 5 1 8 1 7

6 6 1 8 1 7

7 7 1 8 1 7

8 8 1 8 1 7

9 9 1 8 1 7

10 10 1 8 1 7
Total 80 10 70

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSqg
Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Milk Chocolate 0 0 . . .
Soft Center 1 -2.19722 1.05409 4.3450 0.0371
Chewy Center 0 0 . . .
With Nuts 1 0.84730 0.69007 1.5076 0.2195
No Nuts 0 0 . . .

Now the zero coefficients for the reference levels, milk, chewy, and no nuts are printed. So for example, the
part-worth utility for Milk Chocolateis a structural zero, and the part-worth utility for Dark Chocolateislarger at
1.38629. Similarly, the part-worth utility for Chewy Center is a structural zero, and the part-worth utility for Soft
Center is smaller at -2.19722. Finally, the part-worth utility for No Nuts is a structural zero, and the part-worth
utility for Nutsis larger at 0.84730.

82

Probability of Choice

The parameter estimates are used next to construct the estimated probability that each alternative will be chosen.
The DATA step program uses the following formulato create the choice probabilities.

exp(x;3)

p(e|C) = S exp(x;8)

* Estimate the probability that each alternative will be chosen;

data p;
retain sum 0;
set combos end=eof;

* On the first pass through the DATA step (n is the pass number),
get the regression coefficients in B1-B3. Note that they are
automatically retained so that they can be used in all passes
through the DATA step.;

if n =1 then
set betas (rename=(dark=bl soft=b2 nuts=b3));
keep dark soft nuts p;
array x[3] dark soft nuts;
array b[3] bl-b3;

* For each combination, create x * b;
p=0;
do j =1 to 3;
p=p + x[j] * b[jl;
end;
* Exponentiate x * b and sum them up;

P = exp(p);
sum = sum + p;

* Output sum exp(x * b) in the macro variable ’&sum’;

if eof then call symput (’sum’,put(sum,bestl2.));
run;

proc format;

value df 1 = 'Dark’ 0 = 'Milk’;
value sf 1 = ‘Soft’ 0 = ’‘Chewy’;
value nf 1 = 'Nuts’ 0 = "No Nuts’;

run;

* Divide each exp(x * b) by sum exp(x * b);
data p;

set p;

p =p / (&sum);

format dark df. soft sf. nuts nf.;

run;

proc sort;
by descending p;
run;

proc print;
run;

Choice of Chocolate Candies

Obs Dark Soft Nuts P

1 Dark Chewy Nuts 0.50400
2 Dark Chewy No Nuts 0.21600
3 Milk Chewy Nuts 0.12600
4 Dark Soft Nuts 0.05600
5 Milk Chewy No Nuts 0.05400
6 Dark Soft No Nuts 0.02400
7 Milk Soft Nuts 0.01400
8 Milk Soft No Nuts 0.00600

The three most preferred alternatives are Dark/Chewy/Nuts, Dark/Chewy/No Nuts, and Milk/Chewy/Nuts.

Fabric Softener Example

In this example, subjects are asked to choose among fabric softeners. This example shows all of the stepsin a
discrete choice study, including experimental design creation, creating the questionnaire, inputting the raw data,
creating the data set for analysis, and fitting the discrete choice model. We assume the reader is familiar with
the experimental design issues discussed in Kuhfeld, Tobias, and Garratt (1994). Some of these concepts are
reviewed starting on page 68.

St Up

The study involves four fictitious fabric softener brand names Sploosh, Plumbbob, Platter, and Moosey. * Each
choice set consists of each of these four brands and a constant alternative Another. Each of the brandsis available
at three prices, $1.49, $1.99, and $2.49. Another is only offered at $1.99. There are 50 subjects, each of which
will see the same choice sets. We can use the %MKTRUNS autocall macro to help us choose the number of
choice sets. All of the autocall macros used in this report are documented starting on page 261. To use this
macro, you specify the number of levels for each of the factors. With four brands each with three prices, you
specify four 3's.

title ’‘Choice of Fabric Softener’;

%$mktruns(3 3 3 3)

The output tells us the size of the saturated design, which is the number of parametersin the linear design, and
suggests design sizes.

Choice of Fabric Softener

Some Reasonable
Design Sizes Cannot Be
(Saturated=9) Violations Divided By

9
18
27
36
45
54
63
72
81
90

O OO 0O O0OoOo o oo

The output from this macro tells us that the saturated design has nine runs. Thisis shown by the “ (Saturated=9)"
inthelisting. It also tells usthat 9, 18, 27, ..., 90 are optimal design sizes with zero violations. There are zero
violations because al of these sizes can be divided by 3and 3 x 3 = 9. In this problem, the %MK TRUNS macro
reports ten different sizes with no violations.! I1deally, we would like to have a manageable number of choice
sets for people to evaluate and a design that is both orthogonal and balanced. When violations are reported,
orthogonal and balanced designs are not possible. While orthogonality and balance are not required, they are
nice properties to have. With 4 three-level factors, the number of choice sets in al orthogonal and balanced
designs must be divisibleby 3 x 3 = 9.

Nine choice setsisabit small. Furthermore, there are no error df. We set the number of choice setsto 18 sinceit
issmall enough for each person to see al choice sets, large enough to have reasonable error df, and an orthogonal

*Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names.
tFor more realistic problems we will see violations. For example, for this problem, a sample size of 12 is considered, but it has 6
violations. Six times, the4(4 — 1)/2 = 6 pairs of the four threes, 12 cannot be divided by 3 x 3 = 9.

85

and balanced design is available. It isimportant to remember however that the concept of number of parameters
and error df discussed here applies to the linear design and not to the choice design. We could use the nine-run
design for a discrete choice model and have error df in the choice model. If we were to instead use this design
for afull-profile conjoint (not recommended), there would be no error df.

To make the code easier to modify for future use, the number of choice sets and alternatives are stored in macro
variables and the pricesin aformat. Our design will have valuesfor price of 1, 2, and 3. We use aformat to map
these values to the actual prices $1.49, $1.99, and $2.49. The format also creates a price of $1.99 for missing,
which will be used for the constant alternative.

%let n = 18; /* n choice sets */
%let m = 5; /* m alternatives including constant */
%let mml = %eval(&m - 1); /*m - 1 */
proc format; /* create a format for the price */
value price 1 = $1.49’ 2 = 7$1.99’ 3 = ’$2.49’ . = '$1.99";
run;

Designing the Choice Experiment

In the next steps, an efficient experimental design is created. We will use an autocall macro %MK TDES to create
most of our designs. (All of the autocall macros used in this report are documented starting on page 261.) When
you invoke the %MK TDES macro for a simple problem, you only need to specify the factors, number of levels,
and number of runs. The macro does the rest. The macro has two primary steps: it first creates a candidate set
of potential choice sets using either PROC PLAN or PROC FACTEX, then it uses PROC OPTEX to construct
the design by selecting a good subset of the potential choice sets. PROC PLAN generates full-factorial candidate
sets, PROC FACTEX generates fractional-factorial candidate sets, and PROC OPTEX searches the candidate set
for an optimal design. The macro displays the code it generates so you can better understand what it is doing for
you. Here is the %MK TDES macro usage for this example:

%mktdes (factors=x1-x4=3, n=&n)

This example has four factors, x1 through x4 all with three levels. A design with 18 runs is requested. The
factors= option lists the factors followed by an equal sign and the number of levels. The n= option specifies
the number of runs. These are all the options that are needed for a smple problem such as this one. However,
throughout this report, random number seeds are explicitly specified with the seed= option so that you can
reproduce these results.* In practice, particularly for small problems such as this, specifying a seed is not
necessary. The procopts= optionis used to specify options for the PROC OPTEX statement, in this case the
seed= option. Here is the macro usage with the random number seed specified:

%mktdes (factors=x1-x4=3, n=&n, procopts=seed=7654321)

proc print; run;

Here are the results.

*However, due to machine differences, some results may not be exactly reproducible on any particular machine, though at most the
differences should be dlight.

86

Choice of Fabric Softener

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.7071
2 100.0000 100.0000 100.0000 0.7071
3 100.0000 100.0000 100.0000 0.7071
4 100.0000 100.0000 100.0000 0.7071
5 100.0000 100.0000 100.0000 0.7071

Choice of Fabric Softener

Obs x1 x2 x3 x4
1 3 3 2 3
2 3 3 2 2
3 3 2 3 3
4 3 2 1 1
5 3 1 3 2
6 3 1 1 1
7 2 3 3 1
8 2 3 1 3
9 2 2 2 2

10 2 2 2 1
11 2 1 3 2
12 2 1 1 3
13 1 3 3 1
14 1 3 1 2
15 1 2 3 3
16 1 2 1 2
17 1 1 2 3
18 1 1 2 1

More will be said about these results starting on page 89. For now, notice that the macro found a perfect,
orthogonal and balanced, 100% efficient design consisting of 4 three-level factors, x1-x4. The levels are the
integers1to 3.

87

Examining the Design

It is good to run basic checks on al designs. The following statements use PROC SUMMARY and PROC
PRINT to display all one-way frequenciesfor all attributes, all two-way frequencies, and all n-way frequencies
(in this case four-way) frequencies. What we hope to see is equal or at least nearly equal one-way and two-way
frequencies, and we want to see that each combination occurs only once.

proc summary data=design;
class all ;
ways 1 2 4;
output out=sum;
run;

proc print; by type ; run;

Choice of Fabric Softener

----------------------------------- TYPE =]l ----------rmemcccrccccemr e e e mmmcmm
Obs x1 x2 x3 x4 FREQ
1 1 6
2 2 6
3 3 6
----------------------------------- TYPE =2 -----------mmmmmmmmmmmmmmmmmmmmm - - -
Obs x1 x2 x3 x4 FREQ
4 1 6
5 2 6
6 3 6
----------------------------------- TYPE =3 ------ccmemcem e e mm e e e e e e e e e
Obs x1 x2 x3 x4 _FREQ
7 1 1 2
8 1 2 2
9 1 3 2
10 2 1 2
11 2 2 2
12 2 3 2
13 3 1 2
14 3 2 2
15 3 3 2
----------------------------------- TYPE =4 ----------memcccrccccem e e mmmcm e
Obs x1 x2 x3 x4 FREQ
16 1 6
17 2 6
18 3 6
----------------------------------- TYPE =5 —-- oo mmmmmmmmmm e e -
Obs x1 x2 x3 x4 _FREQ
19 1 1 2
20 1 2 2
21 1 3 2
22 2 1 2
23 2 2 2
24 2 3 2
25 3 1 2
26 3 2 2
27 3 3 2

----------------------------------- TYPE =6 --------cmmmcmmmcemmm e cme e e e

Obs x1 x2 x3 x4 _FREQ

28 1 1 2

29 . 1 2 . 2

30 . 1 3 . 2

31 . 2 1 . 2

32 2 2 2

33 2 3 2

34 . 3 1 . 2

35 . 3 2 . 2

36 . 3 3 . 2
----------------------------------- 10743 -

Obs x1 x2 x3 x4 FREQ

37 1 . . 6

38 2 6

39 3 6
----------------------------------- TYPE =9 ------cmmmmmm e mm e mmm e e e e e e e

Obs x1 x2 x3 x4 _FREQ

40 1 1 2

41 1 2 2

42 1 . 3 2

43 2 . 1 2

44 2 2 2

45 2 3 2

46 3 . 1 2

47 3 . 2 2

48 3 . 3 2
---------------------------------- _TYPE =10 -------m-mmmmmmmmmmmmmmmmmmmemeo

Obs x1 x2 x3 x4 _FREQ

49 1 1 . 2

50 1 2 . 2

51 1 3 . 2

52 2 1 . 2

53 2 2 . 2

54 2 3 . 2

55 3 1 . 2

56 3 2 . 2

57 3 3 . 2
---------------------------------- _TYPE_ =12 =------mmmmmmmmmmmemmmeeememoo

Obs x1 x2 x3 x4 _FREQ

58 1 1 . . 2

59 1 2 . . 2

60 1 3 . . 2

61 2 1 . . 2

62 2 2 . . 2

63 2 3 . . 2

64 3 1 . . 2

65 3 2 . . 2

66 3 3 . . 2

89

---------------------------------- CTYPE =15 - - - - mmmmmmmmmmmmmmemmmmeee oo

Obs x1 x2 x3 x4 _FREQ

WWWWWWNONNNMNNNNRRERRBERERER
WWNNHHWWNNRRWWNONRR
NNWHWHWRNMNNWRWHEWHENND
WNWHNHRHRWNMNREFNWRNDNWNWR
FRHEHHEHHEHHEHHERRERRPRRRPRERERBEHERR

This design is perfect. However, there are other 100% efficient designs with duplicate observations that can be
produced with different seeds. The last part of the output, the n-way frequencies contains some 2's for those
designs. Sometimes simply changing the seed results in a better design.

Understanding the %MKTDES Macro

For simple problems such as this, the macro can find an optimal design quite easily, but for more complicated
problems you may have to try more than one approach to find a good design. For this reason, it is important
to understand the steps the macro takes in creating an efficient design. To help you better understand what the
macro is doing, it shows you some of the code it generates. For this problem, the macro first uses PROC PLAN
to create a full-factorial design with 4 three-level factors (four brands each at three prices). Here is the PROC
PLAN step that the %MK TDES macro generated.

proc plan ordered;
factors
x1=3
x2=3
x3=3
x4=3
/ noprint;
output out=Candl;
run; quit;
The factors statement specifies that x1 has 3 levels, x2 has 3 levels, x3 has 3 levels, and x4 has 3 levels.
The full-factorial design consists of all possible3 x 3 x 3 x 3 = 81 combinations of the factor levels, the first

10 of which are shown. The ordered option specifies that the design is not to be randomized — the choice sets
are not sorted into arandom order yet. The output statement outputsthe design to a SAS data set, CANDL.

proc print data=Candl (obs=10) ;
title2 ’'The First 10 Observations of the Full-Factorial Design’;
run; quit;

Here are the first ten observations of the full-factorial design.

90

Choice of Fabric Softener
The First 10 Observations of the Full-Factorial Design

Obs x1 x2 x3 x4
1 1 1 1 1
2 1 1 1 2
3 1 1 1 3
4 1 1 2 1
5 1 1 2 2
6 1 1 2 3
7 1 1 3 1
8 1 1 3 2
9 1 1 3 3

10 1 2 1 1

Each row of thisdesignisapotential choice set. The next step showsthefirst ten potential choice sets by applying
formats and labels.

proc print data=Candl (obs=10) label;
title2 ’'Ten Potential Choice Sets’;
format x1-x4 price.;
label x1 = ’‘Sploosh’ x2 = ’'Plumbbob’ x3 = ’‘Platter’ x4 = ’Moosey’;
run; quit;

Choice of Fabric Softener
Ten Potential Choice Sets

Obs Sploosh Plumbbob Platter Moosey
1 $1.49 $1.49 $1.49 $1.49
2 $1.49 $1.49 $1.49 $1.99
3 $1.49 $1.49 $1.49 $2.49
4 $1.49 $1.49 $1.99 $1.49
5 $1.49 $1.49 $1.99 $1.99
6 $1.49 $1.49 $1.99 $2.49
7 $1.49 $1.49 $2.49 $1.49
8 $1.49 $1.49 $2.49 $1.99
9 $1.49 $1.49 $2.49 $2.49

10 $1.49 $1.99 $1.49 $1.49

So for example, the first potential choice set consists of the four brands, all at $1.49, and a constant alternative
which is not shown. The eighth choice set consists of Sploosh at $1.49, Plumbob at $1.49, Platter at $2.49,
Moosey at $1.99, and the constant alternative.

Eighty-one choice sets are too many to get reliable data, so a subset of the choice sets must be selected. The
full-factorial design is used as a candidate set of points from which the final design is chosen. The macro calls
PROC OPTEX to create an efficient design.* This specification asks for an efficient main-effects design for 4
three-level factors in 18 runs (18 choice sets). PROC OPTEX independently generates ten designs, each time
trying to optimize the D-efficiency criterion, which is a measure of design goodness. The best five designs are
kept, and the designs are then ordered from most to least efficient. The output Statement outputs the most
efficient design to a SAS data set. Hereis the PROC OPTEX step that the %MK TDES macro generated.

* See the section “Candidate Sets and How PROC OPTEX Works’ on page 111, the vacation example on page 109, and subsequent
examples for more information on PROC OPTEX.

91

title ’Choice of Fabric Softener’;

proc optex data=Candl seed=7654321;
class x1-x4 / param=orthref;
model x1-x4;
generate n=18 iter=10 keep=5 method=m federov;
output out=Design;
run; quit;

Here are the results.

Choice of Fabric Softener

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.7071
2 100.0000 100.0000 100.0000 0.7071
3 100.0000 100.0000 100.0000 0.7071
4 100.0000 100.0000 100.0000 0.7071
5 100.0000 100.0000 100.0000 0.7071

In this (easy) case, PROC OPTEX has little trouble finding a design with perfect, 100% efficiency. Small ex-
amples such as this should run in at most a few seconds on most modern computers. In this example, the new
Version 8 option param=orthref was specified in the class statement with PROC OPTEX. This option
generates an orthogonal coding for the design matrix so that D-efficiency is scaled to range from 0 to 100. The
sometimes complicated strategies that were needed to get a 0 to 100 scale using previous releases of the SAS
System are no longer needed. PROC OPTEX options are explained in more detail starting on page 109.

Randomizing the Design, Postprocessing

It is agood idea to randomize the design, that is to present the choice sets in random order. We can use PROC
PLAN to generate the integers in the range 1 to 18 sorted into random order to sort the design. The DATA
step reads the ORDER data set, which contains the variable Set, and then uses point= to directly access
the appropriate observation from SASUSER.DES. For example, the first value of Set is 16, so the sixteenth
observation of SASUSER.DES isread first. Each observation of SASUSER.DES isread oncein arandom order.
Also in the next steps, the constant Another alternativeis created and formats assigned.

proc plan seed=7654321; /* random order to sort design */
factors set=&n / noprint; /* integers, 1 - &n in random order */
output out=order; /* output to data set order */

run; quit;

data sasuser.des; /* create randomly sorted design */
set order; /* read order of observations */
set design point=set; /* sort into random order */
format x1-x&mml price.; /* assign formats, labels */
label x1 = ‘Sploosh’ x2 = ’‘Plumbbob’ x3 = ’'Platter’ x4 = ’'Moosey’;
run;

Thisisthefinal design. Notethat it is stored in a permanent SAS data set so that it will still be available after the
data are collected.
proc print data=sasuser.des label; /* print final design */
title2 ’'Efficient Design’;
run;

92

Choice of Fabric Softener
Efficient Design

Obs Sploosh Plumbbob Platter Moosey
1 $1.49 $1.99 $1.49 $1.99
2 $1.99 $1.99 $1.99 $1.99
3 $1.99 $1.49 $1.49 $2.49
4 $1.99 $1.49 $2.49 $1.99
5 $1.49 $1.49 $1.99 $1.49
6 $2.49 $1.49 $2.49 $1.99
7 $1.49 $1.49 $1.99 $2.49
8 $2.49 $2.49 $1.99 $1.99
9 $1.49 $2.49 $2.49 $1.49

10 $2.49 $2.49 $1.99 $2.49
11 $1.99 $2.49 $1.49 $2.49
12 $2.49 $1.99 $2.49 $2.49
13 $2.49 $1.49 $1.49 $1.49
14 $1.49 $1.99 $2.49 $2.49
15 $2.49 $1.99 $1.49 $1.49
16 $1.99 $1.99 $1.99 $1.49
17 $1.99 $2.49 $2.49 $1.49
18 $1.49 $2.49 $1.49 $1.99

These previous steps could be simplified. Later, we will need to use PROC PLAN and the point= option in
more complicated examples, so we chose to illustrate them here in a smpler problem first. Here is a simpler
alternative to the previous two steps. Note that the final order for these two approaches are not the same, even
with the same seeds.

data temp; /* create randomly sorted design */
set design; /* read current design */
format x1-x&mml price.; /* assign formats, labels */
label x1 = ’‘Sploosh’ x2 = ’'Plumbbob’ x3 = ’‘Platter’ x4 = ’Moosey’;
r = uniform(7654321) ; /* random variable to sort on */
run;

proc sort;
by r;
run;

Generating the Questionnaire

A questionnaire based on the design is printed using the DATA step. The statement array brands [&m]
$ _temporary_. (’Sploosh’ ’Plumbbob’ ’Platter’ ’‘Moosey’ ’Another’) createsacon-
stant array so that brands [1] accesses the string * Sploosh’, brands [2] accesses the string / PLlumb -
bob’, and so on. The _ temporary._ specification means that no output data set variables are created for
thisarray. The linesleft= specificationin the £ile statement creates the variable 11, which contains the
number of lines left on apage. This ensures that each choice set is not split over two pages.

options 1s=80 ps=60 nonumber nodate;
title;

data null ; /* print questionnaire
array brands[&m] $ temporary (’Sploosh’ ’Plumbbob’ ’‘Platter’
'Moosey’ ’'Another’);
array x[&m] x1-x&m;
file print linesleft=11;
set sasuser.des;

x&m = 2; /* constant alternative */
format x&m price.;

if n =1 or 11 < 12 then do;
put page ;
put @60 ’Subject: /]
end;

put n 2. ’) Circle your choice of ’
'one of the following fabric softeners:’ /;
do brnds = 1 to &m;

put ’ brnds 1. ’) ’ brands[brnds] ’‘brand at ’
x[brnds] +(-1) .’ /;
end;
run;

*/

93

In the interest of space, only the first two choice sets are printed. The questionnaire is printed, copied, and the
data are collected.

1)

2)

Subject:

Circle your choice of one of the following fabric softeners:
1) Sploosh brand at $1.49.

2) Plumbbob brand at $1.99.

3) Platter brand at $1.49.

4) Moosey brand at $1.99.

5) Another brand at $1.99.

Circle your choice of one of the following fabric softeners:
1) Sploosh brand at $1.99.

2) Plumbbob brand at $1.99.

3) Platter brand at $1.99.

4) Moosey brand at $1.99.

5) Another brand at $1.99.

94

Entering the Data

The data consist of a subject number followed by 18 integersin the range 1 to 5. These are the alternatives that
were chosen for each choice set. For example, thefirst subject chose aternative 3 (Platter brand at $1.49) in the
first choice set, alternative 3 (Platter brand at $1.99) in the second choice set, and so on. In the interest of space,
data from three subjects appear on oneline.

*/

/* read choice data set
(1.) ee;

data results;
input Subj
datalines;

(choosel-choose&n)

1

4

7
10
13
16
19
22
25
28
31
34
37
40
43
46
49

333542334333314443
133242144334414453
333432334332323443
325222235332333443
533212334332213443
333434235333315343
333342335332313443
333242354333313543
353342234333213343
333232334333333343
353342334332313443
332244134333313443
333244234334514443
343234134332413343
333242254333333443
132242235433514443
333542134334313443

Processing the Data

Our next step is to prepare the experimental design for analysis.

333212344333333345
335242134333513443
333242234334414443
333232334333313343
142242144333213443
533242234352313443
333242234332315543
333242333333313443
333245545332313443
333422534335353443
353222234333334443
343552234353413445
353232334333353543
333444244432413443
333242234332313443
543242534332413443
333222334332314443

3

6

9
12
15
18
21
24
27
30
33
36
39
42
45
48

333212333333313333
333242234333314443
333432331352313343
333242234333313453
333222335333313345
343445534332414543
333252534333513443
525222234332223443
333352534333353343
333252334533313443
333222234352313345
333244534333313443
333252334333313543
333232234332314443
312252544432414443
335452334333323453

Our design, stored in the data set

SASUSER.DES, is stored with one row per choice set. While this is convenient for generating the question-
aire, itis not theright form for analysis. For analysis, we need a design with one row for each alternative of each
choice set. We will use the macro %MKTROLL to “roll out” the design into the proper form. First, we must
create a data set that describes how the design is to be processed. The next DATA step shows that we want a
design with two factors, Brand and Price. Brand has values “ Sploosh”, “Plumbbob”, “ Platter”, “Moosey”,
and “Another”. Price iscreated from x1 for Sploosh, x2 for Plumbbob, x3 for Platter, x4 for Moosey, and no
attribute for Another (the constant alternative). The variables Brand and Price are logically quite different.
Brand will be named on the alt= macro option as the aternative variable, so its values will literally come out
of the key= data set. Price will not be named on the alt= macro option, so its values start out as variable
names and (as we will see later) will end up as the values of those variables.

data key;
input Brand $ Price $;
datalines;

Sploosh x1

Plumbbob x2

Platter x3

Moosey x4

Another

H

proc print; run;

95

Choice of Fabric Softener

Obs Brand Price
1 Sploosh x1
2 Plumbbob x2
3 Platter x3
4 Moosey x4
5 Another

Note that the value of Price for aternative Ancther is blank (character missing). The period in the in-stream
data set issimply aplace holder used with list input to read both character and numeric missing data. A periodis

not stored with the data. Next, we use the %oMKTROLL macro to process the design.

%mktroll (design=sasuser.des, key=key, alt=brand, out=rolled)

This step processes the design=sasuser.des data set using the rules specified in the key=key data set,
naming the alt=brand variable as the aternative name variable, and creating an output SAS data set called
ROLLED. Theinput design=sasuser.des data set has 18 observations, one per choice set, and the output
out=rolled dataset has5 x 18 = 90 observations, one for each alternative of each choice set. Here are the
first three observations of the original design matrix.

proc print data=sasuser

.des (obs=3); run;

Obs

N

Choice of Fabric Softener

x1 x2 x3 x4

$1.49 $1.99 $1.49 $1.99
$1.99 $1.99 $1.99 $1.99
$1.99 $1.49 $1.49 $2.49

These observations define the first three choice sets. Here are those same observations, arrayed for analysis.

proc print data=rolled(obs=15); format price price.; run;

Obs

O Voo N Uk WM R

[

R R R R R
U WD R

Choice of Fabric Softener

Set Brand Price
1 Sploosh $1.49
1 Plumbbob $1.99
1 Platter $1.49
1 Moosey $1.99
1 Another $1.99
2 Sploosh $1.99
2 Plumbbob $1.99
2 Platter $1.99
2 Moosey $1.99
2 Another $1.99
3 Sploosh $1.99
3 Plumbbob $1.49
3 Platter $1.49
3 Moosey $2.49
3 Another $1.99

This data set has a choice set variable Set, an alternative name variable Brand, and a price variable Price.

96

The prices come from the design, and the price for “Another” is a constant $1.99. The next step merges the
choice data with the choice design using the %MK TMERGE macro.

%$mktmerge (design=rolled, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

This step reads the design=rolled experimental design and the data=results data set and creates the
out=res2 output data set. The data are from an experiment with nsets=&n choice sets, nalts=&m aterna
tives, with variables setvars=choosel - choose&n containing the numbers of the chosen alternatives. Here
arethefirst 15 observations.

proc print data=res2 (obs=15); run;

Choice of Fabric Softener

Obs Subj Set Brand Price c
1 1 1 Sploosh 1 2
2 1 1 Plumbbob 2 2
3 1 1 Platter 1 1
4 1 1 Moosey 2 2
5 1 1 Another . 2
6 1 2 Sploosh 2 2
7 1 2 Plumbbob 2 2
8 1 2 Platter 2 1
9 1 2 Moosey 2 2

10 1 2 Another . 2
11 1 3 Sploosh 2 2
12 1 3 Plumbbob 1 2
13 1 3 Platter 1 1
14 1 3 Moosey 3 2
15 1 3 Another 2

The data set contains the subject ID variable Subj from the data=results data set, the Set, Brand, and
Price variables from the design=rolled data set, and the variable ¢, which indicates which alternative
was chosen. The variable ¢ indicates the chosen alternatives: 1 for first choice and 2 for second or subsequent
choice. This subject chose the third alternative, Platter, for each of the first three choice sets. This data set has
4500 observations: 50 subjects times 18 choice sets times 5 alternatives.

Since we did not specify a format, we see in the design the raw design values for Price: 1, 2, 3 and missing
for the constant alternative. |f we were going to treat Price as a categorical variable for anaysis, this would
be fine. We would simply assign our price format to Price and designate it asa class variable. However, in
this analysis we are going to treat price as quantitative and use the actual pricesin the analysis. Hence, we must
convert our design values of 1, 2, 3, and . to 1.49, 1.99, 2.49, and 1.99. We cannot do this by simply assigning
aformat. Formats create character strings that are printed in place of the origina value. We need to convert a
numeric variable from one set of numbers to another. We could use i £ and assignment statements. However,
instead we will use the put function to write the value into a character string, then we read it back using adollar
format and the input function. For example, the expressionput (price, price.) convertsanumber, say
2, into astring (in this case ' $1.99'), then the input function reads the string and convertsit to a numeric 1.99.
This step also assigns alabel to the variable Price.

data res3; /* Create a numeric actual price */
set res2;
price = input(put(price, price.), dollar5.);
label price = ’‘Price’;

run;

97

Binary Coding

One more thing must be done to these data before they can be analyzed. A binary design matrix must be coded
for the brand effect. This can be done with PROC TRANSREG.

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(brand / zero=none order=data)
identity (price) / lprefix=0;
output out=coded(drop= type name intercept);
id subj set c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design. When
design is specified, dependent variables are not required. The design option can optionally be followed by
“= n" wheren is the number of observationsto process at one time. By default, PROC TRANSREG codes all
observations in one big group. For very large data sets, this can consume large amounts of memory and time.
Processing blocks of smaller numbers of observationsis more efficient. The option design=5000 processes
observationsin blocks of 5000. For smaller computers, try something like design=1000. An alternativeisto
codeby subj, but thisisless efficient because block sizeis so small.

Thenozeroconstant andnorestoremissing optionsare not necessary for this examplebut areincluded
here because sometimesthey arevery helpful in coding choicemodels. Thenozeroconstant option specifies
that if aconstant variableis created by the coding, it is not to be zeroed. Thenozeroconstant option should
always be specified when you specify design=n because the last group of observations may be small and
may contain constant variables. Thenozeroconstant optionisalso important when codingby subj set
because sometimes an attribute is constant within a choice set. Thenorestoremissing option specifies that
missing values should not be restored when the out = data set is created. By default, the coded class variable
contains arow of missing values for observations in which the class variable is missing. When you specify
thenorestoremissing option, these observations contain arow of zerosinstead. This option is useful when
thereisaconstant alternative indicated by missing values. Both of these options, like almost all optionsin PROC
TRANSREG, can be abbreviated to three characters (noz and nor).

Themodel statement namesthe variablesto code and providesinformation about how they are to be coded. The
specificationclass (brand / zero=none order=data) specifiesthat thevariable Brandisaclassifica-
tion variable and requests a binary coding. The zero=none option specifies that one binary variable should be
created for all categories. The order=data option sorts the values into the order they were first encountered
in the data set. The specification identity (price) specifiesthat Price isaquantitative factor that should
be analyzed as is (not expanded into dummy variables).

The 1prefix=0 option specifies that when labels are created for the binary variables, zero characters of the
original variable name should be used as a prefix. This means that the labels are created only from the level
values. So for example, “Sploosh” and “Plumbbob” are created as labels not “Brand Sploosh” and “Brand
Plumbbob”.

An output statement names the output data set and drops variables that are not needed. These variables do not
have to be dropped. However since they are variable names that are often found in special data set types, PROC
PHREG prints warnings when it finds them. Dropping the variables suppresses the warnings. Finaly, the id
statement names the additional variablesthat we want copied from theinput to the output data set. The next steps
print the first three coded choice sets.

proc print data=coded(obs=15) label;
title ’Choice of Fabric Softener’;
title2 ’'First 15 Observations of Analysis Data Set’;
id subj set c;
run;

98

Choice of Fabric Softener
First 15 Observations of Analysis Data Set

Subj Set ¢ Sploosh Plumbbob Platter Moosey Another Price Brand

.49 Sploosh
.99 Plumbbob
.49 Platter
.99 Moosey

.99 Another

.99 Sploosh
.99 Plumbbob
.99 Platter
.99 Moosey

.99 Another

.99 Sploosh
.49 Plumbbob
.49 Platter
.49 Moosey

.99 Another

RFRRPRRBER RPRRERRBERRE RRRRR
W wwww DD PR RPRRBRE
MNNMNHENN NMNMNRERNN DNMNRENN
O 0O O0OO0OPKF OOO0OOKFKF OOOCOHK
OO O0OKFHF O OO0OOKH O OO OHRKrROoO
OO FPF OO OOKH OO OO K OO
OKFPF OO0 OFPF OOO OFr OO o
P OOOO PFOOOO BHOOoOOoOo
RFNRRBRRER RPRRERRER RRRRR

Fitting the Multinomial Logit Model

The next step fits the discrete choice, multinomial logit model.

proc phreg data=coded outest=betas;
title2 ’'Discrete Choice Model’;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

As with the candy example, c*c (2) designates the chosen and unchosen aternatives in themodel statement.
We specify the & _ trgind macro variable for themodel statement independent variable list. PROC TRANS-
REG automatically creates this macro variable. It contains the list of coded independent variables generated by
the procedure. Thisis so you do not have to figure out what names TRANSREG created and specify them. In
this case, PROC TRANSREG sets & _ trgind to contain the following list.

BrandSploosh BrandPlumbbob BrandPlatter BrandMoosey BrandAnother Price

The ties=breslow option specifies a PROC PHREG model that has the same likelihood as the multinomial
logit model for discrete choice. The strata statement specifiesthat the combinationsof Set and Subj indicate
the choice sets. This data set has 4500 observations consisting of 18 x 50 = 900 strata and five observations per
stratum.

Each subject rated 18 choice sets, but the multinomial logit model assumes each stratum is independent. That
is, the multinomial logit model assumes each person makes only one choice. The option of collecting only one
datum from each subject is too expensive to consider for practical problems, so multiple choices are collected
for each subject. Then the repeated measures aspect of the problem is ignored. This practice is typical, and it
usually works well.

99

Multinomial Logit Model Results

The output is shown next. (Recall that we used $phchoice (on) on page 71 to customize the output from
PROC PHREG.)

Choice of Fabric Softener
Discrete Choice Model

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2

Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Subj Set Alternatives Alternatives Chosen
1 1 1 5 1 4

2 1 2 5 1 4

3 1 3 5 1 4

4 1 4 5 1 4

5 1 5 5 1 4

6 1 6 5 1 4

7 1 7 5 1 4

8 1 8 5 1 4

9 1 9 5 1 4
10 1 10 5 1 4
11 1 11 5 1 4
12 1 12 5 1 4
13 1 13 5 1 4
14 1 14 5 1 4
15 1 15 5 1 4
16 1 16 5 1 4
17 1 17 5 1 4
18 1 18 5 1 4
19 2 1 5 1 4
20 2 2 5 1 4
898 50 16 5 1 4
899 50 17 5 1 4
900 50 18 5 1 4
Total 4500 900 3600

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

100

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2896.988 1445.310
AIC 2896.988 1455.310
SBC 2896.988 1479.322

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisg
Likelihood Ratio 1451.6781 5 <.0001
Score 1309.4957 5 <.0001
Wald 666.3325 5 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSqg
Sploosh 1 -1.22716 0.21083 33.8783 <.0001
Plumbbob 1 -0.25760 0.17245 2.2315 0.1352
Platter 1 1.97660 0.14592 183.4752 <.0001
Moosey 1 0.52028 0.16253 10.2467 0.0014
Another 0 0 . . .
Price 1 -4.50980 0.20231 496.8925 <.0001

The procedure output begins with information about each of the 900 strata. Thefirst 20 and last three strata are
shown. Each subject and choice set combination consists of atotal of five observations, one that was chosen (the
event) and four that are unchosen (censored). The nosummary option can be used to suppress this output, but
it is a good idea to not specify nosummary, since the summary information can help verify that the data are
arrayed correctly. We will see on page 129 how to print a compact summary of the summary table.

The most to least preferred brands are; Platter, Moosey, Another, Plumbbob, and Sploosh. Increases in
price have a negative utility. For example, the predicted utility of Platter brand at $1.99 is x ;3 which is

(0 01 0 0 $1.99) (-1.23 —-0.26 1.98 0.52 0 —4.51)) =198+ 1.99 x —4.51 = —6.99.
Since Price was analyzed as a quantitative factor, we can see for example that the utility of Platter at $1.89,
which was not in any choice set, is1.98 + 1.89 x —4.51 = —6.54, whichisa$0.10 x 4.51 = 0.45 increasein
utility.

101

Probability of Choice

These next steps compute the expected probability that each alternative is chosen within each choice set. This
code could easily be modified to compute expected market share for hypothetical marketplaces that do not di-
rectly correspond to the choice sets. Note however, that aterm like “ expected market share,” while widely used,
is amisnomer. Without purchase volume data, it is unlikely that these numbers would mirror true market share.
Nevertheless, choice modeling is a useful and popular marketing research technique.

First, PROC SCORE is used to compute the predicted utility for each alternative.

proc score data=coded(where=(subj=1) drop=c) score=betas type=parms out=p;

var & trgind;

run;
The data set to be scored is named with the data= option, and the coefficients are specified in the option
score=beta. Note that we only need to read all of the choice sets once, since the parameter estimates were
computed in an aggregate analysis. This is why we specified where=(subj=1). We do not need x j,é for each
of the different subjects. We dropped the variable ¢ from the CODED data set since this name will be used by
PROC SCORE for the results (x;/3). The option type=parms specifies that the score= dataset contains the
parametersin _ TYPE_ = ‘PARMS’ observations. The output data set with the predicted utilities is named
P. Scoring is based on the coded variables from PROC TRANSREG, whose names are contained in the macro
variable & _ trgind. The next step exponentiates xj,f-}.

data p2;
set p;
p = expl(ec);
run;

Next, exp(x;/3) is summed for each choice set.

proc means data=p2 noprint;
output out=s sum(p) = sp;
by set;
run;

Finally, each x;3 is divided by 3>, x; 3.

data p;
merge p2 s (keep=set sp);
by set;
p=p/ sp;
keep brand set price p;
run;

Here are the results for the first three choice sets.

proc print data=p(obs=15) ;
title2 ’‘Choice Probabilities for the First 3 Choice Sets’;
run;

Choice of Fabric Softener
Choice Probabilities for the First 3 Choice Sets

Obs Price Brand Set P
1 1.49 Sploosh 1 0.03723
2 1.99 Plumbbob 1 0.01030
3 1.49 Platter 1 0.91674
4 1.99 Moosey 1 0.02241
5 1.99 Another 1 0.01332

102

6 1.99 Sploosh 2 0.02673
7 1.99 Plumbbob 2 0.07048
8 1.99 Platter 2 0.65819
9 1.99 Moosey 2 0.15342
10 1.99 Another 2 0.09119
11 1.99 Sploosh 3 0.00377
12 1.49 Plumbbob 3 0.09489
13 1.49 Platter 3 0.88619
14 2.49 Moosey 3 0.00227
15 1.99 Another 3 0.01288

Custom Questionnaires

In this part of the example, a custom questionnaireis printed for each person. Previously, each subject saw the
same questionnaire, with the same choi ce sets, each containing the same alternatives, with everythingin the same
order. In this example, the order of the choice sets and all alternatives within choice sets are randomized for each
subject. Randomizing avoids any systematic effects due to the order of the alternatives and choice sets. The
constant alternative is always printed last. If you have no interest in custom questionnaires, you can skip ahead
to page 107.

First, the macro variable &forms is created. It contains the number of separate questionnaires (or forms or
subjects). We can use PROC PLAN to create random orders for the choice sets and alternatives. The data set
created by PROC PLAN has 50 x 18 x 4 observations for 50 people, 18 choice sets, and 4 aternatives, not
counting the constant alternative. Thereare 18 x 4 = 72 observationsfor subject 1, followed by 72 observations
for subject 2, ..., followed by 72 observations for subject 50. The Form variableis ordered dueto the ordered
option in the factors statement. The 72 observations for each choice set contain 18 blocks of 4 observations
— one block per choice set in a random order and the 4 alternatives within each choice set, again in a random
order. The set= specificationin the factors statement creates the random choice set order, and alt= creates
the random alternative order. Note that we store these in a permanent SAS data set so they will be available after
the data are collected.

%let forms = 50;
title ’‘Create 50 Custom Questionnaires’;

proc plan seed=7654321;
factors Form=&forms ordered Set=&n Alt=&mml / noprint;
output out=sasuser.orders;
run; quit;

proc print data=sasuser.orders (obs=16) ;
run;

Thefirst 16 observationsin this data set are shown next.

Create 50 Custom Questionnaires

Obs Form Set Alt
1 1 16 2
2 1 16 3
3 1 16 1
4 1 16 4
5 1 18 4
6 1 18 2
7 1 18 3
8 1 18 1

103

9
10
11
12
13
14
15
16

HHErHER BRBR
WNB KR NDWSB R

B B B> B 00 0 0 o

The data set is transposed, so the resulting data set contains 50 x 18 = 900 observations, one per subject per
choice set. The aternatives are in the variables Col1-Col4. The first 18 observations, which contain the
ordering of the choice sets for the first subject, are shown next.

proc transpose data=sasuser.orders out=sasuser.orders (drop= name);

by form notsorted set;
run;

proc print data=sasuser.orders (obs=18);
run;

Choice of Fabric Softener

Obs Form Set COL1 COoL2 COL3 COL4
1 1 16 2 3 1 4
2 1 18 4 2 3 1
3 1 8 1 4 3 2
4 1 4 1 4 2 3
5 1 11 1 3 2 4
6 1 13 2 4 3 1
7 1 9 1 4 3 2
8 1 3 2 3 1 4
9 1 5 2 1 3 4

10 1 12 2 1 3 4
11 1 10 4 1 3 2
12 1 17 1 4 2 3
13 1 7 2 3 4 1
14 1 14 2 3 4 1
15 1 2 1 4 3 2
16 1 15 1 4 3 2
17 1 6 4 3 1 2
18 1 1 1 4 2 3

The following DATA step prints the 50 custom questionnaires.

options 1s=80 ps=60 nodate nonumber;
title;

data null ;
array brands[&mml] § temporary
('Sploosh’ ’Plumbbob’ ’Platter’ ’'Moosey’);
array x[&mml] x1-x&mml;
array c[&mml] coll-col&mml;
format x1l-x&mml price.;
file print linesleft=11;

104

do frms = 1 to &forms;
do choice = 1 to &n;
if choice = 1 or 11 < 12 then do;

put page ;
put @60 ’‘Subject: ' frms //;
end;

put choice 2. ’) Circle your choice of ’
‘one of the following fabric softeners:’ /;
set sasuser.orders;
set sasuser.des point=set;
do brnds = 1 to &mml;
put ’ ' brnds 1. ’) ’ brands([c[brnds]] ’‘brand at ’
x[c[brndsl] +(-1) .’ /;
end;
put 5) Another brand at $1.99.’ /;
end;
end;
stop;
run;

Theloop do frms = 1 to &forms creates the 50 questionnaires. Theloop do choice = 1 to &n
creates the alternatives within each choice set. On the first choice set and when there is not enough room for
the next choice set, we skip to a new page (put _page._) and print the subject (forms) number. The data set
SASUSER.ORDERS isread and the set variableis used to read the relevant observation from SASUSER.DES
using the point= option in the set statement. The order of the alternativesis in the ¢ array and variables
coll-col&emml from the SASUSER.ORDERS data set. In the first observation of SASUSER.ORDERS,
Set=16, Coll=2, Col2=3, Col3=1, and Col4=4. The first brand, is ¢ [brnds] = c[1l] = coll =
2, SO0 brands [c[brnds]] = brands[c[l]] = brands[2] = ’Plumbob’, and the price, from
observation set=16 of SASUSER.DES, is x[c[brnds]l] = x[2] = $1.99. The second brand, is
c[brnds] = c[2] = col2 = 3, SO brands[c[brnds]] = brands[c[2]] = brands[3] =
'Platter’, and the price, from observation Set=16 of SASUSER.DES, is x[c [brnds]] = x[3] =
$1.49.

In the interest of space, only the first two choice sets are printed. Note that the subject number is printed on the
form. Thisinformation is needed to restore al datato the original order.

Subject: 1

1) Circle your choice of one of the following fabric softeners:
1) Plumbbob brand at $1.99.
2) Platter brand at $1.99.
3) Sploosh brand at $1.99.
4) Moosey brand at $1.49.

5) Another brand at $1.99.

2) Circle your choice of one of the following fabric softeners:

1)

2)

3)

4)

5)

Moosey brand at $1.99.

Plumbbob brand at $2.49.
Platter brand at $1.49.
Sploosh brand at $1.49.

Another brand at $1.99.

105

Processing the Data for Custom Questionnaires

Here are the data. (Actually, these are the data that would have been collected if the same people as in the
previous situation made the same choices, without error and uninfluenced by order effects.) Before these data
are analyzed, the original order must be restored.

dat

1

4

7
10
13
16
19
22
25
28
31
34
37
40
43
46
49

H

Thedata

pro

dat

pro

a results; /* read choice data set
input Subj (choosel-choose&n) (1.) @@;
datalines;

433523224332243244 2 111134542142124243 3 414223142333323422
143512112224441441 5 312513434513443233 6 444412234223112421
123131242243411222 8 134312124143421411 9 142244314432511242

124121151135114211 11 242144434121413233 12 351311124421241341
153244214412414433 14 422322441221123324 15 211452423534132431
213241243354321353 17 231424441351422145 18 123554323344445414
434224442513232132 20 244415443124532223 21 341521125414222253
521322422113145241 23 441314334433322221 24 434215341425341111
341242445212232234 26 453513242124211541 27 244434142234533535
324122444414142212 29 221313543351425441 30 535414424143141343
244414242334451134 32 233444112314125124 33 113434111124545334
442311112314222421 35 145141335453225333 36 233124413424242135
214441243452324333 38 133134341255222251 39 123513314411443544
441342414112143431 41 313242432133211112 42 111313111321411441

124232133234532322 44 124131332124112243 45 452231431542313121
131444324142443155 47 134133121134525123 48 353422425435444422
524243122341231233 50 132123343334312112

set is transposed, and the original order is restored.

c transpose data=results /* create one obs per choice set

out=res2 (rename=(coll=choose) drop= name) ;

by subj;

run;

a res3 (keep=subj set choose);

array c[&mml] coll-col&mml;

merge sasuser.orders res2;

if choose < 5 then choose = c[choose];
run;

c sort;
by subj set;
run;

*/

*/

The actua choice number, stored in Choose, indexes the aternative numbers from SASUSER.ORDERS to
restore the original aternative orders. For example, for the first subject, the first choice was 2. The data set
SASUSER.ORDERS shows that this choice of 2 corresponds to the third alternative (the second Col variable,

106

Col2 = 3) of choiceset Set=16. Thelisting shows that the original order has been restored. Similarly, the
second choicewas 3. In the next observation of SASUSER.ORDERS, Co13=3 and Set=18, so the 18th choice
in the new data set is 3. The third choice was 3. In the next observation of SASUSER.ORDERS, Cco13=3 and
Set=8, so the 8th choicein the new dataset is 3. This process continues for the rest of the choices.

This DATA step writes out the data after the original order has been restored. It matches the data on page 94.

data null ;
set res3;
by subj;
if first.subj then do;
if mod(subj, 3) eqg 1 then put;

put subj 4. +1 @@;
end;
put choose 1. @@;
run;

1 333542334333314443 2 333212344333333345 3 333212333333313333
4 133242144334414453 5 335242134333513443 6 333242234333314443
7 333432334332323443 8 333242234334414443 9 333432331352313343
10 325222235332333443 11 333232334333313343 12 333242234333313453
13 533212334332213443 14 142242144333213443 15 333222335333313345
16 333434235333315343 17 533242234352313443 18 343445534332414543
19 333342335332313443 20 333242234332315543 21 333252534333513443
22 333242354333313543 23 333242333333313443 24 525222234332223443
25 353342234333213343 26 333245545332313443 27 333352534333353343
28 333232334333333343 29 333422534335353443 30 333252334533313443
31 353342334332313443 32 353222234333334443 33 333222234352313345
34 332244134333313443 35 343552234353413445 36 333244534333313443
37 333244234334514443 38 353232334333353543 39 333252334333313543
40 343234134332413343 41 333444244432413443 42 333232234332314443
43 333242254333333443 44 333242234332313443 45 312252544432414443
46 132242235433514443 47 543242534332413443 48 335452334333323453
49 333542134334313443 50 333222334332314443

The data can be combined with the design and analyzed as in the previous example.

107

Vacation Example, Big Designs

Thisexampleillustrates creating adesign when thefull-factorial istoo largeto useasacandidateset. A researcher
is interested in studying choice of vacation destinations. There are five destinations (alternatives) of interest:

Hawaii, Alaska, Mexico, California, and Maine. Each alternative is composed of three factors: package cost
(%999, $1,249, $1,499), scenery (mountains, lake, beach), and accommodations (cabin, bed & breakfast, and

hotel). This problem requires a design with 15 three-level factors, denoted 3 1°. The design has three factors, one
per attribute, for each of the five destinations. Each row of the design matrix contains the description of the five
aternatives in one choice set. Note that the levels do not have to be the same for all destinations. For example,
the cost for Hawaii and Alaska could be different from the other destinations. However for this example, each
destination will have the same attributes. Here are two summaries of the design, with factors grouped by attribute
and grouped by destination.

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 Cdifornia Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X6 Hawaii Scenery Mountains, Lake, Beach

X7 Alaska Scenery Mountains, Lake, Beach

X8 Mexico Scenery Mountains, Lake, Beach

X9 Cdlifornia Scenery Mountains, Lake, Beach

X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $999, $1249, $1499

X12 Alaska Price $999, $1249, $1499

X13 Mexico Price $999, $1249, $1499

X14 Cdlifornia Price $999, $1249, $1499

X15 Maine Price $999, $1249, $1499

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach

X11 Price $999, $1249, $1499

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach

X12 Price $999, $1249, $1499

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach

X13 Price $999, $1249, $1499

X4 Cdifornia Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach

X14 Price $999, $1249, $1499

X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach

X15 Price $999, $1249, $1499

108

St Up

We can use the %MK TRUNS autocall macro to suggest design sizes. (All of the autocall macros used in this
report are documented starting on page 261.) To use this macro, you specify the number of levels for each of the
factors. With 15 attributes each with three prices, you specify fifteen 3's.

title ’Vacation Example, Strategies for Big Designs’;

$mktruns(3 3 3 3 3 3 3 33 333333)

The output tells us the size of the saturated design, which is the number of parametersin the linear design, and
suggests design sizes.

Vacation Example, Strategies for Big Designs

Some Reasonable
Design Sizes Cannot Be
(Saturated=31) Violations Divided By

36
45
54
63
72
81
90
99
108
117

O OO O O0OOo0O oo oo

In this design, there are 15 x (3 — 1) + 1 = 31 parameters, so at least 31 choice sets must be created. With
all three-level factors, the number of choice sets in al orthogonal and balanced designs must be divisible by
3 x 3 = 9. Hence, any size of at least 36 choice sets and multiples of 9 choice sets can be optimal. Zero
violations does not imply that we will always find a 100% efficient design. It just means that optimality is not
precluded by unequal frequencies. We will create an efficient experimental design with 36 choice sets using the
%MKTDES macro.

Designing the Choice Experiment
The following code creates a design.
%mktdes (factors=x1-x15=3, n=36, procopts=seed=7654321)

The factors= option specifies a design with 15 factors, x1—x15, each with three levels. A design with 36
runs is requested, which will mean 36 choice sets. A random number seed is explicitly specified so we will be
able to reproduce these exact resullts.

In the soap example, the macro first ran PROC PLAN to create a full-factorial candidate set. That will not work
in this situation. The full-factorial design has 31° = 14, 348, 907 observations, which is way too many to use as
a candidate set. The full-factorial design will require over 1642 mega-bytes of disk. It is often the case that the
full-factorial design, eveniif it is small enough to create and store, is too big to use as a candidate set.

When is the candidate set too big? It depends on how fast your computer is, how much memory it has, how
much free disk space it has, how much time you have, and so on. Often, you will find your best designs with
small candidate sets. Here are some approximate guidelines. Under 2000 runsis small. 2000 — 5000, while not
small, may be very reasonable. 5000 — 10,000 is big. Candidate sets with sizes closer to 5000 may work finein a
reasonable amount of time, but as the candidate set gets bigger, the software has a harder time finding an optimal
design. You should only consider candidate sets with over 10,000 candidates when you have alot of time to wait

109

for searches that will usually produce suboptimal designs. By default, the macro will not create a full-factorial
candidate set that is bigger than 2188 = max(2!%,37) + 1 runs. Thisis controlled with the big= option.

We will often create a candidate set whose size is a power of a prime number.

212 = 4,096 isreasonable athough smaller sizes should betried
213 = 8,192 isprobably too big

214 = 16,384 isamost certainly too big

37 = 2,187 isreasonable

32 = 6,561 isprobably too big

3° = 19,683 isamost certainly too big

5° = 3,125 isreasonable

56 = 15,625 isalmost certainly too big

7¢ = 2,401 isreasonable

75 = 16,807 isamost certainly too big

Returning to the example, the macro first runs PROC FACTEX to create a fractional-factorial design. It creates
aresolution 111 design for acandidate set. In aresolution |11 design, all main effects are estimable free from each
other. Resolution Il designs are usually much smaller than the full-factorial. See pages 68 and 111 for more
detail about resolution. The macro writes PROC FACTEX code using an algorithm well-suited for much more
complicated problems such as model s with interactions and amix of levels. Thisflexibility makes the code more
complicated than isideal for an introductory example, so first we will start more simply, and later we will look at
the actual macro-generated code (page 140 at the very end of this example). Let’'s consider the PROC FACTEX
code that we might have written for the problem if we were solving the design problem without the use of the
%MKTDES macro.

proc factex;
factors x1-x15 / nlev=3;
size design=min;
model res=3;
output out=Candl;
run; quit;

The factors statement names the factors, x1-x15, and nlev= specifies the (constant) number of levelsfor
each. Thestatementssize design=minandmodel res=3 combineto createaresolution!ll designinthe
minimum number of runs. The output statement with out= putsthe designin a SAS data set named CAND1.
The resulting candidate set has 81 runs (possible choice sets). The only real difference between this code and
the macro generated code is the macro creates factors with values of (1, 2, 3), whereas in the code above and by
default, PROC FACTEX creates factors with values of (-1, 0, 1).

After the candidate set is generated, the macro runs PROC OPTEX to find the final design. Here is the PROC
OPTEX code that the macro generated.

proc optex data=Candl seed=7654321;

class x1-x15 / param=orthref;

model x1-x15;

generate n=36 iter=10 keep=5 method=m federov;

output out=design;

run; quit;
The PROC statement option data= names the candidate data set, and the seed= option specifies the random
number seed. The class statement designates the variables x1 through x15 as classification variables, which
means they are nominal or categorical as opposed to linear or quantitative. The param=orthref option
generates an orthogonal coding for the design matrix. With this coding, the efficiency values range from 0
(some effects are not estimable) to 100 (a perfect design). Themodel statement specifies that we want to find
a good design for a main effects model (no interactions). The generate statement requests the generation
of an efficient design with n=36 choice sets. The options iter=10 and keep=>5 request that ten designs be
independently generated and five be kept. The option method=m _ federov specifies the modified Federov

110

agorithm (Federov (1972) and Cook and Nachtsheim (1980)), which is usually the most reliable. See page 111
for more information on the modified Federov algorithm. The output statement outputs the most efficient
design to the SAS data set DESIGN. Here are the results.

Vacation Example, Strategies for Big Designs

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 84.4436 65.6780 67.2558 1.1450
2 84.4436 65.6780 67.2558 1.1450
3 84.4436 65.6780 67.2558 1.1450
4 84.4436 65.6780 67.2558 1.1450
5 84.4436 65.6780 67.2558 1.1450

The best design had a D-Efficiency of 84.4%, and the macro ran in under two seconds. The macro ran fast
because the candidate set only had 81 candidates. When the candidate set is this small and run time is this fast,
it isusually good to try again with bigger candidate sets to see if more efficient designs can be found. Since the
factors al have three levels, larger candidate sets can be created by specifying a set size of the minimum (81)
times 3, 9, 27, 81, and so on. Of course the actual numbers, 243 and 729 and so on, could have been specified.

%$mktdes (factors=x1-x15=3, size=81*3, n=36, procopts=seed=7654321)

With 81 x 3 = 243 candidates, D-efficiency is better, 86.5650. PROCs FACTEX and OPTEX combined ran in
under four seconds. Let’s try again with a bigger candidate set.

%$mktdes (factors=x1-x15=3, size=81*9, n=36, procopts=seed=7654321)

With 81 x 9 = 729 candidates, D-efficiency is again better, 89.4777. PROCs FACTEX and OPTEX combined
ran in under twelve seconds. Let’s try again with a bigger candidate set.

%mktdes (factors=x1-x15=3, size=81*27, n=36, procopts=seed=7654321)

With 81 x 27 = 2187 candidates, D-efficiency is again better, 92.2205. PROCs FACTEX and OPTEX combined
ran in under 35 seconds. This candidate set is starting to get large, so this would be a reasonable stopping point.
Still, it would not hurt to try one more time.

%$mktdes (factors=x1-x15=3, size=81*81, n=36, procopts=seed=7654321)

With 81 x 81 = 6561 candidates, D-efficiency was this time a little worse, 91.6423. PROCs FACTEX and
OPTEX combined ranin 2 minutes and 15 seconds. When the candidate set islarge, PROC OPTEX has a harder
time finding the best designs.

111

Candidate Sets and How PROC OPTEX Works

On page 109, our goal was to find a good design in 36 runs from an 81 run candidate set. The number of

possible designs for this problem is 81!/(36!(81 — 36)!) = 1.3 x 1023. Even if your computer could evaluate
one billion designs a second, it would take over four million years to evaluate all possible designs. Furthermore,

thisisasmall problem; researchers frequently have much larger designs and candidate sets. Exhaustive searchis
impossible, so PROC OPTEX uses heuristicsto look for good designs.

The details of how PROC OPTEX works vary by agorithm, but typically and the way we use it with the %MK T-
DES macro, it starts by randomly selecting a design from the candidate set. The efficiency of the random design
is evaluated. Then points that are in the design are considered for removal, and points that are not in the design
are considered for inclusion. The effects on efficiency of these removals and inclusions are evaluated. If swap-
ping a design point with a candidate point increases efficiency, it is done. This process continues until efficiency
quits improving. The result is one of the designs that is printed in the efficiency table. (By default, no report
is generated of the iterations that led to that design.) The process is repeated again starting with a new random
design and iteratively refining it. Theresult isanother of the designsin the efficiency table. This process occursn
times, from iter=n inthe generate statement, which by default is 10. The designs are sorted by decreasing
efficiency, and the efficiency tableis printed. Thetableis not an iteration history. It isalist of information about
n independently generated designs, ordered from best to worst. Because exhaustive searches are impossible,
PROC OPTEX may fail to find the optimal design. However, the procedureinvariably finds efficient designs.

We will always use the modified Federov algorithm (Federov (1972) and Cook and Nachtsheim (1980)) with
PROC OPTEX whenitis called from the %MK TDES macro. The modified Federov algorithm iteratively refines
a design by considering swapping each candidate point in place of each design point. Consider a candidate set
with n points and a design with m points. Each iteration of the modified Federov algorithm considers all pairs
of n x m swaps — each design point is removed and the effect of replacing it by each of the n candidates is
evaluated. Candidates are swapped in and design points swapped out whenever efficiency improves. The process
is repeated until n x m swaps are considered but nothing changes. The original Federov algorithm considers all
n x m possible swaps then performs the single swap that leads to the greatest improvement in efficiency. This
processis repeated until no swap increases efficiency. In contrast, the modified Federov algorithm performsevery
swap that increases efficiency. Other algorithms are available, however we will not use them since the modified
Federov agorithm works so well.

Aswe saw on pages 109 through 110, sometimes you can find a more efficient design by using alarger candidate
set or by letting PROC OPTEX run longer. Starting on page 109 we used aresolution |11 candidate set (all main
effects are estimable free of each other). We started with small resolution |1l candidate sets and worked our
way up to larger sets. We could also try resolution IV candidate sets (all main effects are estimable free of each
other and free of al two-factor interactions, but some two-factor interactions are confounded with each other),
or resolution V candidate sets (all main effects and two-way interactions are estimable free of each other). Other
resolutions can be tried as well. The size of an orthogonal design is directly related to resolution. Specifying a
smaller resolution will create acandidate set with fewer choice sets, and alarger resolution will create acandidate
set with more choice sets. The size of the candidate set should be small relative to the full-factorial design but
larger than the final desired design.

Before the development of the %MK TDES macro, we recommended the following strategy.

e Try using aresolution |11 design as the candidate set.

Try using aresolution |V design as the candidate set.

Try using aresolution V design as the candidate set.

Try using aresolution |11 design, concatenated with aresolution 1V and resolution V design asthe candidate
Set.

Try using afull-factorial design as the candidate set if it is not too big.

112

In fact the strategy outlined starting on page 109 seems to usually be superior. Page 109 suggests using the
macro with increasingly larger values of size=. The macrois faster, more convenient, and usually does a better
job than writing PROC FACTEX code with different resolutions. Still, it is good to know about and try other
strategies sometimes. Searching for an efficient experimental design islike abox of chocolates. You never know
what you'll get.

The choice of the size of the candidate set involves balancing the richness of the candidate set versus the com-
putational difficulty of the search for an optimal design. Increasing the size of the candidate set gives PROC
OPTEX more combinations to work with and hence usually increases the efficiency of the best design that can
be constructed from the candidate set. However, as candidate set size increases, it becomes more difficult to find
the best designs. Thisis because as the number of possible designs increases, the probability that the search will
get stuck in alocal optimum also increases. To compensate for this, more but slower searches may be necessary
with larger candidate sets.

To envision how PROC OPTEX works, imagine a bunch of blind-folded kangaroos hopping around, looking for
the top of Mt. Everest. The search for an efficient design is like a kangaroo jumping around until it reaches
a place where it can only go down. We want to find the top of Mt. Everest, but we would be happy with
K2, which is amost as high as Everest. We might also make do with other Himalayan peaks or even with Mt.
McKinley. However, local optima such as underwater mountain peaks and the highest point in Nebraska are
not good answers. Using a full-factorial design as a candidate set is like parachuting the kangaroosinto random
places on the planet. Most will drown, freeze or meet some other unpleasant fate, but occasionaly, a kangaroo
will find the top of a mountain. Since the kangaroos are being parachuted over the entire planet, some kangaroo
will find Mt. Everest, given enough kangaroos and enough time. However, it may take a very long time. Using
aminimum-sized resolution 111 candidate set is like parachuting kangaroosinto some mountain range. They will
find a peak very quickly, but you do not know if it is Everest because you may have dropped them in the wrong
mountain range. Using increasingly larger candidate sets is like parachuting the kangaroos into increasingly
larger areas. aregion, country, continent, hemisphere, and planet. Asthe size of the candidate set increases, the
chance that you will find the optimum or a very good local optimum increases, however each search takes longer
and has alower probability of success, so more searches may be necessary.

Generating the Final Design

Let’'s return to the 2187 run candidate set and ask PROC OPTEX to generate more than 10 designs, say
iter=50. This should take less than (50/10) x 35 seconds = 2 minutes and 35 seconds, about as much time
as we spent with 6561 candidates. Also, the seed was changed so that the same first ten designs as before would
not be generated. It isunlikely we will do alot better with this strategy, but it is worth 2 1/2 minutes of computer
timeto find out.
%$mktdes (factors=x1-x15=3, size=81%*27, n=36, iter=50,
procopts=seed=72555)

Infact it took about 2 minutes and 21 seconds and at D-efficiency = 91.3630 did a little worse than our previous
best. Thisis a good place to stop and regenerate our best design. There are many other strategies that could
be tried: specify bigger values for iter= before going to lunch or home for the evening, try concatenating the
different candidate sets, try creating candidate sets other ways. Our experience suggests that it is unlikely you
will do significantly better than we have already done using the simple strategy outlined here. It is instructive to
compare the PROC OPTEX D-efficiency results for the different candidate set sizes.

81 Candidates | 243 Candidates | 729 Candidates | 2187 Candidates
D-Efficiency D-Efficiency D-Efficiency D-Efficiency
1 84.4436 86.5650 89.4777 92.2205
2 84.4436 86.5550 89.4575 91.4788
3 84.4436 86.2203 89.4471 90.9939
4 84.4436 86.2174 89.2366 90.7937
5 84.4436 86.1137 89.2189 90.7782

113

With 81 candidates, the top five designs all have the same D-efficiency. This suggests that PROC OPTEX has
probably found the best design that can be constructed from that candidate set. In contrast, as the candidate set
gets larger, the D-efficiency of the top five designs becomes more variable. In those cases we are less certain that
the optimal design that can be found in the candidates has been found. In particular, with the 2187 candidates,
it is quite likely that there are better designs out there. However, they are probably only alittle better, and it
would probably take a long time to find them. Going from 81 candidates to 243, then 729, and 2187 is easy
and it does not take much computer or analyst time. Furthermore, there is a substantial gain in efficiency from
84.4% t0 92.2%. It is unlikely that performing more searches or using larger candidate sets will help much. Our
experience suggests that the following points are good heuristics for design search.

o Keep candidate set sizes under 5000 runs.

e Itisunlikely that more than 10 or 20 searches of a particular candidate set will be alot better than just 10
or 20 searches.

Increasing the candidate set size or the number of searches can greatly increase search time, typically with avery
diminished return, that is, typically with little or no increase in the efficiency of the final design. See page 192
for anillustration of this.

Here are the results for our most efficient design.

%$mktdes (factors=x1-x15=3, size=81*27, n=36, procopts=seed=7654321)

Vacation Example, Strategies for Big Designs

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 92.2205 85.3867 77.0109 1.0042
2 91.4788 83.8273 74.0857 1.0135
3 90.9939 82.8629 74.2882 1.0194
4 90.7937 81.8787 71.7165 1.0255
5 90.7782 82.0349 74.1813 1.0245

Examining the Design

Before you use adesign, you should always ook at its characteristics. First, let’slook at the one-way frequencies
— the number of times each level appears. Since we have all three-level factors and 36 choice sets, we would like
to see frequencies of al 12, though 11's and 13's will certainly be acceptable. We will also look at the n-way
frequenciesto ensure that we do not have duplicate choice sets. We will use PROC SUMMARY with theways
statement along with PROC PRINT to display the frequencies. In theinterest of space, the two-way frequencies
are not printed, They could have been requested by adding “2” to theways statement, ways 1 2 15.

proc summary data=design;
class all ;
ways 1 15;
output out=sum;
run;

proc print; by type ; run;

114

Vacation Example, Strategies for Big Designs

1 1 10

2 2 14

3 3 12
----------------------------------- TYPE =2 = - - - - o m o m e e e e

4 1 . 11

5 2 13

6 3 . 12
----------------------------------- _TYPE =4 ------e---cceeeeemcceeeeeeceeeeaaa-

7 1 . . 14

8 2 . . 12

9 3 . . 10
----------------------------------- ['4-J -3 Sy

10 1 . . 12

11 2 11

12 3 13
---------------------------------- _TYPE =16 ----------mmmmmmmmmmmmmmmeee oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

5 1 11

P 2 11

15 3 . . 14
---------------------------------- _TYPE =32 ------e---ceceeeemcceeeeemceeeaaaa-

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

161 13

172 9

83 14
---------------------------------- _TYPE =64 ---------mmmmmmmmmmmmemmmmeeo oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

191 12

2020 12

213 12
---------------------------------- _TYPE =128 -------mmmmmmmmmmmmmemmmmeo oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

221 L. 12

23 2 13

243 L. 11
---------------------------------- _TYPE =256 =----===---ceesemceccasecccceanan-

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

115

---------------------------------- _TYPE =512 ------mmmmmmmmmmmmmemmmmeeo oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

28 1 12
29 . . .2 11
30 . . .3 13
--------------------------------- _TYPE 21024 --------mmmmmmmmmmmmmmmmmmo oo oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

31 . . 1 14
32 . . 2 10
33 3 12
--------------------------------- _TYPE =2048 - === mmmmmmmmmmmm oo oo oo oo

Obs x1 =x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

34 1 11
35 2 13
36 3 12
--------------------------------- _TYPE =4096 ----------mmmmmmmmmmmmmmmmo oo oo

Obs x1 =x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

37 1 12
38 . . 2 13
39 . . 3 11
--------------------------------- _TYPE 28192 ------mmmmmmmmmmmmmmmmememe oo oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

40 . 1 11
41 . 2 12
42 3 13
--------------------------------- _TYPE =16384 -------mmmmmmmmmmmmmmmeoooaaaaao

Obs x1 =x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

43 1 11
44 2 12
45 3 13

--------------------------------- _TYPE =32767 =------mmm-mmmmmmmmmmmmmeee e

Obs x1 x2 x3 x4

b
4}
n
o

x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ

WWWWWwWWwWwWwWwwWwwwNdNdDNNNMNMNNDMNDNMNMMMMNOMNMMNMNRFRERRRERFREREFEEFRERRERER
WWWWWNNMNNMNNMNHEREFRERPRERPWOWWNDNMNNMNREEREPEWOWWOWWNDNNDNDNNDNRERER
WNDNDMNDNMNDNWWWRWEFRENMEFEFFEFEDMDMDNNREPWWWOUODNDNWWWENDNREREREDNDDND
FNMNNMRFEFRWOWRFWONDNDMDNDDEFNDMWOWWWWDNDNMNDMNWREFRFERFWONDMDNNRENDERERWWW
NNFEFWRFRFWONMRFFWOFRFWNDMFEFWONMMFEFRERFFERPWONDNWLWWUNMNFEFRENDMFEFWORERNDREWNDR
WNDNDNMNWWMNMNMNRFEFWRFFRFRWEFRENMFEFRFRPOWWOWERERNDMDDMNDDWWWNENDMDEREDWW
WKHEFWEFEFRENMNMDMNMEFRFERPWWODNDNDMNDMNWNMEFWWNDMNRERFEEDMWODMNDNNWERERERRPRWNDDND
NNRFEFFEFWONDMWREFRERDMDWOWEDMDMDNWODNDMEFNDMWOWORERFNDMWEDMWWRDWRERENDWDNDWERE
WWNNRFEFWEFNMMDMWEFNMNMWREREMNMFEFWOWORFDMOWDEDOWDEDWOWLEFDWERERDWDWERE
FRPWWNMNEDNDMWOWWERFNMNWOWDRFEFWRWNDNWOUENMNWOENDMNWODEFEFWORERDNDWDEREREDWDWEERE
WWNNEFEFRPDDMOWDWOUONDNWEDNDMWRWNMEDDMOWERERWEMDMWDEMDMNOWDEFEFWWENDDWER
FFRPWWNMNMNMWREFRFRWOEFDMWONDNWODNDMFEFWOFERNDMWODWEDMDFEFNDMWOREFWWENDDWERE
NNRFEFFRFWWRERFNMMDDFENMWOFEFRERMDMFEFWONDMWENDMFENDDMOFEFFEFDMOWDFEFWWENDDWERE
FFEFWWOWNWEFDMDMDMNWOWFEFMDMENDMFEFWOWOWRERFNMNWOEFDWONDWEDNNDNDWERENDWRE
NMNNEHEFFEFWFEFNDMWWOWFEFNDMNWWORERFWNDDMWOFEDNDMNWENDMDMWOREDNNDWEREDWRE
RFRHEHRERRHEHRERRPRRERBPRPRRERERPRPRERBREPERERBRRHEBEBRBRHERBRERRERRBERBRRBER

We see afew 9's, 10's, and 14's that we would rather not see, but overall, balance looks pretty good. The fol-
lowing program summarizes the two-way frequencies. PROC SUMMARY with theways 2 statement generates
all two way frequencies and outputsthem to a SAS data set. All frequenciesare stored in the variable _ freq..
Rather than print all 15 x (15 — 1)/2 = 105 tables, we summarize the frequencies with a PROC FREQ step.

proc summary noprint data=design;
ways 2;
class x:;
output out=res(keep= freq);
run;

proc freq; run;

Ideally, we would like all two-way frequenciesto be 36/(3 x 3) = 4, but we would certainly expect some threes
and fives. Here are the results.

The FREQ Procedure

Cumulative Cumulative
_FREQ Frequency Percent Frequency Percent

117

Theresultslook pretty good. (278 + 400 + 229) /954 or 96% of the frequenciesare 3, 4, or 5. If the results were
not acceptable, you could run the macro again with different seeds until you found a design you liked better.
Some researchers are willing to even sacrifice alittle bit of efficiency for better balance (see page 221).

You could also rerun the PROC OPTEX step, copying the generated code and adding an examine i statement,
to print the information matrix, which is the covariance matrix of the parameter estimates. You hopeto see all of
the off-diagonal elements, the covariances, are small relative to the variances on the diagonal .

proc optex data=Candl seed=7654321;
class x1-x15 / param=orthref;
model x1-x15;
generate n=36 iter=10 keep=5 method=m federov;
output out=design;
examine i;
run; quit;

Information Matrix

Intercept x11 x12 x21 x22 x31 x32 x41
Intercept 36.0 -2.1 -1.2 -2.1 -1.2 0.0 2.4 -2.1
x11 -2.1 34.5 0.9 -1.5 0.9 1.5 0.9 -1.5
x12 -1.2 0.9 37.5 0.9 1.5 0.9 4.5 -4.3
x21 -2.1 -1.5 0.9 34.5 0.9 -3.0 -1.7 3.0
x22 -1.2 0.9 1.5 0.9 37.5 3.5 0.0 3.5
x31 0.0 1.5 0.9 -3.0 3.5 36.0 -1.7 -3.0
x32 2.4 0.9 4.5 -1.7 0.0 -1.7 36.0 -1.7
x41 -2.1 -1.5 -4.3 3.0 3.5 -3.0 -1.7 34.5
x42 1.2 -0.9 -4.5 -3.5 -3.0 1.7 3.0 -0.9
x51 4.2 3.0 -1.7 -1.5 -4.3 1.5 0.9 3.0
x52 -2.4 1.7 -3.0 -0.9 -4.5 -0.9 -4.5 1.7
x61 0.0 -3.0 3.5 1.5 6.1 9.0 -1.7 1.5
x62 -2.4 -3.5 3.0 4.3 1.5 1.7 -3.0 -0.9
x71 0.0 -3.0 -1.7 1.5 6.1 0.0 -1.7 10.5
x72 4.9 1.7 3.0 -0.9 -1.5 1.7 -6.0 -0.9
x81 0.0 1.5 -4.3 -3.0 3.5 0.0 3.5 1.5
x82 2.4 -4.3 -1.5 -1.7 0.0 -1.7 -3.0 0.9
x91 0.0 1.5 6.1 -3.0 3.5 0.0 3.5 -3.0
x92 0.0 -2.6 1.5 -0.0 3.0 -0.0 6.0 -0.0
x101 2.1 0.0 -1.7 4.5 0.9 -6.0 -1.7 0.0
x102 -6.1 1.7 -0.0 4.3 1.5 -3.5 -3.0 1.7
x111 -2.1 3.0 3.5 -1.5 0.9 6.0 -1.7 -1.5
x112 -3.7 0.0 -3.0 2.6 -1.5 0.0 -3.0 2.6
x121 0.0 1.5 -4.3 -3.0 -1.7 4.5 -4.3 1.5
x122 -2.4 -0.9 4.5 1.7 -3.0 -0.9 1.5 -0.9
x131 4.2 -1.5 0.9 3.0 -6.9 -3.0 3.5 -1.5
x132 2.4 -4.3 -1.5 -1.7 -0.0 3.5 -3.0 0.9
x141 -2.1 -1.5 0.9 -1.5 -4.3 -3.0 -1.7 -1.5
x142 1.2 4.3 -4.5 -0.9 1.5 1.7 -3.0 4.3
x151 -4.2 0.0 -1.7 -0.0 -1.7 -1.5 0.9 0.0
x152 2.4 3.5 3.0 -1.7 -0.0 0.9 1.5 -6.9

118

Information Matrix

x51 x52 x61 x62 x71 x72 x81

x42

1

Intercept

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52
x61
x62
x71
x72
x81
x82
x91
x92

37

36.0

36.0

x101
x102

x111

x112

x121

x122

x131

x132

x141

x142

x151
x152

10.5

Information Matrix

x91 x92 x101 x102 x111 x112 x121

x82

2.4

Intercept

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52
x61
x62
x71
x72
x81
x82
x91
x92

36

37.5

x101

34.5

x102

x111

37.5

x112

x121

x122

x131

x132

x141

x142

x151

x152

119

Information Matrix

x122 x131 x132 x141 x142 x151 x152
Intercept -2.4 4.2 2.4 -2.1 1.2 -4.2 2.4
x11 -0.9 -1.5 -4.3 -1.5 4.3 0.0 3.5
x12 4.5 0.9 -1.5 0.9 -4.5 -1.7 3.0
x21 1.7 3.0 -1.7 -1.5 -0.9 -0.0 -1.7
x22 -3.0 -6.9 -0.0 -4.3 1.5 -1.7 -0.0
x31 -0.9 -3.0 3.5 -3.0 1.7 -1.5 0.9
x32 1.5 3.5 -3.0 -1.7 -3.0 0.9 1.5
x41 -0.9 -1.5 0.9 -1.5 4.3 0.0 -6.9
x42 -1.5 -0.9 -1.5 4.3 1.5 1.7 -3.0
x51 -3.5 7.5 -4.3 -1.5 4.3 0.0 -1.7
x52 -0.0 -0.9 -1.5 4.3 1.5 1.7 -0.0
x61 1.7 -3.0 3.5 -3.0 -3.5 -1.5 0.9
x62 3.0 1.7 0.0 1.7 0.0 -0.9 10.5
x71 -3.5 -3.0 3.5 -3.0 1.7 -1.5 -4.3
x72 -6.0 1.7 0.0 -3.5 -6.0 -0.9 -4.5
x81 -3.5 -3.0 -1.7 -3.0 1.7 3.0 -1.7
x82 -3.0 -1.7 3.0 3.5 0.0 -1.7 -3.0
x91 -0.9 -3.0 -1.7 1.5 -0.9 -1.5 0.9
x92 1.5 0.0 0.0 -2.6 -4.5 2.6 -1.5
x101 -0.9 0.0 -1.7 0.0 1.7 -3.0 3.5
x102 1.5 -3.5 -3.0 1.7 -0.0 1.7 0.0
x111 -0.9 -1.5 0.9 -1.5 -0.9 0.0 3.5
x112 -4.5 2.6 -1.5 -2.6 -1.5 5.2 -3.0
x121 1.7 -3.0 3.5 1.5 4.3 -1.5 0.9
x122 36.0 1.7 0.0 4.3 -1.5 -0.9 -1.5
x131 1.7 39.0 -1.7 -1.5 -0.9 0.0 -1.7
x132 0.0 -1.7 33.0 0.9 -1.5 -1.7 -0.0
x141 4.3 -1.5 0.9 34.5 -0.9 0.0 -1.7
x142 -1.5 -0.9 -1.5 -0.9 37.5 -3.5 -3.0
x151 -0.9 0.0 -1.7 0.0 -3.5 33.0 -1.7
x152 -1.5 -1.7 -0.0 -1.7 -3.0 -1.7 39.0

This design looks reasonable.

Blocking and Randomizing the Design

Thirty-six choice sets may be too many for one person to rate. Hence, before the design is used, it should be
blocked. We can create two blocks of size 18 so no person has to make more than 18 choices. Thefollowing code
does the blocking and outputs the results to a SAS data set BLOCKDES. The godl is to take the observationsin
an existing design and optimally sort them into blocks. No swapping between the candidate set and the design
is performed. The generate statement options initdesign=design method=sequential namethe
design to block, DESIGN, and the sequential method since no swapping in or out is performed. Theblocks
statement option structure= (2) 18 asksfor 2 blocks of size 18, init=chain specifies no swapping from
the candidate set during theinitialization, and noexchange specifies no swapping from the candidate set during
theiterations.

proc optex data=design seed=72343;
title3 ’Blocking an Existing Design’;
class x1-x15 / param=orthref;
model x1-x15;
generate initdesign=design method=sequential;
blocks structure=(2)18 init=chain noexchange iter=1;
output out=blockdes;
run; quit;

proc freq data=blockdes;
tables block * (x:);
run;

The PROC FREQ step prints all of the one-way frequencies within blocks. In the interest of space, they are not
shown here. However, they should be examined to ensure that each level iswell represented in each block.

Before the design is used, the order of the choice sets should be randomized within blocks.

120

We can use PROC PLAN to create a data set with a variable Block with &blocks=2 values, the integers 1
through 2. Within each block, the integers 1 through 18 are generated in a random order. These orders are read
in a DATA step and used to read the BLOCKDES data set in the random order within blocks. The point=
specification specifiesthat the variable Set contains the order in which to read the observations. The assignment
(block - 1) * 18 + setworksasfollows. The (block - 1) * 18 producesthe
observation number before the start of each block, 0 or 18. With the addition of Set, which contains the random
choice set order within each block, we get the observation numbers within each set. Note that the final designis
stored in apermanent SAS data set, SASUSER.BLOCKDES, so it will still exist after the data are collected.

statement set =

%let m = 6;
%let mml = %eval(&m - 1);
%let n = 18;

%let blocks = 2;

proc plan seed=7654321;

/*
/*
/*
/*

m alternatives including constant
m - 1
number of choice sets

number of blocks

factors block=&blocks ordered set=&n / noprint;

output out=orders;
run; quit;

data sasuser.blockdes;
set orders;
set = (block - 1) * &n + set;
set blockdes point=set;
run;

Generating the Questionnaire
This next DATA step prints the questionnaires. They are then copied and the data are collected.

title;

options 1s=80 ps=60 nodate nonumber;

data null ;
array dests[&mml]
('Hawaii’
array prices[3] $
array scenes|[3]

array lodgingl[3]

$ 10 temporary

'Alaska’
5 temporary (’$999°'
$ 13 temporary
(’the Mountains’
$ 15 temporary

'Mexico’ ’‘California’
r$1249" ’$1499');

‘a Lake’ ’the Beach’);

(’Cabin’ 'Bed & Breakfast’ ’'Hotel’);

array x[15];
file print linesleft=11;
set sasuser.blockdes;
by block;
if first.block then do;

choice = 0;

put page ;

put @50 ’‘Form: ’ block ’ Subject: r /]

end;
choice + 1;

*/
*/
*/
*/

'Maine’) ;

121

if 11 < 19 then put page ;
put choice 2. ’) Circle your choice of ’
'vacation destinations:’ /;
do dest = 1 to &mml;
put ’ ' dest 1. ') ’ dests[dest]
+(-1) ', staying in a ’ lodgingl[x[dest]]
'near ’ scenes[x[&mml + dest]l] +(-1) ’,’ /

’ with a package cost of ’
prices[x[2 * &mml + dest]] +(-1) ’.’ /;
end;
put " &m) Stay at home this year." /;
run;

In this design there are five destinations, and each destination has three generic attributes. Each destination name
is accessed from the array dests. Note that destination is not a factor in the design; it is a“hbin” into which
the attributes are grouped. The factors in the design are named in the statement array x[15], whichisa
short-hand notation for array x[15] x1-x15. Thefirst five factorsare used for the lodging attribute of the
five destinations. The actual descriptionsof lodging are accessed by 1odging [x [dest]]. ThevariableDest
variesfrom 1 to 5 destinations, so x [dest] extractsthe levels for the Dest destination. Similarly for scenery,
scenes [x[&mml + dest]] extractsthe descriptions of the scenery. Theindex &mm1l + dest accesses
factors 6 through 10, and x [&mm1 + dest] indexesthe scenes array. For prices, prices[x[2 * &mml
+ dest]l],theindex 2 * &mml + dest accesses the factors 11 through 15. Here are the first two choice
sets.

Form: 1 Subject:

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near a Lake,
with a package cost of $1249.

2) Alaska, staying in a Bed & Breakfast near a Lake,
with a package cost of $1499.

3) Mexico, staying in a Hotel near the Beach,
with a package cost of $999.

4) California, staying in a Hotel near the Mountains,
with a package cost of $999.

5) Maine, staying in a Bed & Breakfast near a Lake,
with a package cost of $1249.

6) Stay at home this year.

122

2) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near the Beach,
with a package cost of $1499.

2) Alaska, staying in a Bed & Breakfast near the Mountains,

with a package cost of $999.

3) Mexico, staying in a Cabin near the Mountains,

with a package cost of $1249.

4) in a Hotel near a Lake,

of $1249.

California, staying
with a package cost
5) Maine, staying in a
with a package cost

Hotel near the Beach,
of $1499.

6) Stay at home this year.

Entering and Processing the Data

Here are some of the input data. Data from atotal of 200 subjects were collected, 100 per form.

title ’Vacation Example, Strategies for Big Designs’;

data results;

input Subj Form (choosel-choose&n) (1.) @@;

datalines;

1 1 321512533111543443 2 2 435421113312413133 3 1 331311531112543413
4 2 431131321114411133 5 1 341111531113143443 6 2 141341213312111133
7 1 341513531312145414 8 2 434111213344453114 9 1 341514131113145424
10 2 444313233322411113 11 1 321511131143123443 12 2 435151213413311134
13 1 321512531112135443 14 2 433111213342113133 15 1 141211111113143414
16 2 545433233323451133 17 1 344511533114145443 18 2 543431223321451115
19 1 325511131115143413 20 2 435431233112413133 21 1 131311531113145443

These next steps prepare the design for analysis. First, we create a data set KEY that describes how the factors

in our design will be used for analysis.

data key;
input Place $ 1-10 (Lodge Scene Price) ($%):;
datalines;

Hawaii x1l x6 x11

Alaska x2 x7 x12

Mexico x3 x8 x13

California x4 x9 x14

Maine x5 x10 x15

Home . . .

H

$mktroll (design=sasuser.blockdes, key=key, alt=place, out=rolled)

For analysis, the design will have four factors as shown by the variablesin the data set KEY. Place isthe alter-
native name; its values are directly read from the KEY in-stream data. Lodge is an attribute whose values will
be constructed from the SASUSER.BLOCKDES data set. Lodge is created from x1 for Hawaii, x2 for Alaska,

123

..., x5 for Maine, and no attribute for Home. Similarly, Scene iscreated fromx6-x10, and Price is created
fromx11-x15. Themacro %MKTROLL isused to create the data set ROLLED from SASUSER.BLOCKDES
using the mapping in KEY and using the variable Place asthe aternative ID variable. The macro warns us:
WARNING: The variable BLOCK is in the DESIGN= data set but not the
KEY= data set.
While this message could indicate a problem, in this case it does not. The variable Block in the de-
sign=sasuser.blockdes data set will not appear in the final design. The purpose of the variable Block
(sorting the design into blocks) has already been achieved. These next steps show the results for the first two
choice sets. The data set is converted from a design matrix with one row per choice set to a design matrix with
one row per alternative per choice set.

proc print data=sasuser.blockdes (obs=2); run;

proc print data=rolled(obs=12); run;

Vacation Example, Strategies for Big Designs
Obs block =x1 =x2 x3 x4 x5 =x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 1 3 2 3 3 2 2 2 3 1 2 2 3 1 1 2
2 1 3 2 1 3 3 3 1 1 2 3 3 1 2 2 3

Vacation Example, Strategies for Big Designs

Obs Set Place Lodge Scene Price
1 1 Hawaii 3 2 2
2 1 Alaska 2 2 3
3 1 Mexico 3 3 1
4 1 California 3 1 1
5 1 Maine 2 2 2
6 1 Home
7 2 Hawaii 3 3 3
8 2 Alaska 2 1 1
9 2 Mexico 1 1 2

10 2 California 3 2 2
11 2 Maine 3 3 3
12 2 Home

The next steps assign formats, convert the variable Price to contain actual prices, and recode the constant
aternative.

proc format;

value price 1 = ’ 999’ 2 = 1249’ 3 = 71499’ 0 = ' 0’;
value scene 1 = ’'Mountains’ 2 = ’'Lake’ 3 = 'Beach’ 0 = 'Home’;
value lodge 1 = ’Cabin’ 2 = 'Bed & Breakfast’ 3 = 'Hotel’ 0 = ’'Home’;

run;

data rolled2;
set rolled;
if place = 'Home’ then do; lodge = 0; scene = 0; price = 0; end;
price = input (put(price, price.), 5.);
format scene scene. lodge lodge.;
run;

proc print data=rolled2(obs=12); run;

124

Vacation Example, Strategies for Big Designs

Obs Set Place Lodge Scene Price
1 1 Hawaii Hotel Lake 1249
2 1 Alaska Bed & Breakfast Lake 1499
3 1 Mexico Hotel Beach 999
4 1 California Hotel Mountains 999
5 1 Maine Bed & Breakfast Lake 1249
6 1 Home Home Home 0
7 2 Hawaii Hotel Beach 1499
8 2 Alaska Bed & Breakfast Mountains 999
9 2 Mexico Cabin Mountains 1249

10 2 California Hotel Lake 1249
11 2 Maine Hotel Beach 1499
12 2 Home Home Home 0

It is not necessary to recode the missing values for the constant alternative. In practice, we usually will not do
this step. However, for thisfirst analysis, we will want al nonmissing values of the attributes so we can see all
levelsin the final printed output. We also recode Price so that for alater analysis, we can analyze Price as
a quantitative effect. For example, the expression put (price, price.) convertsanumber, say 2, into a
string (in this case’ 1249'), then the input function reads the string and convertsit to a numeric 1249. Next we
use the macro %MK TMERGE to combine the data and design and create the variable ¢, indicating whether each
alternative was afirst choice or a subsequent choice.

%mktmerge (design=rolled2, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

proc print data=res2(obs=12); run;

This macro takes the design=rolled2 experimenta design, merges it with the data=result data set,
creating the out=res2 output data set. The RESULTS data set contains the variable Form that contains the
block number. Since there are two blocks, this variable must have values of 1 and 2. This variable must be
specified in the blocks= option. The experiment has nsets=&n choice sets, nalts=6 aternatives, and the
variables setvars=choosel-choose&n contain the numbers of the chosen alternatives. The output data
set RES2 has 21600 observations (200 subjects who each saw 18 choice sets with 6 aternatives). Here are the
first two choice sets.

Vacation Example, Strategies for Big Designs

Obs Subj Form Set Place Lodge Scene Price c
1 1 1 1 Hawaii Hotel Lake 1249 2
2 1 1 1 Alaska Bed & Breakfast Lake 1499 2
3 1 1 1 Mexico Hotel Beach 999 1
4 1 1 1 California Hotel Mountains 999 2
5 1 1 1 Maine Bed & Breakfast Lake 1249 2
6 1 1 1 Home Home Home 0 2
7 1 1 2 Hawaii Hotel Beach 1499 2
8 1 1 2 Alaska Bed & Breakfast Mountains 999 1
9 1 1 2 Mexico Cabin Mountains 1249 2

10 1 1 2 California Hotel Lake 1249 2
11 1 1 2 Maine Hotel Beach 1499 2
12 1 1 2 Home Home Home 0 2

125

Binary Coding

One more thing must be done to these data before they can be analyzed. The binary design matrix is coded for
each effect. This can be done with PROC TRANSREG.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)
class (price scene lodge / zero=none order=formatted) / lprefix=0;
output out=coded(drop= type name intercept);
id subj set form c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design. When
design is specified, dependent variables are not required. The design option can optionally be followed by
“= n" wheren is the number of observationsto process at one time. By default, PROC TRANSREG codes all
observations in one big group. For very large data sets, this can consume large amounts of memory and time.
Processing blocks of smaller numbers of observationsis more efficient. The option design=5000 processes
observationsin blocks of 5000. For smaller computers, try something like design=1000. An alternativeisto
codeby subj, but thisisless efficient because block sizeis so small.

Thenozeroconstant andnorestoremissing optionsare not necessary for this examplebut areincluded
here because sometimesthey arevery helpful in coding choicemodels. Thenozeroconstant option specifies
that if aconstant variableis created by the coding, it is not to be zeroed. Thenozeroconstant option should
always be specified when you specify design=n because the last group of observations may be small and
may contain constant variables. Thenozeroconstant optionisalso important when codingby subj set
because sometimes an attribute is constant within a choice set. Thenorestoremissing option specifies that
missing values should not be restored when the out = data set is created. By default, the coded class variable
contains arow of missing values for observations in which the class variable is missing. When you specify
thenorestoremissing option, these observations contain arow of zerosinstead. This option is useful when
thereisaconstant alternative indicated by missing values. Both of these options, like almost all optionsin PROC
TRANSREG, can be abbreviated to three characters (noz and nor).

Themodel statement names the variables to code and provides information about how they are to be coded.
The specification class (place / zero=none order=data) specifiesthat thevariable Placeisaclas
sification variable and requests a binary coding. The zero=none option specifies that one binary variable
should be created for all categories. The order=data option sorts the values into the order they were first
encountered in the data set. It is specified so “Home” will be the last destination in the analysis, asit isin the
data set. The class(price scene lodge / zero=none order=formatted) specification names
the variables Price, Scene, and Lodge as categorical variables and creates binary variables for all of the
levels of al of the variables. The levels are sorted into order based on their formatted values. The 1lprefix=0
option specifiesthat when labels are created for the binary variables, zero characters of the original variable name
should be used as a prefix. This means that the labels are created only from the level values. So for example,
“Mountains’ and “Bed & Breakfast” are created as labels not “ scene Mountains” and “lodge Bed & Breakfast”.

An output statement names the output data set and drops variables that are not needed. These variables do not
have to be dropped. However since they are variable names that are often found in special data set types, PROC
PHREG prints warnings when it finds them. Dropping the variables suppresses the warnings. Finaly, the id
statement names the additional variablesthat we want copied from theinput to the output data set. The next steps
print the first coded choice set.

proc print data=coded(obs=6) ;
id place;
var subj set form ¢ price scene lodge;
run;

proc print data=coded(obs=6) label;
var pl:;
run;

126

proc print data=coded(obs=6) label;
id place;
var sc:;
run;

proc print data=coded(obs=6) label;

id place;
var lo: pr:;
run;
Vacation Example, Strategies for Big Designs
Place Subj Set Form c Price Scene Lodge
Hawaii 1 1 1 2 1249 Lake Hotel
Alaska 1 1 1 2 1499 Lake Bed & Breakfast
Mexico 1 1 1 1 999 Beach Hotel
California 1 1 1 2 999 Mountains Hotel
Maine 1 1 1 2 1249 Lake Bed & Breakfast
Home 1 1 1 2 0 Home Home
Vacation Example, Strategies for Big Designs
Obs Hawaii Alaska Mexico California Maine Home Place
1 1 0 0 0 0 0 Hawaii
2 0 1 0 0 0 0 Alaska
3 0 0 1 0 0 0 Mexico
4 0 0 0 1 0 0 California
5 0 0 0 0 1 0 Maine
6 0 0 0 0 0 1 Home
Vacation Example, Strategies for Big Designs
place Beach Home Lake Mountains Scene
Hawaii 0 0 1 0 Lake
Alaska 0 0 1 0 Lake
Mexico 1 0 0 0 Beach
California 0 0 0 1 Mountains
Maine 0 0 1 0 Lake
Home 0 1 0 0 Home
Vacation Example, Strategies for Big Designs
Bed &
Place Breakfast Cabin Home Hotel Lodge 0 999 1249 1499 Price
Hawaii 0 0 0 1 Hotel 0 0 1 0 1249
Alaska 1 0 0 0 Bed & Breakfast 0 0 0 1 1499
Mexico 0 0 0 1 Hotel 0 1 0 0 999
California 0 0 0 1 Hotel 0 1 0 0 999
Maine 1 0 0 0 Bed & Breakfast 0 0 1 0 1249
Home 0 0 1 0 Home 1 0 0 0 0

The coded design consists of binary variables for destinations Hawaii — Home, scenery Beach — Mountains,
lodging Bed & Breakfast — Hotel, and price 0 — 1499. For example, in the last printed panel of the first choice
set, the Bed & Breakfast column hasa0 for Hawaii since Hawaii has hotel lodging in this choice set. The Bed &
Breakfast column has a 1 for Alaska since Alaska has Bed & Breakfast lodging in this choice set. These binary

127

variables will form the independent variables in the analysis.

PROC PHREG isthen run in the usual way to fit the choice model.

proc phreg data=coded;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

We specify the & _ trgind macro variable for the model statement independent variable list. PROC TRANS-
REG automatically creates this macro variable. It contains the list of coded independent variables generated by
the procedure. Thisis so you do not have to figure out what names TRANSREG created and specify them. In
this case, PROC TRANSREG sets & _ trgind to contain the following list.

PlaceHawaii PlaceAlaska PlaceMexico PlaceCalifornia PlaceMaine PlaceHome
Price0 Price999 Pricel249 Pricel499 SceneBeach SceneHome SceneLake
SceneMountains LodgeBed Breakfast LodgeCabin LodgeHome LodgeHotel

The analysis is stratified by subject and choice set. Each stratum consists of a set of alternatives from which a
subject made one choice. In this example, each stratum consists of six alternatives, one of which was chosen and
five of which were not chosen. (Recall that we used $phchoice (on) on page 71 to customize the output from
PROC PHREG.) In the interest of space, only a few lines of the summary table are printed. It isimportant to
check the summary table to help ensure that the data were entered correctly. The number of alternatives, number
of chosen alternatives, and the number not chosen should be constant in an example like this one. We will see on
page 129 in the next part of this example how to print a compact summary of the summary table. Here are the
results.

Vacation Example, Strategies for Big Designs
The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Subj Set Alternatives Alternatives Chosen
1 1 1 6 1 5

2 1 2 6 1 5

3 1 3 6 1 5

4 1 4 6 1 5

5 1 5 6 1 5
3595 200 13 6 1 5
3596 200 14 6 1 5
3597 200 15 6 1 5
3598 200 16 6 1 5
3599 200 17 6 1 5
3600 200 18 6 1 5

128

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6325.661
AIC 12900.668 6347.661
SBC 12900.668 6415.736

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisg
Likelihood Ratio 6575.0076 11 <.0001
Score 5977.4609 11 <.0001
Wald 2308.1976 11 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > Chisgq
Hawaii 1 3.41528 0.38699 77.8830 <.0001
Alaska 1 0.50991 0.39691 1.6504 0.1989
Mexico 1 2.59644 0.38889 44 .5752 <.0001
California 1 1.96867 0.39076 25.3825 <.0001
Maine 1 1.27411 0.39313 10.5036 0.0012
Home 0 0

0 0 0 . . .

999 1 3.51098 0.09241 1443.5439 <.0001
1249 1 1.32425 0.08383 249.5542 <.0001
1499 0 0
Beach 1 1.48358 0.06898 462.5029 <.0001
Home 0 0 . . .
Lake 1 0.67406 0.06123 121.1979 <.0001
Mountains 0 0
Bed & Breakfast 1 0.66936 0.06081 121.1516 <.0001
Cabin 1 -1.41692 0.07118 396.3019 <.0001
Home 0 0
Hotel 0 0

The destinations, from most preferred to least preferred, are Hawaii, Mexico, California, Maine, Alaska, and then
stay at home. The utility for lower priceis greater than the utility for higher price. The beach is preferred over a
lake, whichis preferred over the mountains. A bed & breakfast is preferred over ahotel, whichis preferred over a
cabin. Notice that the coefficientsfor the constant alternative, Home and zero price, are all zero. Also notice that
for each factor, destination, price, scenery and accommodations, the coefficient for the last level is always zero.
Thiswill always occur when we codewith zero=none. Thelast level of each factor isareferencelevel, and the
other coefficients will have values relative to this zero. So for example, all of the coefficients for the destination
are positive relative to the zero for staying at home. For scenery, all of the coefficients are positive relative to the
zero for the mountains. For accommodations, the coefficient for cabin isless than the zero for hotel, which isless
than the coefficient for bed & breakfast. In some sense, each class variable in a choice model with a constant
alternative has two reference levels or two levelsthat will always have a zero coefficient: the level corresponding
to the constant alternative and the level corresponding to the last level. At first, it is reassuring to run the model

129

with all levels represented to see that all the right levels get zeroed. Later we will see ways to eliminate these
levels from the output.

Quantitative Price Effect

These data can also be analyzed in adifferent way. The Price variable can be specified directly as aquantitative
variable, instead of with indicator variables for a qualitative price effect. One way to do this is to print the
independent variable list and copy and edit it, removing the Price variables and adding Price.

%$put & trgind;

Alternatively, you could run PROC TRANSREG again with the new coding. We use thislatter approach because
it is easier and it will allow us to illustrate other options. In the previous analysis, there were a number of
structural zero parameter estimates in the results due to the usage of the zero=none option in the PROC
TRANSREG coding. Thisis agood thing, particularly for afirst attempt at the analysis. It is good to specify
zero=none and check the results and make sure you have the right pattern of zeros and nonzeros. Later, you

can run again getting rid of some of the structural zeros. Thistime, we will explicitly specify the “Home” level

in the zero= option as the reference level so it will be omitted from the & _ trgind variablelist. The variable
Price isdesignated asan identity variable — a do-nothing transformation. The identity specification
simply copiesthe variable Price asisinto the output data set and adds Price tothe & _ trgind variablelist.
The statement 1abel price = ’Price’ is specified to explicitly set alabel for the identity variable
price. Thisis because we explicitly modified PROC PHREG output using ¥phchoice (on) so that the rows of
the parameter estimate table would be labeled only with variable labels not variable names. A label for Price
must be explicitly specified in order for the output to contain alabel for the price effect.

proc transreg design data=res2 nozeroconstant norestoremissing;
model class(place / zero='Home’ order=data) identity(price)
class(scene lodge / zero='Home’ ’'Home’ order=formatted) / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’Price’;
id subj set form c;
run;

The summary tableis huge, so we would rather not print the entire thing, yet we would like to use it to check the
data entry and processing. We could use the nosummary option in the PROC statement to suppress the table.
Instead, we will use ODS statements to output the summary table to a data set, then we will summarize the table
and print the summary. First, the ods exclude CensoredSummary excludesthe summary table from the
output listing. Thenthe ods output CensoredSummary=CS statement outputs the table to a SAS data set
CS. PROC FREQ isrunto list the combinations of event and censored (the number of chosen aternativesand the
number that were not chosen). If dataentry is correct for this study, the resulting table will have oneline showing
that 3600 times, one aternative was chosen and five were not chosen. The where n (stratum) statement is
used to exclude the last line of the table, the “ Total” line, where Stratum is missing in the output data set.

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum) ;
run;

Here are the results.

130

Vacation Example, Strategies for Big Designs
The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6379.323
AIC 12900.668 6399.323
SBC 12900.668 6461.210

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisqg
Likelihood Ratio 6521.3450 10 <.0001
Score 5654.4615 10 <.0001
Wald 2261.0883 10 <.0001
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square
Hawaii 1 14.28398 0.45505 985.3388
Alaska 1 11.45659 0.43750 685.7353
Mexico 1 13.49398 0.44557 917.1550
California 1 12.80977 0.44323 835.2537
Maine 1 12.16993 0.44151 759.7996
Price 1 -0.00747 0.0001828 1668.6766
Beach 1 1.49144 0.06902 466.9792
Lake 1 0.69070 0.06082 128.9826
Mountains 0 0 . .
Bed & Breakfast 1 0.68812 0.06057 129.0788
Cabin 1 -1.37471 0.07011 384.5218
Hotel 0 0 . .

Pr > ChiSqg

<.0001
<.0001
<.0001
<.0001
<.0001

<.0001

<.0001
<.0001

<.0001
<.0001

131

Vacation Example, Strategies for Big Designs

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
1 5 3600 100.00 3600 100.00

The results of the two different analyses are similar. The coefficients for the destinations all increase by a non-
constant amount (approximately 10.6) but the pattern is the same. Thereis still a negative effect for price. Also,
the fit of this model is slightly worse, Chi-Square = 6521.3450, compared to the previous value of 6575.0076
(bigger values mean better fit), because price has one fewer parameter.

Quadratic Price Effect

In a previous example we saw price treated as a qualitative factor with two parameters and two df. Then we
saw price treated as a quantitative factor with one parameter and one df. Alternatively, we could treat price as
quantitative and add a quadratic price effect. Like treating price as a qualitative factor, there are two parameters
and two df for price. First we create Pricel, the linear price term by centering the original price and dividing
by the price increment (250). This maps (999, 1249, 1499) to (-1, 0, 1). Then we run PROC TRANSREG and
PROC PHREG with the new price variables.

data res3;
set res2;
PricelL = price;
if price then pricel = (price - 1249) / 250;
run;

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(place / zero='Home’ order=data) pspline(pricel / degree=2)
class(scene lodge / zero='Home’ ’'Home’ order=formatted) / lprefix=0;
output out=coded(drop= type name intercept);

label pricel = ’‘Price’;
id subj set form c;
run;

Thepspline or polynomia spline expansion with the degree=2 option replaces the variable PriceL with
two coded variables, PriceL _1 (whichisthe same asthe original Pricel) and PriceL_2 (whichisPri-
ceL squared). A degree=2 spline with no knots (neither knots= nor nknots= were specified) simply
expands the variable into a quadratic polynomial.

proc phreg data=coded nosummary;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

This step produced the following results.

132

Vacation Example, Strategies for Big Designs
The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6325.661
AIC 12900.668 6347.661
SBC 12900.668 6415.736

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisqg
Likelihood Ratio 6575.0076 11 <.0001
Score 5977.4609 11 <.0001
Wald 2308.1976 11 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSqg
Hawaii 1 4.73953 0.38552 151.1393 <.0001
Alaska 1 1.83416 0.39258 21.8288 <.0001
Mexico 1 3.92069 0.38610 103.1154 <.0001
California 1 3.29292 0.38608 72.7475 <.0001
Maine 1 2.59837 0.38913 44.5871 <.0001
Price 1 1 -1.75549 0.04620 1443.5439 <.0001
Price 2 1 0.43124 0.05933 52.8369 <.0001
Beach 1 1.48358 0.06898 462.5029 <.0001
Lake 1 0.67406 0.06123 121.1979 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.66936 0.06081 121.1516 <.0001
Cabin 1 -1.41692 0.07118 396.3019 <.0001
Hotel 0 0

The fit is exactly the same as when price was treated as qualitative, Chi-Square = 6575.0076. This is because
both models are the same except for the different but equivalent 2 df codings of price. The coefficients for
the destinations in the two models differ by a constant 1.32425. The coefficients for the factors after price are
unchanged. The part-worth utility for $999is —1.75549 x (999 —1249) /250+0.43124 x ((999—1249) /250) 2 =
2.18673, the part-worth utility for $1249is —1.75549 x (1249 —1249) /250 +0.43124 x ((1249 — 1249) /250) > =

133

0, and the part-worth utility for $1499is —1.75549 x (1499 — 1249) /250 + 0.43124 x ((1499 — 1249)/250) 2 =
—1.32425, which differ from the coefficients when price was treated as qualitative, by a constant -1.32425.

Effects Coding

In the previous analyses, binary (1, 0) codings were used for the variables. The next analysis illustrates effects
(1, 0, -1) coding. Thetwo codings differ in how thefinal referencelevel is coded. In binary coding the reference
level is coded with zeros. In effects coding, the reference level is coded with minus ones.

Binary Coding | Effects Coding

Levels | One Two One Two
1 1 0 1 0
2 0 1 0 1
3 0 0 -1 -1

In this example, we will use a binary coding for the destinations and effects codings for the attributes.

PROC TRANSREG can be used for effects coding. The effects option used inside the parentheses after
class asksfor a(0, 1, -1) coding. The zero= option specifies the levels that receive the -1's. PROC PHREG
isrun with almost the same variablelist as before, except now the variables for the reference levels, those whose
parameters are structural zeros are omitted. Refer back to the parameter estimates table on page 128, some of
which is reproduced next:

(Some Lines in the)
Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSgqg
Home 0 0
0 0 0
1499 0 0
Home 0 0
Mountains 0 0
Home 0 0
Hotel 0 0

Notice that the coefficients for the constant alternative, Home and zero price, are all zero. Also notice that for
each factor, destination, price, scenery and accommodations, the coefficient for the last level is always zero.
In some sense, each class variable in a choice model with a constant alternative has two reference levels or
two levels that will always have a zero coefficient: the level corresponding to the constant alternative and the
level corresponding to the last level. In some of the preceding examples, we eliminated the “Home” levels
by specifying zero=Home. Now we will see how to eliminate all of the structural zeros from the parameter
estimate table.

First, for each classification variable, we change the level for the constant alternative to missing. (Recall that
they were originally missing and we only made them nonmissing to deliberately produce the zero coefficients.)
Thiswill cause PROC TRANSREG to ignore those level s when constructing dummy variables. When you use
this strategy, you must specify the norestoremissing option in the PROC TRANSREG statement. During
the first stage of design matrix creation, PROC TRANSREG puts zeros in the dummy variables for observations
with missing class levels. At theend, it replaces the zeros with missings, “restoring the missing values’. When
thenorestoremissing option is specified, missing values are not restored and we get zeros in the dummy
variablesfor missing class levels. The DATA step i £ statementsrecode the constant levelsto missing. Thenin
PROC TRANSREG, the reference levels“Mountains’ and “Hotel” arelisted inthe zero= optionintheclass

134

specification.

data res4;
set res3;
if scene = 0 then scene
if lodge = 0 then lodge
run;

n
~

proc transreg design=5000 data=res4 nozeroconstant norestoremissing;
model class(place / zero='Home’ order=data) pspline(pricel / degree=2)
class (scene lodge /
effects zero='Mountains’ ’'Hotel’ order=formatted) / lprefix=0;
output out=coded(drop= type name intercept);

label pricel = ’‘Price’;
id subj set form c;
run;

The coded data and design matrix are printed for the first choice set. The coded design matrix begins with five
binary columns for the destinations, “Hawaii” through “Main€’. There is not a column for the stay at home
destination and the row for stay at home has all zerosin the coded variables. Next is the linear price effect, “Price
17, consisting of 0, 1, and -1. It is followed by the quadratic price effect, “Price 2", which is “Price 1" squared.
Next are the scenery terms, effects coded. “Beach” and “Lake” have values of 0 and 1; -1'sin the fourth row for
the reference level, “Mountains’; and zeros in the last row for the stay at home alternative. Next are the lodging
terms, effects coded. “Bed & Breakfast” and “Cabin” have values of 0 and 1; -1'sin the firgt, third and fourth
row for the reference level, “Hotel”; and zerosin the last row for the stay at home alternative.

proc print data=coded(obs=6) label;

run;
Vacation Example, Strategies for Big Designs
Price Price Bed &

Obs Hawaii Alaska Mexico California Maine 1 2 Beach Lake Breakfast
1 1 0 0 0 0 0 0 0 1 -1
2 0 1 0 0 0 1 1 0 1 1
3 0 0 1 0 0 -1 1 1 0 -1
4 0 0 0 1 0 -1 1 -1 -1 -1
5 0 0 0 0 1 0 0 0 1 1
6 0 0 0 0 0 0 0 0 0 0

Obs Cabin Place Price Scene Lodge Subj Set Form c
1 -1 Hawaii 0 Lake Hotel 1 1 1 2
2 0 Alaska 1 Lake Bed & Breakfast 1 1 1 2
3 -1 Mexico -1 Beach Hotel 1 1 1 1
4 -1 California -1 Mountains Hotel 1 1 1 2
5 0 Maine 0 Lake Bed & Breakfast 1 1 1 2
6 0 Home 0 1 1 1 2

proc phreg data=coded nosummary;
model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

135

Vacation Example, Strategies for Big Designs
The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2

Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6325.661
AIC 12900.668 6347.661
SBC 12900.668 6415.736

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 6575.0076 11 <.0001
Score 5977.4609 11 <.0001
Wald 2308.1976 11 <.0001
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square
Hawaii 1 5.20955 0.38305 184.9688
Alaska 1 2.30419 0.38868 35.1442
Mexico 1 4.39072 0.38328 131.2299
California 1 3.76294 0.38324 96.4090
Maine 1 3.06839 0.38657 63.0031
Price 1 1 -1.75549 0.04620 1443.5439
Price 2 1 0.43124 0.05933 52.8369
Beach 1 0.76436 0.03857 392.6592
Lake 1 -0.04515 0.03393 1.7708
Bed & Breakfast 1 0.91854 0.03916 550.2758
Cabin 1 -1.16773 0.04460 685.4980

Pr > ChiSqg

<.0001
<.0001
<.0001
<.0001
<.0001

<.0001
<.0001
<.0001
0.1833

<.0001
<.0001

It is instructive to compare the results of this analysis to the previous analysis on page 131. First, model fit and
chi-square statistics are the same indicating the model s are equivalent. The coefficients for the destinations differ
by a constant 0.47002, the price coefficients are the same, the scenery coefficients differ by a constant -0.71921,
and the lodging coefficients differ by a constant 0.24919. Notice that 0.47002 + 0.24919 + —0.71921 = 0, so
the utility for each alternativeis unchanged by the different but equivalent codings.

136

Alter native-Specific Effects

In al of the analyses presented in this example so far, we have assumed that the effects for price, scenery,
and accommodations are generic or constant across the different destinations. Equivalently, we assumed that
destination does not interact with the attributes. Next, we show a model with alternative-specific effects that
does not make this assumption. Our new model allows for different price, scenery and lodging effects for each
destination. The coding can be done with PROC TRANSREG and its syntax for interactions. Before we do the
coding, lets go back to the design preparation stage and redo it in amore normal fashion so reference levels will
be omitted from the analysis.

We start by creating the data set KEY. This step differs from the one we saw on page 122 only in that now we
have a missing value for P1ace for the constant alternative.

data key;
input Place $ 1-10 (Lodge Scene Price) (%);
datalines;

Hawaii x1l x6 x11

Alaska x2 x7 x12

Mexico x3 x8 x13

California x4 x9 x14

Maine x5 x10 x15

Next we use the %6MKTROLL macro to process the design and the %6MKTMERGE macro to merge the design
and data.

%mktroll (design=sasuser.blockdes, key=key, alt=place, out=rolled)

%mktmerge (design=rolled, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choosel-choose&n,
stmts=%str (price = input(put(price, price.), 5.);

format scene scene. lodge lodge.;))

proc print data=res2(obs=12); run;

The usage of the %MK TROLL macro is exactly the same as we saw on page 122. The %MKTMERGE macro
differsfrom page 124 in that instead of assigning labels and recoding price in a separate DATA step, we instead
do it directly in the macro. The stmts= optionisusedto add aprice = assignment statement and format
statement to the data step that merges the two data sets. The statements were included in a $str () macro
since they contain semicolons. Here are the first two choice sets.

Vacation Example, Strategies for Big Designs

Obs Subj Form Set Place Lodge Scene Price c
1 1 1 1 Hawaii Hotel Lake 1249 2
2 1 1 1 Alaska Bed & Breakfast Lake 1499 2
3 1 1 1 Mexico Hotel Beach 999 1
4 1 1 1 California Hotel Mountains 999 2
5 1 1 1 Maine Bed & Breakfast Lake 1249 2
6 1 1 1 2
7 1 1 2 Hawaii Hotel Beach 1499 2
8 1 1 2 Alaska Bed & Breakfast Mountains 999 1
9 1 1 2 Mexico Cabin Mountains 1249 2

10 1 1 2 California Hotel Lake 1249 2
11 1 1 2 Maine Hotel Beach 1499 2
12 1 1 2 2

Notice that the attributes for the constant alternative are all missing. Next, we code with PROC TRANSREG.

137

Since we are using missing values for the constant alternative, we must specify the nozeroconstant option
in the PROC TRANSREG statement. First, we specify the variable Place as a class variable. Next, we
interact Place with all of the attributes, Price, Scene, and Lodge, to create the aternative-specific effects.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)
class(place * price place * scene place * lodge /
zero=none order=formatted) / lprefix=0 sep=’ ' ', ’;
output out=coded(drop= type name intercept);
id subj set form c;
run;

proc print data=coded(obs=6) label;
run;

The coded design matrix consists of:

o five binary columns, “Hawaii” through “Maine”, for the five destinations,

o fifteen binary columns (5 destinations times 3 prices), “Alaska, 999" through “Mexico, 1499, for the
aternative-specific price effects,

o fifteen binary columns (5 destinations times 3 sceneries), “ Alaska, Beach” through “Mexico, Mountains’,
for the alternative-specific scenery effects,

o fifteen binary columns (5 destinations times 3 lodgings), “Alaska, Bed & Breakfast” through “Mexico,
Hotel”, for the alternative-specific lodging effects.

The entire sixth row of the coded design matrix, the stay at home alternative consists of zeros.

Vacation Example, Strategies for Big Designs

Alaska, Alaska, Alaska, California,

Obs Hawaii Alaska Mexico California Maine 999 1249 1499 999
1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 1 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 1
5 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 0 0 0

California, California, Hawaii, Hawaii, Hawaii, Maine, Maine, Maine,
Obs 1249 1499 999 1249 1499 999 1249 1499

QO Ul W PR
O O o o oo
O OO o oo
O O o ooo
O OO0 ooRr
O O o ooo
O O oo oo
O r OO oo
O O o o oo

Mexico, Mexico, Mexico, Alaska, Alaska, Alaska, California, California,
Obs 999 1249 1499 Beach Lake Mountains Beach Lake

QO Ul W
O oopRr oo
O O O o oo
O OO ooo
O O O o oo
O OO0 oRr o
O O O o oo
O O o o oo
O OO ooo

138

California, Hawaii, Hawaii, Hawaii, Maine, Maine, Maine, Mexico,
Obs Mountains Beach Lake Mountains Beach Lake Mountains Beach
1 0 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0
Alaska, California,
Mexico, Mexico, Bed & Alaska, Alaska, Bed & California,
Obs Lake Mountains Breakfast Cabin Hotel Breakfast Cabin
1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
Hawaii, Maine, Bed Mexico,
California, Bed & Hawaii, Hawaii, & Maine, Maine, Bed &
Obs Hotel Breakfast Cabin Hotel Breakfast Cabin Hotel Breakfast
1 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0

Mexico, Mexico,

Obs Cabin Hotel Place Price Scene Lodge Subj Set Form c
1 0 0 Hawaii 1249 Lake Hotel 1 1 1 2
2 0 0 Alaska 1499 Lake Bed & Breakfast 1 1 1 2
3 0 1 Mexico 999 Beach Hotel 1 1 1 1
4 0 0 California 999 Mountains Hotel 1 1 1 2
5 0 0 Maine 1249 Lake Bed & Breakfast 1 1 1 2
6 0 0 . 1 1 1 2

Analysis proceeds by running PROC PHREG as before.

proc phreg data=coded nosummary;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6296.939
AIC 12900.668 6366.939
SBC 12900.668 6583.543

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSsqg
Likelihood Ratio 6603.7295 35 <.0001
Score 6626.5116 35 <.0001
Wald 2272.7813 35 <.0001
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square
Hawaii 1 3.28017 0.40142 66.7713
Alaska 1 0.88221 0.51968 2.8819
Mexico 1 2.65936 0.42318 39.4917
California 1 1.92812 0.42686 20.4034
Maine 1 1.18481 0.48444 5.9815
Alaska, 999 1 3.45444 0.26284 172.7323
Alaska, 1249 1 0.73751 0.38764 3.6198
Alaska, 1499 0 0 . .
California, 999 1 3.63995 0.21968 274.5414
California, 1249 1 1.46294 0.21528 46.1777
California, 1499 0 0 . .
Hawaii, 999 1 3.45605 0.13258 679.5428
Hawaii, 1249 1 1.42337 0.12282 134.3047
Hawaii, 1499 0 0 . .
Maine, 999 1 3.75491 0.25232 221.4693
Maine, 1249 1 1.20395 0.29647 16.4910
Maine, 1499 0 0 . .
Mexico, 999 1 3.37240 0.16292 428.4889
Mexico, 1249 1 1.22668 0.17987 46.5120
Mexico, 1499 0 0 . .
Alaska, Beach 1 1.41262 0.21525 43.0704
Alaska, Lake 1 0.29267 0.22784 1.6501
Alaska, Mountains 0 0 . .
California, Beach 1 1.59118 0.15540 104.8399
California, Lake 1 0.44899 0.16023 7.8518
California, Mountains 0 0 . .
Hawaii, Beach 1 1.44565 0.12351 137.0010
Hawaii, Lake 1 0.85820 0.13430 40.8340
Hawaii, Mountains 0 0 . .

Pr > ChiSqg

<.0001
0.0896
<.0001
<.0001
0.0145

<.0001
0.0571

<.0001
<.0001

<.0001
<.0001

<.0001
<.0001

<.0001
<.0001

<.0001
0.1989

<.0001
0.0051

<.0001
<.0001

139

140

Maine, Beach 1 1.43838 0.20887 47.4229 <.0001
Maine, Lake 1 0.64057 0.22338 8.2232 0.0041
Maine, Mountains 0 0

Mexico, Beach 1 1.54452 0.14136 119.3759 <.0001
Mexico, Lake 1 0.73442 0.12926 32.2801 <.0001
Mexico, Mountains 0 0 . . .
Alaska, Bed & Breakfast 1 0.40383 0.19122 4.4600 0.0347
Alaska, Cabin 1 -1.78198 0.31993 31.0240 <.0001
Alaska, Hotel 0 0

California, Bed & Breakfast 1 0.62159 0.13647 20.7470 <.0001
California, Cabin 1 -1.61786 0.19845 66.4643 <.0001
California, Hotel 0 0

Hawaii, Bed & Breakfast 1 0.65588 0.12580 27.1844 <.0001
Hawaii, Cabin 1 -1.23939 0.11982 106.9906 <.0001
Hawaii, Hotel 0 0

Maine, Bed & Breakfast 1 0.65929 0.17686 13.8963 0.0002
Maine, Cabin 1 -1.54305 0.20860 54.7205 <.0001
Maine, Hotel 0 0

Mexico, Bed & Breakfast 1 0.70823 0.13084 29.3001 <.0001
Mexico, Cabin 1 -1.45232 0.13758 111.4373 <.0001
Mexico, Hotel 0 0

There are zero coefficients for the reference alternative. Do we need this more complicated model instead of the
simpler model? To answer this, first look at the coefficients. Are they similar across different destinations? In
this case they seem to be. This suggests that the simpler model may be sufficient.

More formally, the two models can be statistically compared. The null hypothesis that the two models are not
significantly different can be tested by comparing the likelihoods for the two models. The difference between
two —2log(L¢)’s (the number reported under “With Covariates’ in the output) has a chi-square distribution.
The degrees of freedom for the test is the difference between the two df for the two likelihoods. The difference
6603.7295 — 6575.0076 = 28.7219 isdistributed x2 with 35 — 11 = 24 df (p < 0.23). So this more complicated
model does not account for significantly more variance than the simpler model.

PROC FACTEX Code Generated by the %oMKTDES Macro
In thefirst part of this example, starting on page 108, we used the %MK TDES macro as follows:
%$mktdes (factors=x1-x15=3, n=36, procopts=seed=7654321)

We did not show the PROC FACTEX code actually generated by the macro at that point because it is more
complex than is really necessary for a problem this simple. This is because the macro uses an algorithm well-
suited for much more complicated problems such as models with interactions and a mix of levels. The macro
makes no attempt to simplify the code it produces for simple examples such as this one. The %MK TDES macro
generated the following PROC FACTEX code:

141

proc factex;
factors _1- 15 / nlev=3;
size design=min;
model estimate=(

)
output out=Candl (drop=_:)
[1]1=x1 nvals=(1 2 3)

[2]=x2 nvals=(1 2 3)
[3]1=x3 nvals=(1 2 3)
[4]1=x4 nvals=(1 2 3)
[51=x5 nvals=(1 2 3)
[6]=x6 nvals=(1 2 3)
[7]1=x7 nvals=(1 2 3)
[81=x8 nvals=(1 2 3)

[91=x9 nvals=(1 2 3)
[10]=x10 nvals=(1 2 3)

[11]=x11 nvals=(1 2 3)
[12]=x12 nvals=(1 2 3)
[13]=x13 nvals=(1 2 3)
[14]=x14 nvals=(1 2 3)

2 3)

[15]=x15 nvals=(1
run; quit;

Theresult of thisstep isadesign with 15 factors, x1-x15, each with values 1, 2, and 3. This can be seen by the
x1 nvals=(1 2 3) throughx15 nvals=(1 2 3) specifications. Internaly, PROC FACTEX creates 15
factors, _1 - _15, which it renames to x1-x15 when the output data set CAND1 is created and the level
values are assigned. The statement factors _1-_15 / nlev=3 gpecifies that we are creating a design
with 15 three-level factors. The statement size design=min specifies that PROC FACTEX should create
aminimum sized design for this problem. The statement model estimate=(...) specifiesthe effects
that must be estimated, in this case the main effects. Since only main effects are requested, PROC FACTEX
creates aresolution |11 design. In this example, there is a one-to-one mapping from the underscore variables to
the final “x” variables. In more complicated examples, each factor may be composed of the main-effects and
interactions of two or more underscore variables. Also, the nvals= option can be used to create factors with
differing numbers of levels.

We stated on page 109 that the preceding PROC FACTEX codeis amost the same as the smpler PROC FACTEX
code shown next.

proc factex;
factors x1-x15 / nlev=3;
size design=min;
model res=3;
output out=Candl;
run; quit;

142

Here is some code that is exactly equivalent to the PROC FACTEX code that the macro generates.

proc factex;
factors x1-x15 / nlev=3;
size design=min;
model res=3;
output out=Candl

x1 nvals=(1 2 3)
x2 nvals=(1 2 3)
x3 nvals=(1 2 3)
x4 nvals=(1 2 3)
x5 nvals=(1 2 3)
x6 nvals=(1 2 3)
x7 nvals=(1 2 3)
x8 nvals=(1 2 3)
x9 nvals=(1 2 3)
x10 nvals=(1 2 3)
x11 nvals=(1 2 3)
x12 nvals=(1 2 3)
x13 nvals=(1 2 3)
x14 nvals=(1 2 3)
x15 nvals=(1 2 3)

run; quit;
Thenvals= optionis used to code each factor with the numeric values 1, 2, and 3 instead of the default -1, O,
and 1. In this example, the statement model res=3 isequivalenttomodel estimate=(x1-x15). Both
create a main-effects only or resolution 111 design.

The thing that distinguishes the code that the macro generates from the code we might have written from scratch
isthe use of pseudo-factorsin the macro. Thefactors _ 1-_ 15, are pseudo-factorsand are not of direct interest.
They are used to create the derived factors x1 - x15, the three-level factors of interest. This exampleis a
simple problem. All factors have the same numbersof levels, the number of levelsisapower of aprime, and there
are no interactions. In a simple example such as this, pseudo-factors are not needed. However, pseudo-factors
are needed for more complicated problems, so it is easier for the macro to simply always use pseudo-factors. For
this problem, the %MK TDES macro generates PROC FACTEX code that creates a three-level pseudo-factor for
each factor of interest, renames the pseudo-factor creating the specified derived factor, and maps the valuesto 1,

2, and 3. The mapping of pseudo-factorsto derived factors and original levels (-1, 0, 1) to actual levels (1, 2, 3)

is completely oneto one.

143

Vacation Example, Big Designs and Asymmetry

A researcher is interested in studying choice of vacation destinations. This example is a modification of the
previous example. Now, all alternatives do not have the same factors, and all factors do not have the same
numbers of levels. There are still five destinations of interest: Hawaii, Alaska, Mexico, California, and Maine.
Each aternative is composed of three factors like before: package cost, scenery, and accommodations, only now
they do not al have the same levels, and the Hawaii and Mexico alternatives are composed of one additional
attribute. Hereis a summary of the design.

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 Cdifornia Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X6 Hawaii Scenery Mountains, Lake, Beach

X7 Alaska Scenery Mountains, Lake, Beach

X8 Mexico Scenery Mountains, Lake, Beach

X9 Cdlifornia Scenery Mountains, Lake, Beach

X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $1249, $1499, $1749

X12 Alaska Price $1249, $1499, $1749

X13 Mexico Price $999, $1249, $1499

X14 Cdifornia Price $999, $1249, $1499, $1749
X15 Maine Price $999, $1249, $1499

X16 Mexico Side Trip Yes, No

X17 Hawaii Side Trip Yes, No

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach

X11 Price $1249, $1499, $1749

X17 Side Trip Yes, No

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach

X12 Price $1249, $1499, $1749

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach

X13 Price $999, $1249, $1499

X16 Side Trip Yes, No

X4 Cdifornia Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach

X14 Price $999, $1249, $1499, $1749
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach

X15 Price $999, $1249, $1499

144

For Hawaii and Alaska the costs are $1,249, $1,499, and $1,749; for Cdlifornia, the prices are $999, $1,249,
$1,499, and $1,749; and for Mexico and Maine the prices are $999, $1,249, and $1,499. Scenery (mountains,
lake, beach) and accommodations (cabin, bed & breakfast, and hotel) are the same as before. The Mexico trip
now has the option of a side trip to sites of archaeological significance, via bus, for an additional cost of $100.
The Hawaii trip has the option of a side trip to an active volcano, via helicopter, for an additional cost of $200.
Thisistypical of the problems that marketing researchers face. We have lots of factors and asymmetry — each
alternative is not composed of the same factors, and the factors do not al have the same numbers of levels.

This exampleillustrates many of the techniquesthat are used in the search for a good design including
e creating a candidate set with asymmetry by coding down,

creating a candidate set with asymmetry by using pseudo-factors,

using atabled design to create a candidate set,

efficiently blocking an existing design,

generating artificial datato test the design.

aggregating the data.

Choosing the Number of Choice Sets

We can use the %MK TRUNS autocall macro to suggest experimental design sizes. (All of the autocall macros
used in this report are documented starting on page 261.) As before, we specify alist containing the number of
levels of each factor.

title ’‘Vacation Example with Asymmetry’;

$mktruns(3 3 3 3 3 3 3 33 33333422)

The output tells us the size of the saturated design, which is the number of parametersin the linear design, and
suggests design sizes.

Vacation Example with Asymmetry

Some Reasonable

Design Sizes Cannot Be
(Saturated=34) Violations Divided By
72 0
144 0
216 0
36 2 8
108 2 8
180 2 8
54 18 4 12 8
90 18 4 12 8
126 18 4 12 8
162 18 4 12 8

We need at least 34 choice sets, as shown by “(Saturated=34)" in the listing. Any size that is a multiple of
72 would be optimal. However, 36 is pretty good. It is not divisbleby 8 = 2 x 4, so we cannot have equa
frequencies in the California price and Mexico and Hawaii side trip combinations. This should not pose any
problem, and 36 is much more manageable than 72, so again we chose 36 choice sets. This leaves only 2 error
df for the linear model, but in the choice model we will have adequate error df.

145

Designing the Choice Experiment

This problem requires a design with 1 four-level factor for price and 4 three-level factors for price. There are
10 three-level factors for scenery and accommodations as before. Also, we need 2 two-level factors for the
two side trips. Note that we do not need a factor for the price or mode of transportation of the side trips since
they are constant within each trip. We will look at several ways of approaching this problem. First, we will
runthe %MK TDES macro specifying factors=x1-x13 x15=3 x14=4 x16 x17=2 whichindicatesthat
x1-x13 x15 arethree-level-factors, x14 is afour-level-factor, and x16 x17 are two-level-factors. We also
specify arandom number seed.

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36,
procopts=seed=7654321)

The macro generates the following PROC FACTEX code.
proc factex;
factors _1- 32 / nlev=2;

size design=min;
model estimate=(

1] 2
3] 4
5| 6
7] 8
9| 10
_11| 12
_13|_14
_15| 16
_17|_18
_19|_20
21| 22
_23| 24
_25|_26
27| 28
_29|_30
_31

32

)i

output out=Candl (drop=_:)

[1 2]=x1 nvals=(1 2 3 1)
3 4]=x2 nvals=(1 2 3 1)
5 61=x3 nvals=(1 2 3 1)

7 8]=x4 nvals=(1 2 3 1)

9 10]=x5 nvals=(1 2 3 1)
11 12]=x6 nvals=(1 2 3 1)
13 14]=x7 nvals=(1 2 3 1)
15 _16]1=x8 nvals=(1 2 3 1)

[17 18]=x9 nvals=(1 2 3 1)

[19 20]=x10 nvals=(1 2 3 1)

[21 22]=x11 nvals=(1 2 3 1)

[23 24]=x12 nvals=(1 2 3 1)

[25 26]=x13 nvals=(1 2 3 1)

[27 _28]=x15 nvals=(1 2 3 1)

[29 30]=x14 nvals=(1 to 4)

[31]1=x16 nvals=(1 2)

[32]=x17 nvals=(1 2)

run; quit;

The statement factors _1-_32 / nlev=2 generates a design with 32 two-level factors. The statement
size design=min requeststhe smallest designin which all the effects specified in themodel statement are

146

estimable. The first factor we want from this design is x1 with three levels. We see in the model statement
that _ 1| .2 must be estimable, that is the _ 1 main effect, the _ 2 main effect, and the _ 1* _ 2 interaction must
be estimable. From the 1 df for _ 1, the 1 df for _ 2, and the 1 df for _ 1* _ 2, we can construct the three-level
factor x1 with 3 — 1 df and one df to spare. The output statement specification [_1 _2]=x1 nvals=(1
2 3 1) constructsthe factor x1 fromthevaluesof _1 and _2. The (1,1), (1,2), (2,1), (2,2) vaues are coded
1, 2, 3, and 1 creating a three level factor. The three-level factors x2 through x13 and x15 are created in the
same manner from _ 2 through _ 28. Thefactor x14 hasfour levels, and iscreated from _ 29 and _ 30 and their
interaction. The factorsx16 and x17 havetwo levels, and are created from _ 31 and _ 32, respectively.

Thefactors _ 1- _ 32 are pseudo-factorsand not of direct interest. They are used to create the derived factors x1
- x17, thetwo-level, the three-level, and the four-level factors of interest. This example constructed three-level
factors from 2 two-level factors and their interaction by coding down. Four pairs of values (1,1), (1,2), (2,1),
(2,2) could become four levels 1, 2, 3, 4, but instead are mapped to 1, 2, 3, 1 by coding down. The value 1
maps to 1, the value 2 maps to 2, the value 3 maps to 3, and the value 4 mapsto 1. This creates a candidate set
with imbalance (twice as many ones as twos or threes), but we hope that PROC OPTEX will be able to find a
reasonably balanced design.

The macro generates the following PROC OPTEX code.

proc optex data=Candl seed=7654321;
class x1-x13 x15 x14 x16 x17 / param=orthref;
model x1-x13 x15 x14 x16 x17;
generate n=36 iter=10 keep=5 method=m federov;
output out=Design;
run; quit;

The class and model statements contain the factors in the same order they appeared in the factors=x1-
x13 x15=3 x14=4 x16 x17=2 option. The other aspects of the PROC OPTEX syntax are no different
than we saw in previous examples.

The macro finds a design with D-efficiency = 76.0622. Since the design is based on two-level factors, we can try
larger candidate sets, each time doubling the size.

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=128,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=256,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=512,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=1024,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=2048,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=4096,
procopts=seed=7654321)

The slowest of these steps with size=4096, takes over 1.5 minutes and produced a design with D-efficiency =
83.1150.

Since we have amix of factor levels, would could also try basing the design on three-level factors. Thenlev=3
optionis specified to use three-level pseudo-factors. The sizes now increase by afactor of three. The factors=
and seed= options are the same.

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36, size=243,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36, size=729,
procopts=seed=7654321)

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36, size=2187,
procopts=seed=7654321)

147

Thefirst of the preceding macro invocations generated the following PROC FACTEX code.

proc factex;
factors _1- 18 / nlev=3;
size design=min;
model estimate=(

10
11
(12
13
14
_15|_16
17
18
)i
output out=Candl (drop=_:)
[1]1=x1 nvals=(1 2 3)

[2]=x2 nvals=(1 2 3)
[31=x3 nvals=(1 2 3)
[4]1=x4 nvals=(1 2 3)
[51=x5 nvals=(1 2 3)
[61=x6 nvals=(1 2 3)
[7]1=x7 nvals=(1 2 3)
[81=x8 nvals=(1 2 3)

[91=x9 nvals=(1 2 3)

[10]=x10 nvals=(1 2 3)

[11]1=x11 nvals=(1 2 3)

[12]1=x12 nvals=(1 2 3)

[13]1=x13 nvals=(1 2 3)

[14]1=x15 nvals=(1 2 3)

[15 _16]1=x14 nvals=(1 to 4 1 to 4 1)

[17]=x16 nvals=(1 2 1)

[18]=x17 nvals=(1 2 1)

run; quit;

Now the design is generated from 18 pseudo-factors. The three-level factorsx1-x13 x15 are created directly
from _1-_14. Thefour-level factor x14 is created from _ 15 and _ 16 and their interaction. The nine values
arecodeddowninto: 123412341. Thetwo-level factorsx16 x17 arecreatedfrom _17 _ 18 codingdown
thethreevaluesto 1, 2, 1. Thelast of the preceding macro invocationswith size=2187 producesadesign with
D-efficiency = 84.6249 and took about 40 seconds.

We could also try a multi-step process. The first step, designated by step=1, runs only PROC FACTEX and
creates a candidate set for only the three-level factors. The random number seed is not specified since PROC
OPTEX isnot runin this step. The next step, step=2, generates a candidate set for the two-level and four-level
factors and crosses it with the candidate set from step 1. Then PROC OPTEX is run on the resulting candidate
set. The advantage of doing thisis the candidate set is balanced and orthogonal.

%$mktdes (factors=x1-x13 x15=3, run=factex, step=1)
%mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, n=36,
procopts=seed=7654321)

148

Thefirst step generated the following PROC FACTEX code.

proc factex;
factors _1- 14 / nlev=3;
size design=min;
model estimate=(

10

11

12

13

14

)i

output out=Candl (drop=_:)

[11=x1 nvals=(1 2 3)

[2]1=x2 nvals=(1 2 3)
[31=x3 nvals=(1 2 3)
[4]1=x4 nvals=(1 2 3)
[5]1=x5 nvals=(1 2 3)
[6]=x6 nvals=(1 2 3)
[71=x7 nvals=(1 2 3)
[8]=x8 nvals=(1 2 3)

[91=x9 nvals=(1 2 3)
[10]=x10 nvals=(1 2 3)

[11]1=x11 nvals=(1 2 3)
[12]1=x12 nvals=(1 2 3)
[13]1=x13 nvals=(1 2 3)

2 3)

[14]=x15 nvals=(1

run; quit;

Thisisstandard PROC FACTEX for three-level factors. Thereare nointeractionsor coding down. This candidate

set has 81 runs. The second macro generates the following PROC FACTEX code.

proc factex;

factors 1- 4 / nlev=2;

size design=min;

model estimate=(
1] 2
3
4
)i

output out=Cand2 (drop=_:)
pointrep=Candl
[1 2]=x14 nvals=(1l to 4)
[3]1=x16 nvals=(1 2)
[4]1=x17 nvals=(1 2)

run; quit;

ThisPROC FACTEX step generatesadesignin CAND2 from the previously generated design for the three-level
factors CAND1 and another design it is generating for the two-level and four-level factors. The only aspect of
this code that is new isthe pointrep=Cand1l option. PROC FACTEX createsadesign with x14 x16 x17

149

initin 8 runsand crossesit with the 81 runsin the CAND1 data set creating a candidate set with 8 x 81 = 648
runs. Each run in the three-level factor design (CAND1) appears with each run in the two-level factor design.

The macro generated the following PROC OPTEX code. The only difference in the PROC OPTEX code from
the one-step method is now the class and model statements have the factors grouped by step.

proc optex data=Cand2 seed=7654321;
class
x1-x13 x15
x14 x16 x17
/ param=orthref;
model
x1-x13 x15
x14 x16 x17
generate n=36 iter=10 keep=5 method=m federov;
output out=Design;
run; quit;

The resulting design had a D-efficiency of 82.4738. Like before, we can try this again with larger sizes.

%mktdes (factors=x1-x13 x15=3, run=factex, step=1, size=243)
%mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16, n=36,
procopts=seed=7654321)

This approach creates a candidate set with 16 x 243 = 3888 runs. The design has D-efficiency = 86.1054 and
took about 1.5 minutes.

Using a Tabled Design as a Candidate Set

Another alternative for creating a candidate set is to use a standard tabled design, such as the L 3¢, instead of
using PROC PLAN or PROC FACTEX. The L34 has 11 two-level factors and 12 three-level factorsin 36 runs.
In this example, we cross part of this design with afull-factorial design with 2 three-level factorsand 1 four-level
factor, creating a candidate set in 36 x 3 x 3 x 4 = 1296 runs. The resulting candidate set is orthogonal and
balanced.

data 136; /* al-all - two-level, bl-bl2 - three-level */

input (al-all bl-bl2) (23*1l.) ee@;

if mod(n , 3) = 0 then input;

datalines;
111111111112223322321121111111111133311331322311111111111111221121331
212111222122222121212232121112221233332323233121211122212111131313112
221211122212232213122322212111222133133212331322121112221112113231121
122121112222211232233221221211122233223133113312212111222113312112211
212212111222311223312112122121112231223311232221221211122123311223133
221221211122313131111322212212111231212122221322122121112123232333321
222122121112322112133112221221211131332232112222212212111121133132233
122212212112331311221211222122121131121223323212221221211122323311313
112221221212131322113331122212212132121332211111222122121132321133222
111222122122132231331131112221221232133121122111122212212132112322332
211122212212113113323232111222122132212211313121112221221133233221212
121112221222123333232311211122212232311113131212111222122131222212123

H

150

data candl(drop=a: b: i);
set 136;
x16 = al; x17 = a2;
array x[12]; array b[1l2];
do i =1 to 12; x[i] = b[i]l; end;
do x13 = 1 to 3;
do x14 = 1 to 4;
do x15 = 1 to 3;

output;
end;
end;
end;
run;

For each of the 36 input observations, the 36 combinationsof x13, x14, andx15 are created and output, creating
atotal of 1296 possible choice setsin the candidate set. Next, we use the %MK TDES macro to run only PROC
OPTEX. It prints some generated PROC FACTEX code even though it does not run it.

%mktdes (factors=x1-x13 x15=3 x14=4 x16 x17=2,
run=optex, n=36, procopts=seed=7654321)

This step took 14 seconds and produced the following results.

Vacation Example with Asymmetry

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 98.8874 97.5943 95.3827 0.9837
2 98.8874 97.5943 95.3827 0.9837
3 98.4728 96.6825 92.1954 0.9884
4 98.2861 96.3742 90.7878 0.9899
5 98.2861 96.1470 91.7095 0.9911

The best design has an efficiency of 98.8874, which is quite abit better than the previous high of 86.1054. While
there is no guarantee that this approach will be better than other approaches, these results are not surprising. The
L3 is avery good, specialized design, and crossing it with a full-factorial design does nothing to diminish its
goodness. Also, the size of the candidate set, 1296, is very reasonable, so we would not expect search time or
local optimato be serious problems.

151

Ensuring that Certain Key Interactions are Estimable

Next, we will ensure that certain key interactions are estimable. Specificaly, it might be good if in the aggre-
gate the interactions between price and accommodations were estimable for each destination. We would like
the following interactions to be estimable: x1*x11 x2*x12 x3*x13 x4*x15 x5*x15. We will use the
%MK TDES macro in two stepsto find adesign. Recall that when we first used a two-step approach, we used the
following code.

%$mktdes (factors=x1-x13 x15=3, run=factex, step=1)
%mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, n=36,
procopts=seed=7654321)

Thistime, we will add to the first step an interact=x1%*x11 x2*x12 x3*x13 x5*x15 option naming
the interactions that we want to be estimable. We did not specify x4*x14 yet since x14 is not created in the
first step. In the second step, we specify our remaining interaction, otherint=x4*x14. The otherint=
option is used for interactions that are composed of factors created in different steps. Interactions that appear
in interact= appear in the PROC FACTEX and PROC OPTEX model statements. In contrast, interactions
that appear in otherint= appear only in the PROC OPTEX model statement. Theoptionn=saturatedis
specified so that PROC OPTEX will create the smallest possible design. Thisis an easy way for you to find out
what the smallest size is without doing all the parameter calculations.

%mktdes (factors=x1-x13 x15=3, run=factex, step=1,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%$mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2,
otherint=x4*x14, n=saturated, procopts=seed=7654321)

PROC OPTEX tellsusNOTE: Number of design points set to 56. The number of parameters
islfortheintercept, 14 x (3—1)+(4—1)+2 x (2—1) = 33 for main effects,and4 x (3—1) x (3 —1) + (4 —
1) x (3 —1) = 22 forinteractionsfor atotal of 1 + 33 4 22 = 56 parameters. So we need at least 56 choice sets,
and ideally for this design with 2, 3, and 4 level factors, we would like the number sets to be divisible by 2 x 2,
2x3,2x4,3x3,and3 x 4. Sixty isdivisibleby 2, 3, 4, 6, and 12 so is areasonable design size. Sixty choice
sets could be divided into three blocks of size 20, four blocks of size 15, or five blocks of size 12. Seventy-two
choices sets would be better since unlike 60, 72 can be divided by 9. Unfortunately, 72 would require one more
block.

We can aso run the %MK TRUNS macro to help us choose the number of choice sets. However, the %MKT-
RUNS does not have aspecial syntax for interactions, you have to specify the main effects and interactions of two
factorsasif it were asinglefactor. So for example, for theinteraction of 2 three-level factors, you specify 9inthe
list. For the interaction of athree-level factor and afour-level factor, you specify 12 in thelist. Do not specify “3
39" or“3412"; just specify “3” and “12”. In this example we specify four 9'sfor the four accommodation/price
interactions involving only three-level factors, one 12 for the California accommodation/price interaction, five
3'sfor scenery, and two 2's for the side trips. We also specified a keyword option max= to consider only the 45
design sizes from the minimum 56 up to 100.

$mktruns(9 9 9 9 12 3 3 3 3 3 2 2, max=45)

152

Vacation Example with Asymmetry

Some Reasonable

Design Sizes Cannot Be
(Saturated=56) Violations Divided By
72 30 81 108 27
81 33 12 108 36 2 18 24 6 4
90 39 81 12 108 27 36 24 4
96 57 9 81 108 27 36 18
60 59 9 81 108 27 36 18 24
63 59 81 12 108 27 36 2 18 24 6 4
84 59 9 81 108 27 36 18 24
99 59 81 12 108 27 36 2 18 24 6 4
66 61 9 81 12 108 27 36 18 24 4
78 61 9 81 12 108 27 36 18 24 4

We see that 72 cannot be divided by 81 = 9 x 9 so for example the Mexico accommaodati on/price combinations
cannot occur with equal frequency with each of the Hawaii accommodati on/price combinations. We see that 72
cannot be divided by 108 = 9 x 12 so for example the California accommodation/price combinations cannot
occur with equal frequency with each of the Maine accommodati on/price combinations. With interactions, there
are many higher-order opportunities for nonorthogonality. However, usually we will not be overly concerned
about potential unequal frequencies on combinations of attributes in different alternatives.

We will run the %MK TDES macro again with n=6 0 specified.

%mktdes (factors=x1-x13 x15=3, run=factex, step=1,
interact=x1*x11l x2*x12 x3*x13 x5*x15)

%$mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 81 x 8 = 648 candidates, and the D-efficiency of the best design is 80.3563. Since making
a candidate set six times bigger should not be a problem, we can run again with size=243 and size=16.

$mktdes (factors=x1-x13 x15=3, run=factex, step=1l, size=243,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 243 x 16 = 3888 candidates, and the D-efficiency of the best designis 77.4934. Sincethis
is worse than we saw previously, we could try again with size=243 and size=8.

$mktdes (factors=x1-x13 x15=3, run=factex, step=1l, size=243,
interact=x1*x11l x2*x12 x3*x13 x5*x15)

%$mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, size=8,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 243 x 8 = 1944 candidates, and the D-efficiency of the best design is 76.3911. Since this
is worse than we saw previously, we could try again with size=81 and size=16.

%mktdes (factors=x1-x13 x15=3, run=factex, step=1l, size=81,
interact=x1*x11l x2*x12 x3*x13 x5*x15)

%$mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 81 x 16 = 1296 candidates, and the D-efficiency of the best design is 80.8125. Thisis
better than we saw previously. We could try again with moreiterations.

%$mktdes (factors=x1-x13 x15=3, run=factex, step=1l, size=81,
interact=x1*x11l x2*x12 x3*x13 x5*x15)

%mktdes (factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16, iter=20,
otherint=x4*x14, n=60, procopts=seed=072555)

153

Thisgave us asmall gain in D-€fficiency, 81.3949. This step took 2 minutes and 15 seconds.

Examining the Design
We can use PROC SUMMARY and PROC FREQ as afirst step in evaluating the goodness of this design.

proc summary data=design;
class all ;
ways 1 17;
output out=sum;
run;

proc print; by type ; run;
proc freq;

tables x1#*x11l x2*x12 x3*x13 x4*x14 x5*x15;
run;

Vacation Example, Strategies for Big Designs
----------------------------------- _TYPE =1 -=-=-m-mmmmmmmmmmmmmemmmeemeeoos

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 FREQ

----------------------------------- _TYPE =2 - --mmmm-mmmmmmmmmmmmmemmmmo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

5 1 17
6 2 14
7 3 15
8 4 14

----------------------------------- _TYPE =8 -------em-ccceeeeeccceeeeecceeaaa-

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

9 1 19

10 2 21

11 3 20
---------------------------------- _TYPE =16 --------mmmmmmmmmmmmmmmmmeee e

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

12 1 20

13 2 20

14 3 20
---------------------------------- _TYPE =32 ----------eceee-mceeeeeemceeee——a-

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

[
o
N
N
o

---------------------------------- _TYPE =64 ----------mmmmmmmmmmmemmmmeeo oo

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

X 21

19 .« .. o2 e 20

X 19
---------------------------------- _TYPE =128 -----e----cceeeemccceeemceeeaaa—-

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

21o.1 20

22o.2 21

23 3. . . . 19
---------------------------------- _TYPE =256 ---------===-mmmmmmmmmmmmeeoo o

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

24 1 21

25 2 19

26 3 20
---------------------------------- _TYPE =512 -----=m----ceeeemccceeeecceeeaa——-

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

27 1 21

28 . .. 2 19

29 . .. 3 20
--------------------------------- TYPE =1024 -----------------mmmmmmmmmmmmmmmo-

30 20

31 . L. 2 20

32 3 20
--------------------------------- TYPE =2048 -------mmmmmmmmmmmmemmm e

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

B 19

34 . . L. L2 oo 19

35 . .03 22
--------------------------------- TYPE =4096 -------------=====-==“"-"-"-"—"————~——--

36 1 20

37 . 2 20

38 . 3 20
--------------------------------- TYPE =8192 -----------------mmmmmmmmmmmmmmoo-

39 . 1. 20

40 2 20

41 3 20
--------------------------------- _TYPE =16384 ----------mmmmmmmmmmmmmeoooaoao

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ

155

B 1 17 R

TYPE

FREQ

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17

19
21
20

=65536

TYPE

FREQ

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17

19
19
22

131071 -------emmmmmmmemmemmmmmm—m————-

TYPE

FREQ

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17

1

51
52

53

54
55
56

57

58

59

60

61
62
63
64
65
66
67

68
69

70
71
72
73
74
75
76
77
78
79

80

81
82
83
84
85
86
87
88
89

90

91
92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

156

Frequency
Percent
Row Pct
Col Pct |

x2

Frequency |
Percent
Row Pct
Col Pct

N
— ———— ———— —

x3

Frequency
Percent
Row Pct
Col Pct

Table of x1 by x11

1| 2] 3]
-------- e L
6 7 6
10.00 11.67 10.00
31.58 36.84 31.58
28.57 | 35.00 | 31.58
-------- e L
7 6 6
11.67 10.00 10.00
36.84 31.58 31.58
33.33 | 30.00 | 31.58
-------- e L
8 7 7
13.33 11.67 11.67
36.36 31.82 31.82
38.10 | 35.00 | 36.84 |
-------- e Rt e
21 20 19
35.00 33.33 31.67
Table of x2 by x12
x12
1| 2] 3]
-------- R T
6 | 7 6 |
10.00 | 11.67 | 10.00 |
31.58 | 36.84 | 31.58
28.57 | 35.00 | 31.58
-------- R T
9 | 6 | 6 |
15.00 | 10.00 | 10.00
42.86 | 28.57 | 28.57
42.86 | 30.00 | 31.58
-------- R T
6 | 7| 7|
10.00 | 11.67 | 11.67 |
30.00 | 35.00 | 35.00
28.57 | 35.00 | 36.84 |
-------- R T
21 20 19
35.00 33.33 31.67
Table of x3 by x13
x13
1| 2] 3]
-------- et
7 7 7
11.67 11.67 11.67
33.33 33.33 33.33
35.00 35.00 35.00
-------- et
6 6 7
10.00 10.00 11.67
31.58 31.58 36.84
30.00 30.00 35.00
-------- et
7 7 6
11.67 11.67 10.00
35.00 35.00 30.00
35.00 35.00 30.00
-------- e Rt EEE L
20 20 20
33.33 33.33 33.33

Total

19
31.67

19
31.67

22
36.67

60
100.00

Total

19
31.67

21
35.00

20
33.33

60
100.00

Total

21
35.00

19
31.67

20
33.33

60
100.00

157

Table of x4 by x14

x4 x14
Frequency |
Percent
Row Pct
Col Pct 1| 2| 3| 4| Total
--------- e et
1| 5 | 4 | 5 | 6 | 20
8.33 6.67 8.33 10.00 33.33

2 | 6 | 5 | 4 | 5 | 20
10.00 8.33 6.67 8.33 33.33

3 6 | 5 | 6 | 3| 20
10.00 8.33 10.00 5.00 33.33

Total 17 14 15 14 60
28.33 23.33 25.00 23.33 100.00

x5 x15
Frequency |
Percent
Row Pct
Col Pct 1| 2| 3| Total
--------- D et T T
1 7 7 6 20

11.67 11.67 10.00 33.33

2 6 7 7 20
10.00 11.67 11.67 33.33

3 6 7 7 20
10.00 11.67 11.67 33.33

The frequencies ook good and each choice set appears only once.

We can use PROC OPTEX to evaluate an existing design and print additional information such asthe information
matrix. Theoptionsmethod=sequential and initdesign= are used to evaluate an existing design. With
aninitial design, the sequential algorithm has nothing to do, so the efficiency and optionally other characteristics
of the existing design are printed.

proc optex data=cand2;
title2 ’Evaluating the Efficiency of a Given Design’;
class x1-x17 / param=orthref;
model x1-x17 x1*x11l x2*x12 x3*x13 x4*x14 x5*x15;
generate method=sequential initdesign=design;
examine i;
run; quit;

Intheinterest of space, the results from this step are not shown.

158

Blocking an Existing Design
An existing design is blocked as follows.

proc optex data=design seed=72343;

title2 ’'Design with Interactions, 60-Runs’;

title3 ’Blocking an Existing Design’;

class x1-x17 / param=orthref;

model x1-x17 x1*x11l x2*x12 x3*x13 x4*x14 x5*x15;

generate initdesign=design method=sequential;

blocks structure=(3)20 init=chain noexchange iter=1;

output out=sasuser.blckdes;

run; quit;
This step took 21 seconds. The goal isto take the observationsin an existing design and optimally sort them into
blocks. No swapping between the candidate set and the design is performed. The generate statement options
initdesign=design and method=sequential name the design to block, DESIGN, and the sequential
method since no swapping in and out is performed. The blocks statement option structure= asks for 3
blocks of size 20, init=chain specifies no swapping from the candidate set during the initialization, and
noexchange specifies no swapping from the candidate set during the iterations.

The table shows the frequencies for the different frequency patterns across blocks and factors. The design is
nearly balanced in most of the factors and blocks. Perfect balance isimpossible for the three level factors.

Level

Freguency Frequency

8 12 2
9 11 3
10 10 1
3 8 9 1
4 7 9 1
4 8 8 1
5 6 9 3
5 7 8 15
6 6 8 11
6 7 7 10
4 4 5 7 1
4 4 6 6 2

Generating the Questionnaire

These next steps randomize SASUSER.BLCKDES, the blocked design we just created, within blocks and print
the questionnaire.

%let m = 6; /* m alternatives including constant */
%let mml = %eval(&m - 1); /*m - 1 */
%let n = 20; /* number of choice sets */
%let blocks = 3; /* number of blocks */

proc plan seed=7654321;
factors block=&blocks ordered set=&n / noprint;
output out=orders;
run; quit;

data sasuser.blckdes;
set orders;
set = (block - 1) * &n + set;
set sasuser.blckdes point=set;
run;

title;
options 1s=80 ps=60 nonumber nodate;

data null ;
array dests[&mml] $ 10 temporary

(‘Hawaii’ ’Alaska’ ’'Mexico’

array scenes[3] $ 13 _temporary

(’the Mountains’ ’a Lake’

array lodging[3] $ 15 temporary

('Cabin’ ’‘Bed & Breakfast’

array x[15];

array pl[&mml];

length price $ 6;

file print linesleft=11;

set sasuser.blckdes;

by block;

pl = 1499 + (x[11] - 2) * 250;
p2 = 1499 + (x[12] - 2) * 250;
p3 = 1249 + (x[13] - 2) * 250;
p4 = 1374 + (x[14] - 2.5) * 250;

p5 = 1249 + (x[15] - 2) * 250;

if first.block then do;
choice = 0;
put _page_ ;
put @50 ‘Form: ’ block ' Subject:
end;
choice + 1;

'California’ ’Maine’);

'the Beach’);

'Hotel’) ;

if 11 < (19 + (x16 = 1) + (x17 = 1)) then put page ;

put choice 2. ’) Circle your choice of
'vacation destinations:’ /;

do dest = 1 to &mml;
price = left(put(pl[dest], dollaré6.))
put ' dest 1. ') ' destsldestl]

I

7

+(-1) 7, staying in a ’ lodgingl[xI[dest]]

'near ’ scenes[x[&mml + dest]] +(-1)

M/

+7 'with a package cost of ’ price +(-1) @@;

if dest = 3 and x16 = 1 then

put ’, and an optional visit’ / +7

'to archaeological sites for an additional $100’ @@;

else if dest = 1 and x17 = 1 then

put ’, and an optional helicopter’

'flight to an active volcano for an additional $200’ @@;

put .’ /;

end;
put " &m) Stay at home this year." /
run;

Here are the first two choice sets for the first subject.

7

159

160

Form: 1 Subject:

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Bed & Breakfast near the Beach,
with a package cost of $1,499.

2) Alaska, staying in a Bed & Breakfast near a Lake,
with a package cost of $1,499.

3) Mexico, staying in a Hotel near the Beach,
with a package cost of $1,499.

4) California, staying in a Hotel near a Lake,
with a package cost of $1,499.

5) Maine, staying in a Cabin near the Mountains,
with a package cost of $999.

6) Stay at home this year.
2) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near the Mountains,
with a package cost of $1,499.

2) Alaska, staying in a Hotel near a Lake,
with a package cost of $1,249.

3) Mexico, staying in a Hotel near the Mountains,
with a package cost of $999.

4) California, staying in a Bed & Breakfast near a Lake,
with a package cost of $1,749.

5) Maine, staying in a Hotel near the Beach,
with a package cost of $1,249.

6) Stay at home this year.

161

Generating Artificial Data

This next step generates an artificial set of data. Collecting data is time consuming and expensive. Generating
some artificial data before the data are collected to test your code and make sure the analysis will run is a good
idea. It helps avoid the “How am | going to analyze this?’ question from occuring after the data have already
been collected. This step generates data for 300 subjects, 100 per block.

data null ;
array dests[&mml] temporary (5 -1 4 3 2);
array scenes[3] _temporary (-1 0 1);
array lodging([3] temporary (0 3 2);
array ulé&m];
array x[15];

do rep = 1 to 100;

i =1 to &blocks;

k + 1;

if mod(k,3) = 1 then put;

put k 3. +1 i 1. +2 @@;

do j =1 to &n; n + 1;

set sasuser.blckdes point=n;

do dest = 1 to &mml;

ul[dest] = dests[dest] + lodging[x[dest]] +

scenes [x[&mm]l + dest]] -
x[2 * &mml + dest] +
2 * normal(7);

end;
ull] = ull] + (x16 = 1);
ul3] = ul3] + (x17 = 1);
usm = -3 + 3 * normal(7);
m = max (of ul-ué&m);
if abs(ul - m) < le-4 then ¢ = 1;
else if abs(u2 - m) < le-4 then c = 2;
else if abs(u3 - m) < le-4 then c = 3;
else if abs(u4 - m) < le-4 then c = 4;
else if abs(u5 - m) < le-4 then ¢ = 5;
else c = 6;
put +(-1) c ee;
end;
end;
end;
stop:;
run;

The Dests, Scenes, and Lodging arraysare initialized with part-worth utilitiesfor each level. The utilitiesfor each
of the destinations are computed and stored in the array u in the statement u [dest] = ..., whichincludes
an error term 2 * normal (7). The utilities for the side trips are added in separately withu [1] = u[1]
+ (x16 = 1) andul3] = ul3] + (x17 = 1). The utility for the stay at home aternative is -3 +
3 * normal (7). The maximum utility iscomputed, m = max (of ul-u&m) and the alternative with the
maximum utility is chosen. The put statement writes out the results to the log.

162

Reading, Processing, and Analyzing the Data
The results from the previous step are pasted into a DATA step and run to mimic reading real input data.

title ’'Vacation Example with Asymmetry’;

data results;
input Subj Form (choosel-choose&n) (1.) @e@;
datalines;

1 1 13113435444151313134
4 1 11113133144113311114
7 1 15413435141111133134

H

2 2 43331151114114133313
5 2 31415434431113453111
8 2 33115411141111413113

3 3 13331111451411131133
6 3 13133111341343151311
9 3 15153113431113131311

The analysis proceeds in a fashion similar to before. Formats and the key to processing the design are created.

proc format;

R RRR

' 999’

'Mountains”’

’Cabin’

'Side Trip’

NDNDDNDDN

input Place $ 1-10 (Lodge Scene

value price
value scene
value lodge
value side
run;
data key;
datalines;
Hawaii x1
Alaska x2
Mexico x3
California x4
Maine x5

7

x6
x7
x8
x9
x10

x11
x12
x13
x14
x15

x16

x17

71249’ 3 = 1499’ 4
' Lake’ 3
'Bed & Breakfast’ 3
INOI;

Price Side) ($):;

r1749’;
'Beach’;
'Hotel’ ;

For analysis, the design will have five attributes. Place isthe dternative name. Lodge, Scene, Price and
Side are created from the design using the indicated factors. See page 122 for more information on creating
the design key. Notice that side only appliesto some of the aternatives and hence has missing values for the
others. Processing the design and merging it with the datais similar to what was done on pages 122 and 124.
One difference is now there are asymmetries in Price. For Hawaii's price, x11, weneedtomap 1, 2, 3 to
$1249, $1499, $1749; for Alaska's price, x12, we need to map 1, 2, 3 to $1249, $1499, $1749; for Mexico's
price, x13, we need to map 1, 2, 3 to $999, $1249, $1499; for California’s price, x14, weneed tomap 1, 2, 3,
410 $999, $1249, $1499, $1749; for Maine's price, x11, we need to map 1, 2, 3 to $999, $1249, $1499. We can
simplify the problem by adding 1 to x11 and x12, the factors that start at $1249 instead of $999, then we can
use a common format to set the price.

data temp;
set sasuser.blckdes;
x11l + 1;
x12 + 1;
run;
%$mktroll (design=temp, key=key, alt=place, out=rolled)
%mktmerge (design=rolled, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choosel-chooseé&n,
stmts=%str (price = input(put(price, price.),
format scene scene. lodge lodge.

5.);

proc print data=res2(obs=18); run;

Here are thefirst three choice sets.

side side.;))

163

Vacation Example with Asymmetry

Obs Subj Form Set Place Lodge Scene Price
1 1 1 1 Hawaii Bed & Breakfast Beach 1499
2 1 1 1 Alaska Bed & Breakfast Lake 1499
3 1 1 1 Mexico Hotel Beach 1499
4 1 1 1 California Hotel Lake 1499
5 1 1 1 Maine Cabin Mountains 999
6 1 1 1 . . .
7 1 1 2 Hawaii Hotel Mountains 1499
8 1 1 2 Alaska Hotel Lake 1249
9 1 1 2 Mexico Hotel Mountains 999

10 1 1 2 California Bed & Breakfast Lake 1749
11 1 1 2 Maine Hotel Beach 1249
12 1 1 2 . . .
13 1 1 3 Hawaii Cabin Mountains 1499
14 1 1 3 Alaska Bed & Breakfast Mountains 1749
15 1 1 3 Mexico Bed & Breakfast Beach 1249
16 1 1 3 California Bed & Breakfast Beach 1499
17 1 1 3 Maine Cabin Beach 1499
18 1 1 3 . . .

Side
No

No

No

No

.

Side Trip
Side Trip

.

a

NDNMNMDMDDMNMDMDMDE DNDNDMDEDMDND DNMNDNMDDNDDNDR

Indicator variables and |abels are created using PROC TRANSREG like before.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;

model class(place / zero=none order=data)
class(price scene lodge / zero=none order=formatted)
class(place * side / zero=’ ' ’'No’ separators='"' '
output out=coded(drop= type name intercept);
id subj set form c;
run;

proc print data=coded(obs=6) label;
run;

") / lprefix=0;

The design=5000 option specifies that no moded is fit; the procedure is just being used to code a design in
blocks of 5000 observations at atime. The nozeroconstant option specifies that if a constant variable is
created by the coding, it is not to be zeroed. The norestoremissing option specifies that missing values
should not be restored when the out= data set is created. Themodel statement names the variables to code
and provides information about how they are to be coded. The specification class (place / zero=none
order=data) specifiesthat the variable P1lace is a classification variable and requests a binary coding. The
zero=none 0ption specifies that one binary variable should be created for al categories. The order=data

164

option sorts the values into the order they were first encountered in the data set. Similarly, the variablesPrice,
Scene, and Lodge are classification variables. The specification class (place * side / zero=' '
'No’ separators=" ’ ') createsaternative-specific side effects. The option zero=’ ’ ’No’ speci-
fies that dummy variables should be created for all levels of P1lace except blank, and all levels of side except
'No’. The separators= option (explained in more detail on page 172) allows you to specify two label com-
ponent separators for the main effect and interaction terms, respectively. By specifying a blank for the second
value, we request labels for the side trip effects like “Mexico Side Trip” instead of the default “Mexico * Side
Trip”.

The 1prefix=0 option specifies that when labels are created for the binary variables, zero characters of the
original variable name should be used as a prefix. This means that the labels are created only from the level
values. An output statement names the output data set and drops variablesthat are not needed. Finally, the id
statement names the additional variables that we want copied from the input to the output data set.

Vacation Example with Asymmetry

Obs Hawaii Alaska Mexico California Maine 999 1249 1499 1749 Beach Lake

1 1 0 0 0 0 0 0 1 0 1 0
2 0 1 0 0 0 0 0 1 0 0 1
3 0 0 1 0 0 0 0 1 0 1 0
4 0 0 0 1 0 0 0 1 0 0 1
5 0 0 0 0 1 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
Alaska Hawaii Maine Mexico
Bed & Side California Side Side Side

Obs Mountains Breakfast Cabin Hotel Trip Side Trip Trip Trip Trip

1 0 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0
5 1 0 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
Obs Place Price Scene Lodge Side Subj Set Form c
1 Hawaii 1499 Beach Bed & Breakfast No 1 1 1 1
2 Alaska 1499 Lake Bed & Breakfast 1 1 1 2
3 Mexico 1499 Beach Hotel No 1 1 1 2
4 California 1499 Lake Hotel 1 1 1 2
5 Maine 999 Mountains Cabin 1 1 1 2
6 1 1 1 2

The PROC PHREG specification is the same as we have seen before. (Recall that we used $phchoice (on)
on page 71 to customize the output from PROC PHREG.)

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum) ;
run;

Here are the results.

165

Vacation Example with Asymmetry
The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2

Ties Handling BRESLOW

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 21501.114 10600.873
AIC 21501.114 10628.873
SBC 21501.114 10722.666

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSsqg
Likelihood Ratio 10900.2405 14 <.0001
Score 10070.1027 14 <.0001
Wald 4295.0918 14 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square
Hawaii 1 3.74345 0.24610 231.3706
Alaska 1 -0.98353 0.29398 11.1930
Mexico 1 2.28200 0.25137 82.4127
California 1 1.73953 0.25052 48.2158
Maine 1 0.96882 0.25545 14.3842
999 1 1.98569 0.07826 643.7935
1249 1 1.33922 0.06689 400.8888
1499 1 0.61453 0.06335 94.0995

1749 0 0 . .
Beach 1 1.40373 0.05181 733.9404
Lake 1 0.73358 0.05306 191.1124

Mountains 0 0 . .

Pr > ChiSqg

<.0001
0.0008
<.0001
<.0001
0.0001

<.0001
<.0001
<.0001

<.0001
<.0001

166

Bed & Breakfast 1 0.66600 0.04334 236.1449 <.0001
Cabin 1 -1.50871 0.05375 787.7420 <.0001
Hotel 0 0

Alaska Side Trip 0 0

California Side Trip 0 0 . . .
Hawaii Side Trip 1 0.65428 0.06331 106.7980 <.0001
Maine Side Trip 0 0 . . .
Mexico Side Trip 1 0.85246 0.06886 153.2310 <.0001

Vacation Example with Asymmetry

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
1 5 6000 100.00 6000 100.00

You would not expect the part-worth utilities to match those that were used to generate the data, but you would
expect a similar ordering within each factor, and in fact that does occur. These data can also be analyzed with
guantitative price effects and destination by attribute interactions, as in the previous vacation example.

Aggregating the Data

Thisdataset israther large with 36,000 observations. You can make the analysisrun faster and with less memory
by aggregating. Instead of stratifying on each choice set and subject combination, you can stratify just on choice
set and specify the number of times each alternative was chosen or unchosen. First, use PROC SUMMARY to
count the number of times each observation occurs. Specify al the analysis variables, and in this example, also
specify Form. The variable Form was added to the list because set designates choice set within form. It isthe
Form and Set combinationsthat identify the choice sets. (In the previous PROC PHREG step, since the Subj

* Set combinations uniquely identified each stratum, Form was not needed.) PROC SUMMARY s used to
store the number of times each unique observation appears in the variable _ freq_. Then PROC PHREG is
run with a freq statement. Now, instead of analyzing a data set with 36,000 observations and 6000 strata, we
analyze a data set with 600 observations and 60 strata.

proc summary data=coded nway;
class form set c & trgind;
output out=agg(drop= type);
run;

proc phreg data=agg;
model c*c(2) = & trgind / ties=breslow;
freq freq ;
strata form set;
run;

PROC SUMMARY ran in three seconds, and PROC PHREG ran in under one second. The parameter estimates
and Chi-Square statistics (not shown) are the same as before. The summary table shows the results of the
aggregation, 100 out of 600 alternatives were chosen in each stratum. The log likelihood statistics are different,
but that does not matter since the Chi-Square statistics are the same. The next example providesmoreinformation
about this.

167

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Stratum

w N R

Form

[

Vacation Example with Asymmetry

The PHREG Procedure

Model Information

Data Set

Dependent Variable
Censoring Variable
Censoring Value(s)
Frequency Variable
Ties Handling

WORK .AGG
c

c

2

_FREQ
BRESLOW

Chosen
Alternatives

100
100
100

Not
Chosen

500
500
500

Number of

Set Alternatives
1 600
2 600
3 600
59 600
60 600
36000

168

Brand Choice Example With Aggregate Data

In this next example, subjects were presented with brands of a product at different prices. There were four brands
and a constant alternative, eight choice sets, and 100 subjects. This example shows how to handle data that come
to you already aggregated. It also illustrates comparing the fits of two competing models, the mother logit model,
cross effects, 1A, and techniques for handling large data sets. The choice sets, with the price of each alternative
and the number of times it was chosen in parentheses, are shown next.

Set Brand 1 Brand 2 Brand 3 Brand 4 Other
1 [$399 (4) |$599 (29) | $3.99 (16) | $599 (42) |$4.99 (9
2 | $599 (12) | $5.99 (19) | $5.99 (22) | $5.99 (33) |$4.99 (14)
3 | $599 (34) | $599 (26) | $3.99 (8) |$399 (27) |$4.99 (5
4 | $599 (13) | $399 (37) | $599 (15 | $399 (27) %49 (8
5 [$599 (49 | $39 (1) [$39 (9 |$5.9 (37) |$49 (@)
6 | $3.99 (31) | $599 (12) | $5.99 (6) | $3.99 (18) | $4.99 (33)
7 | $399 (37) | $3.99 (10) | $5.99 (5) | $599 (35) |$4.99 (13)
8 | $3.99 (16) | $3.99 (14) | $399 (5 |$399 (51) |$4.99 (14

Thefirst choice set consists of Brand 1 at $3.99, Brand 2 at $5.99, Brand 3 at $3.99, Brand 4 at $5.99, and Other
at $4.99. From this choice set, Brand 1 was chosen 4 times, Brand 2 was chosen 29 times, Brand 3 was chosen
16 times, Brand 4 was chosen 42 times, and Other was chosen 9 times.

Processing the Data

Asin the previous examples, we will process the data to create a data set with one stratum for each choice set
within each subject and m aternatives per stratum. This example will have 100 peopletimes 5 aternativestimes
8 choice sets equals 4000 observations. The first five observations are for the first subject and the first choice
set, the next five observations are for the second subject and the first choice set, ..., the next five observations are
for the one-hundredth subject and the first choice set, the next five observations are for the first subject and the
second choice set, and so on. Subject 1 in the first choice set is amost certainly not the same as subject 1 in
subsequent choice sets since we were given aggregate data. However, that is not important. What isimportant is
that we have a subject and choice set variable whose unique combinations identify each choice set within each
subject. In previous examples, we specified strata Subj Set with PROC PHREG, and our data were sorted
by choice set within subject. We can still use the same specification even though our data are now sorted by
subject within choice set. This next step reads and prepares the data.

%let m = 5; /* Number of Brands in Each Choice Set (including Other) */
title ’'Brand Choice Example, Multinomial Logit Model’;
proc format;

value brand 1
5

'Brand 1’ 2 = 'Brand 2’ 3 = ‘Brand 3’ 4 = ’‘Brand 4’
'Other’;

run;

data price;
array pl&m] pl-p&m; /* Prices for the Brands */
array fl[&m] fl-f&m; /* Frequency of Choice */

input pl-p&m fl-f&m;
keep subj set brand price c pl-p&m;

* Store choice set and subject number to stratify;
Set = n ; Subj = 0;

169

do i =1 to &m; /* Loop over the &m frequencies */
do ci = 1 to £f[i]; /* Loop frequency of choice times */
subj + 1; /* Subject within choice set */

do Brand = 1 to &m; /* Alternatives within choice set */
Price = pl[brand];

* Output first choice: c=1, unchosen: c=2;
c = 2 - (i eq brand); output;
end;
end;
end;

format brand brand.;

datalines;

3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14

proc print data=price(obs=15);

var subj set c price brand;
run;

The inner loop do Brand = 1 to &m creates all of the observations for the m alternatives within a per-
son/choice set combination. Within a choice set (row of input data), the outer two loops, do i = 1 to &m
anddo ci = 1 to £[i] executethe codeinside 100 times, the variable Subj goes from 1 to 100. In the
first choice set, they first create the data for the four subjects that chose Brand 1, then the data for the 29 subjects
that chose Brand 2, and so on. Here are the first 15 observations of the data set.

Brand Choice Example, Multinomial Logit Model

Obs Subj Set c Price Brand
1 1 1 1 3.99 Brand 1
2 1 1 2 5.99 Brand 2
3 1 1 2 3.99 Brand 3
4 1 1 2 5.99 Brand 4
5 1 1 2 4.99 Other
6 2 1 1 3.99 Brand 1
7 2 1 2 5.99 Brand 2
8 2 1 2 3.99 Brand 3
9 2 1 2 5.99 Brand 4

10 2 1 2 4.99 Other
11 3 1 1 3.99 Brand 1
12 3 1 2 5.99 Brand 2
13 3 1 2 3.99 Brand 3
14 3 1 2 5.99 Brand 4
15 3 1 2 4.99 Other

Note that the data set also contains the variables p1-p5 which contain the prices of each of the alternatives.
These variables, which are used in constructing the cross effects, will be discussed in more detail on page 174.

170

proc print data=price(obs=5);

run;
Brand Choice Example, Multinomial Logit Model
Obs pl p2 p3 p4 p5 Set Subj Brand Price c
1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1
2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2
3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2
4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2
5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

Smple Price Effects
The data are coded using PROC TRANSREG.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’Price’;
id subj set c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design. The
nozeroconstant option specifies that if a constant variable is created by the coding, it is not to be zeroed.
The norestoremissing option specifies that missing values should not be restored when the out= data
set is created. The model statement names the variables to code and provides information about how they
are to be coded. The specification class (brand / zero=none) specifies that the variable Brand is a
classification variable and requests a binary coding. The zero=none option specifies that one binary variable
should be created for all categories. The specification identity (price) specifiesthat the variable Price
is quantitative and hence should directly enter the model without coding. The 1pre£ix=0 option specifies that
when labels are created for the binary variables, zero characters of the original variable name should be used as
a prefix. This means that the labels are created only from the level values. An output statement names the
output data set and drops variables that are not needed. Finaly, the 1d statement names the additional variables
that we want copied from the input to the output data set.

ods exclude CensoredSummary;

ods output CensoredSummary=CS;

proc phreg data=coded;
title2 ’'Discrete Choice with Common Price Effect’;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum) ;
run;

Here are the results. (Recall that we used $phchoice (on) on page 71 to customize the output from PROC
PHREG.)

171

Brand
Brand
Brand
Brand
Brand
Price

Event

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSqg
1 0.66727 0.12305 29.4065 <.0001
1 0.38503 0.12962 8.8235 0.0030
1 -0.15955 0.14725 1.1740 0.2786
1 0.98964 0.11720 71.2993 <.0001
0 0 . . .
1 0.14966 0.04406 11.5379 0.0007
Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect
The FREQ Procedure
Cumulative Cumulative
Censored Frequency Percent Frequency Percent
4 800 100.00 800 100.00

Ul W N R

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2575.101 2425.214
AIC 2575.101 2435.214
SBC 2575.101 2458.637

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001
Wald 142.9002 5 <.0001

Multinomial Logit Parameter Estimates

172

Alter native-Specific Price Effects

In the next steps, the multinomial logit model is coded and fit with brand by price effects. The PROC TRANS-
REGmodel statement hasavertical bar, “|", betweenthe class specificationand the identi ty specification.
Sincethe zero=none optionis specified with class, the vertical bar createstwo sets of variables: five dummy
variablesfor the brand effects and five more variables for the brand by price interactions.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators=’'’ ' ') |
identity (price) / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’‘Price’;
id subj set c;
run;

The separators= option alows you to specify two label component separators as quoted strings. The spec-
ification separators=" ’ ’ (separators= quote quote space quote space quote) specifies a null string
(quote quote) and a blank (quote space quote). The separators=" ’ ’ optioninthe class specification
specifies the separators that are used to construct the labels for the main effect and interaction terms, respec-
tively. By default, the aternative-specific price effects — the brand by price interactions — would have labels
like “Brand 1 * Price” since the default second value for separators=is’ * ’ (aquoted space asterisk
space). Specifying * * (aquoted space) as the second value creates |abels of the form “Brand 1 Price”. Since
lprefix=0, the main-effects separator, which is the first separators= value, ” (quote quote), is ignored.
Zero name or input variable label characters are used to construct the label. The label is simply the formatted
value of the class variable.
proc print data=coded(obs=10) label;

title2 ’'Discrete Choice with Brand by Price Effects’;

var subj set c brand price & trgind;

run;

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

proc fregq;
tables event * censored / list;
where n(stratum) ;

run;
Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects
Brand Brand Brand Brand
Obs Subj Set c Brand Price 1 2 3 4
1 1 1 1 Brand 1 3.99 1 0 0 0
2 1 1 2 Brand 2 5.99 0 1 0 0
3 1 1 2 Brand 3 3.99 0 0 1 0
4 1 1 2 Brand 4 5.99 0 0 0 1
5 1 1 2 Other 4.99 0 0 0 0
6 2 1 1 Brand 1 3.99 1 0 0 0
7 2 1 2 Brand 2 5.99 0 1 0 0
8 2 1 2 Brand 3 3.99 0 0 1 0
9 2 1 2 Brand 4 5.99 0 0 0 1
10 2 1 2 Other 4.99 0 0 0 0

Ob

[y

]

O WV oo o U b WhR

Brand 1 Brand 2 Brand 3 Brand 4 Other

Other Price Price Price Price Price
0 3.99 0.00 0.00 0.00 0.00
0 0.00 5.99 0.00 0.00 0.00
0 0.00 0.00 3.99 0.00 0.00
0 0.00 0.00 0.00 5.99 0.00
1 0.00 0.00 0.00 0.00 4.99
0 3.99 0.00 0.00 0.00 0.00
0 0.00 5.99 0.00 0.00 0.00
0 0.00 0.00 3.99 0.00 0.00
0 0.00 0.00 0.00 5.99 0.00
1 0.00 0.00 0.00 0.00 4.99

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2

Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2575.101 2424.812
AIC 2575.101 2440.812
SBC 2575.101 2478.288

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 150.2891 8 <.0001
Score 154.2563 8 <.0001

Wald 143.1425 8 <.0001

173

174

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSgqg
Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .
Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0
Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects
The FREQ Procedure
Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
1 4 800 100.00 800 100.00

The likelihood for this moddl is essentially the same as for the simpler, common-price-slope model fit pre-
viously, —2log(L¢) = 2425.214 compared to 2424.812. The null hypothesis that the two models are not
significantly different is tested by comparing the likelihoods for the two models. The difference between two
—2log(L¢)'s (the number reported under “With Covariates’ in the output) has a chi-square distribution. The
degrees of freedom for the test is the difference between the two df for the two likelihoods. The difference
2425.214 — 2424.812 = 0.402 is distributed x? with 8 — 5 = 3 df and is not statistically significant.

Mother Logit Model

This next step fits the so-called “mother logit” model. This step creates the full design matrix, including the
brand, price, and cross effects. A cross effect represents the effect of one alternative on the utility of another
alternative. First, let's ook at the first part of the input data set. The first five rows containing the first choice set
are printed.

proc print data=price(obs=5) label;

run;
Brand Choice Example, Multinomial Logit Model
Obs pl p2 p3 p4 p5 Set Subj Brand Price c
1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1
2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2
3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2
4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2
5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

It consists of Set, Subj, Brand, Price, and a choice time variable c. In addition, it contains five variables
pl through p5. The first observation of the Price variable shows us that the first aternative costs $3.99;
p1l contains the cost of alternative 1, $3.99, which is the same for al alternatives. It does not matter which
alternative you are looking at, p1 shows that alternative 1 costs $3.99. Similarly, the second observation of the

175

Price variable shows us that the second alternative costs $5.99; p2 contains the cost of alternative 2, $5.99,
which isthe samefor al aternatives. Thereis one pricevariable, p1 through p5, for each alternative.

In al of the previous examples, we have seen models coded so that the utility of an alternative only depended
on the attributes of that aternative. For example, the utility of Brand 1 would only depend on the Brand 1 name
and its price. In contrast, p1-p5 contain information about each of the other aternatives' attributes. We will
construct cross effects using the interaction of p1 -p5 and the Brand variable. In amodel with cross effects, the
utility for an alternative depends on both that aternative’s attributes and the other alternatives’ attributes. The
I1A (independence from irrelevant alternatives) property states that utility only depends on an aternative’s own
attributes. Cross effects add other alternative's attributes to the model, so they can be used to test for violations
of 11A. (See pages 180, 187, 301, and 305 for other discussions of I11A.) Hereis the PROC TRANSREG codefor
the cross effects model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators='’ ‘' ') |
identity (price)
identity (pl-p&m) *
class (brand / zero=none lprefix=0 separators=’’ ’ on ') / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’'Price’
pl = ’'Brand 1’ p2 'Brand 2’ p3 = ’'Brand 3’
p4 = 'Brand 4’ p5 = ‘Other’;
id subj set c;
run;

Theclass (brand / zero=none separators=" ’ ') | identity(price) specificationinthe
model statement is the same as the previous analysis. The additional terms, identity (pl-p&m) *
class (brand / zero=none lprefix=0 separators="” ’ on ') create the cross effects. The
second value of the separators=option, * on ’ isusedto create labels like “Brand 1 on Brand 2” instead
of the default “Brand 1 * Brand 2”. It isimportant to note that you must specify the cross effect by specifying
identity withthe brand/price effects, followed by the asterisk, followed by c1ass and the brand effect. This
influences the order in which the labels are written. Do not specify the brand variable first; doing so will create
incorrect labels.

With m dternatives, there arem x m cross effects, but aswe will see, many of them will be zero. Thefirst coded
choice set is printed with the following PROC PRINT steps. Multiple steps are used to facilitate explaining the
coding.

title2 ’Discrete Choice with Cross Effects, Mother Logit’;

proc print data=coded(obs=5) label; var subj set ¢ brand price; run;
proc print data=coded(obs=5) label; var Brand:; run;

proc print data=coded(obs=5) label; var plB:; id brand; run;

proc print data=coded(obs=5) label; var p2B:; id brand; run;

proc print data=coded(obs=5) label; wvar p3B:; id brand; run;

proc print data=coded(obs=5) label; var p4B:; id brand; run;

proc print data=coded(obs=5) label; var p5B:; id brand; run;

The coded data set contains the strata variable Subj and Set, choicetime variable ¢, and Brand and Price.

Brand and Price were used to create the coded independent variables but they are not used in the analysis
with PROC PHREG.

176

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Obs Subj Set c Brand Price
1 1 1 1 Brand 1 3.99
2 1 1 2 Brand 2 5.99
3 1 1 2 Brand 3 3.99
4 1 1 2 Brand 4 5.99
5 1 1 2 Other 4.99

“Brand 1" through “ Other” are binary brand effect variables. They indicate the brand for each alternative. “Brand
1 Price” through “ Other Price” are aternative-specific price effects. They indicate the price for each aternative.
All ten of these variables are independent variables in the analysis, and their names are part of the & _ trgind
macro variablelist as are all of the cross effects that are described next.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand Brand 1 Brand 2 Brand 3 Brand 4 Other
Obs 1 2 3 4 Other Price Price Price Price Price Brand
1 1 0 0 0 0 3.99 0.00 0.00 0.00 0.00 Brand 1
2 0 1 0 0 0 0.00 5.99 0.00 0.00 0.00 Brand 2
3 0 0 1 0 0 0.00 0.00 3.99 0.00 0.00 Brand 3
4 0 0 0 1 0 0.00 0.00 0.00 5.99 0.00 Brand 4
5 0 0 0 0 1 0.00 0.00 0.00 0.00 4.99 Other

“Brand 1 on Brand 1" through “Brand 1 on Other” are thefirst five cross effects. They represent the effect on the
utility of each alternative of Brand 1 at its price appearing in the choice set. Thelabel “Brand n on Brand m” is
read as “the effect of Brand n at its price on the utility of Brand m.” For thefirst choice set, these first five cross
effects consist entirely of zeros and $3.99's, where $3.99 is the price of Brand 1 in this choice set. Thisvalueis
constant across the alternativesin the first choice set since the price of Brand 1 is constant within the first choice
set. Natice that “Brand 1 on Brand 17, which is the effect on the utility of Brand 1 at its price on Brand 1, is the
same as “Brand 1 Price” (shown in the previous output), which is the effect of the Brand 1 price on the utility for
the Brand 1 alternative. In other words, the “Brand 1 on Brand 1” cross effect is the same as the “Brand 1 Price”

effect. Because of this, when we do the analysis, we will see that the coefficient for the effect of “Brand 1 on
Brand 1" will be zero.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

1l on 1 on 1 on 1l on Brand 1

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 3.99 0.00 0.00 0.00 0.00
Brand 2 0.00 3.99 0.00 0.00 0.00
Brand 3 0.00 0.00 3.99 0.00 0.00
Brand 4 0.00 0.00 0.00 3.99 0.00
Other 0.00 0.00 0.00 0.00 3.99

“Brand 2 on Brand 1” through “Brand 2 on Other” are the next five cross effects. They represent the effect on
the utility of each alternative of Brand 2 at its price appearing in the choice set. For thefirst choice set, these five
cross effects consist entirely of zeros and $4.99's, where $4.99 is the price of Brand 2 in this choice set. This
value is constant across the aternatives in the first choice set since the price of Brand 2 is constant within the

177

first choice set. Notice that “Brand 2 on Brand 2", which is the effect on the utility of Brand 2 at its price on
Brand 2, isthe same as “Brand 2 Price” (shown in a previous output), which is the effect of the Brand 2 price on
the utility for the Brand 2 alternative. In other words, the “Brand 2 on Brand 2” cross effect is the same as the
“Brand 2 Price” effect. Because of this, when we do the analysis, we will see that the coefficient for the effect of
“Brand 2 on Brand 2" will be zero.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

2 on 2 on 2 on 2 on Brand 2
Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 5.99 0.00 0.00 0.00 0.00
Brand 2 0.00 5.99 0.00 0.00 0.00
Brand 3 0.00 0.00 5.99 0.00 0.00
Brand 4 0.00 0.00 0.00 5.99 0.00
Other 0.00 0.00 0.00 0.00 5.99

“Brand 3 on Brand 1" through “Brand 2 on Other” are the next five cross effects. They represent the effect on
the utility of each alternative of Brand 3 at its price appearing in the choice set. For the first choice set, these
five cross effects consist entirely of zeros and $3.99's, where $3.99 is the price of Brand in this choice set. This
value is constant across the alternatives in the first choice set since the price of Brand 3 is constant within the
first choice set. Notice that “Brand 3 on Brand 3”, which is the effect on the utility of Brand 3 at its price on
Brand 3, isthe same as “Brand 3 Price” (shown in a previous output), which is the effect of the Brand 3 price on
the utility for the Brand 3 alternative. In other words, the “Brand 3 on Brand 3” cross effect is the same as the
“Brand 3 Price” effect. Because of this, when we do the analysis, we will see that the coefficient for the effect of
“Brand 3 on Brand 3" will be zero.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

3 on 3 on 3 on 3 on Brand 3
Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 3.99 0.00 0.00 0.00 0.00
Brand 2 0.00 3.99 0.00 0.00 0.00
Brand 3 0.00 0.00 3.99 0.00 0.00
Brand 4 0.00 0.00 0.00 3.99 0.00
Other 0.00 0.00 0.00 0.00 3.99

Here are the remaining cross effects. They follow the same pattern that was described for the cross effects above.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

4 on 4 on 4 on 4 on Brand 4
Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 5.99 0.00 0.00 0.00 0.00
Brand 2 0.00 5.99 0.00 0.00 0.00
Brand 3 0.00 0.00 5.99 0.00 0.00
Brand 4 0.00 0.00 0.00 5.99 0.00
Other 0.00 0.00 0.00 0.00 5.99

178

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Other on Other on Other on Other on Other on
Brand Brand 1 Brand 2 Brand 3 Brand 4 Other
Brand 1 4.99 0.00 0.00 0.00 0.00
Brand 2 0.00 4.99 0.00 0.00 0.00
Brand 3 0.00 0.00 4.99 0.00 0.00
Brand 4 0.00 0.00 0.00 4.99 0.00
Other 0.00 0.00 0.00 0.00 4.99

We have been describing variables by their [abels. While it is not necessary to look at it, the & _ trgind macro
variable name list that PROC TRANSREG creates for this problemis as follows:

sput & trgind;

BrandBrand 1 BrandBrand 2 BrandBrand 3 BrandBrand 4 BrandOther

BrandBrand 1lPrice BrandBrand 2Price BrandBrand 3Price BrandBrand 4Price
BrandOtherPrice plBrandBrand 1 plBrandBrand 2 plBrandBrand 3 plBrandBrand 4
plBrandOther p2BrandBrand 1 p2BrandBrand 2 p2BrandBrand 3 p2BrandBrand 4
p2BrandOther p3BrandBrand 1 p3BrandBrand 2 p3BrandBrand 3 p3BrandBrand 4
p3BrandOther p4BrandBrand 1 p4BrandBrand 2 p4BrandBrand 3 p4BrandBrand 4
p4BrandOther p5BrandBrand 1 p5BrandBrand 2 p5BrandBrand 3 p5BrandBrand 4
p5BrandOther

The analysis proceeds in exactly the same manner seen many times previously.
ods exclude CensoredSummary;

ods output CensoredSummary=CS;

proc phreg data=coded;

model c*c(2) = & trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum) ;
run;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

179

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2575.101 2349.325
AIC 2575.101 2389.325
SBC 2575.101 2483.018

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 225.7752 20 <.0001
Score 218.4500 20 <.0001
Wald 190.0257 20 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > Chisg
Brand 1 1 1.24963 1.31259 0.9064 0.3411
Brand 2 1 -0.16269 1.38579 0.0138 0.9065
Brand 3 1 -3.90179 1.56511 6.2150 0.0127
Brand 4 1 2.49435 1.25537 3.9480 0.0469
Other 0 0 . . .
Brand 1 Price 1 0.51056 0.13178 15.0096 0.0001
Brand 2 Price 1 -0.04920 0.13411 0.1346 0.7137
Brand 3 Price 1 -0.27594 0.15517 3.1623 0.0754
Brand 4 Price 1 0.28951 0.12192 5.6389 0.0176
Other Price 0 0 . . .
Brand 1 on Brand 1 0 0 . . .
Brand 1 on Brand 2 1 0.51651 0.13675 14.2653 0.0002
Brand 1 on Brand 3 1 0.66122 0.15655 17.8397 <.0001
Brand 1 on Brand 4 1 0.32806 0.12664 6.7105 0.0096
Brand 1 on Other 0 0 . . .
Brand 2 on Brand 1 1 -0.39876 0.12832 9.6561 0.0019
Brand 2 on Brand 2 0 0 . . .
Brand 2 on Brand 3 1 -0.01755 0.15349 0.0131 0.9090
Brand 2 on Brand 4 1 -0.33802 0.12220 7.6512 0.0057
Brand 2 on Other 0 0 . . .
Brand 3 on Brand 1 1 -0.43868 0.13119 11.1823 0.0008
Brand 3 on Brand 2 1 -0.31541 0.13655 5.3356 0.0209
Brand 3 on Brand 3 0 0 . . .
Brand 3 on Brand 4 1 -0.54854 0.12528 19.1723 <.0001
Brand 3 on Other 0 0 . . .
Brand 4 on Brand 1 1 0.24398 0.12781 3.6443 0.0563
Brand 4 on Brand 2 1 -0.01214 0.13416 0.0082 0.9279
Brand 4 on Brand 3 1 0.40500 0.15285 7.0211 0.0081
Brand 4 on Brand 4 0 0 . . .
Brand 4 on Other 0 0 . . .
Other on Brand 1 0 0 . . .
Other on Brand 2 0 0 . . .
Other on Brand 3 0 0 . . .
Other on Brand 4 0 0 . . .
Other on Other 0 0 . . .

180

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
1 4 800 100.00 800 100.00

The results consist of:;

o four nonzero brand effects and a zero for the constant alternative
o four nonzero alternative-specific price effects and a zero for the constant aternative

e 5 x 5 = 25 cross effects, the number of alternatives squared, but only (5 — 1) x (5 — 2) = 12 of them are
nonzero (four brands not counting Other affecting each of the remaining three brands).

e Therearethree cross effects for the effect of Brand 1 on Brands 2, 3, and 4.
e Therearethree cross effects for the effect of Brand 2 on Brands 1, 3, and 4.
e There arethree cross effects for the effect of Brand 3 on Brands 1, 2, and 4.
e There are three cross effects for the effect of Brand 4 on Brands 1, 2, and 3.

All coefficients for the constant (other) alternative are zero as are the cross effects of a brand on itself.

Themother logit model isused to test for violationsof 11 A (independencefromirrelevant alternatives). 11A means
the odds of choosing aternative c; over ¢; do not depend on the other alternatives in the choice set. Ideally, this
more general model will not significantly explain more variation in choice than the restricted models. Also, if 1A
is satisfied, few if any of the cross-effect terms should be significantly different from zero. (See pages 175, 187,
301, and 305 for other discussions of 11A.) Inthis case, it appearsthat 1A is not satisfied (the data are artificial),
so the more general mother logit model is needed. The chi-square statistic is 2424.812 — 2349.325 = 75.487
with 20 — 8 = 12 df (p < 0.0001).

You could eliminate some of the zero parametersby changing zero=none to zero=’0ther’ and eliminating
p5 (p&m) from the model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero='Other’ separators='’ ' ') |
identity (price)
identity (pl-p4) *
class (brand / zero='Other’ separators=’'’ ' on ') / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’‘Price’
pl = ’'Brand 1’ p2 = ‘Brand 2’ p3 = ’'Brand 3’
p4 = 'Brand 4';
id subj set c;
run;

You could also eliminate the brand by price effects and instead capture brand by price effects as the cross effect
of avariable on itself.

181

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=’Other’ separators='’ '’ ')
identity (pl-p4) *
class (brand / zero='Other’ separators=’’ ' on ') / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’Price’
pl = ’'Brand 1’ p2 = ’‘Brand 2’ p3 = ’'Brand 3’
p4 'Brand 4’;
id subj set c;
run;

In both cases, the analysis (not shown) would be run in the usual manner. Except for the elimination of zero
terms, and in the second case, the change to capture the price effectsin the cross effects, the results are identical.

Aggregating the Data

Inall examplesso far (except the last part of the last vacation example), the data set has been created for analysis
with one stratum for each choice set and subject combination. Such data sets can be large. The data can aso be
arrayed with a frequency variable and each choice set forming a separate stratum. This exampleillustrates how.

title ’Brand Choice Example, Multinomial Logit Model’;
title2 ’'Aggregate Data’;

%let m = 5; /* Number of Brands in Each Choice Set (including Other) */

proc format;
value brand 1 = ’Brand 1’ 2 = ’'Brand 2’ 3 = 'Brand 3’ 4 = ’‘Brand 4’
5 'Other’;

run;

data price2;
array pl&m] pl-p&m; /* Prices for the Brands */
array fl[&m] fl-f&m; /* Frequency of Choice */

input pl-p&m fl-f&m;
keep set price brand freq c pl-p&m;

* Store choice set number to stratify;
Set = n ;

do Brand = 1 to &m;
Price = pl[brand];

* Output first choice: c=1, unchosen: c=2;
Freq = f[brand]l; ¢ = 1; output;

* Output number of times brand was not chosen.;
freq = sum(of fl-f&m) - freq; c = 2; output;

end;

format brand brand.;

182

datalines;

3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14

proc print data=price2 (obs=10);

var set c freq price brand;
run;

Brand Choice Example, Multinomial Logit Model
Aggregate Data

Obs Set c Freq Price Brand
1 1 1 4 3.99 Brand 1
2 1 2 96 3.99 Brand 1
3 1 1 29 5.99 Brand 2
4 1 2 71 5.99 Brand 2
5 1 1 16 3.99 Brand 3
6 1 2 84 3.99 Brand 3
7 1 1 42 5.99 Brand 4
8 1 2 58 5.99 Brand 4
9 1 1 9 4.99 Other

10 1 2 91 4.99 Other

This data set has 5 brands times 2 observations times 8 choice sets for a total of 80 observations, compared to
100 x 5 x 8 = 4000 using the standard method. Two observations are created for each alternative within each
choiceset. Thefirst contains the number of people who chose the alternative, and the second contains the number
of people who did not choose the alternative.

To analyze the data, specify strata Set and freq Freq.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’'Discrete Choice with Common Price Effect, Aggregate Data’;
model c*c(2) = & trgind / ties=breslow;
strata set;
freq freq;
run;

This step produced the following results.

183

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2
Frequency Variable Freq

Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 500 100 400

2 2 500 100 400

3 3 500 100 400

4 4 500 100 400

5 5 500 100 400

6 6 500 100 400

7 7 500 100 400

8 8 500 100 400
Total 4000 800 3200

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 9943.373 9793.486
AIC 9943.373 9803.486
SBC 9943.373 9826.909

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSsqg
Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001

Wald 142.9002 5 <.0001

184

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSqg
Brand 1 1 0.66727 0.12305 29.4065 <.0001
Brand 2 1 0.38503 0.12962 8.8235 0.0030
Brand 3 1 -0.15955 0.14725 1.1740 0.2786
Brand 4 1 0.98964 0.11720 71.2993 <.0001
Other 0 0 . . .
Price 1 0.14966 0.04406 11.5379 0.0007

The summary table is small with eight rows, one row per choice set. Each row represents 100 chosen alternatives
and 400 unchosen. The “Analysis of Maximum Likelihood Estimates’ table exactly matches the one produced
by the standard analysis. The-2 LOG L statistics are different than those seen before, 9793.486 now compared
to 2425.214 previoudly. Thisis because the data are arrayed in this example so that the partia likelihood of the
proportional hazards model fit by PROC PHREG with the ties=breslow optionisnow proportional to — not
identical to — the likelihood for the choice model. However, the Model Chi-Square statistics, df, and p-values
are the same as before. The two corresponding pairs of -2 LOG L’s differ by a constant 9943.373 — 2575.101 =
9793.486 — 2425.214 = 7368.272 = 2 x 800 x log(100). Sincethe x? isthe-2 LOG L without covariates minus
-2 LOG L with covariates, the constants cancel and the x 2 test is correct for both methods.

The technique of aggregating the data and using a frequency variable can be used for other models as well, for
example with brand by price effects.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none separators='’ ' ') |
identity(price) / lprefix=0;
output out=coded(drop= type name intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’'Discrete Choice with Brand by Price Effects, Aggregate Data’;
model c*c(2) = & trgind / ties=breslow;
strata set;
freq freq;
run;

This step produced the following results. The only thing that changes from the analysiswith one stratum for each
subject and choice set combination is the likelihood.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Freq

Ties Handling BRESLOW

185

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 500 100 400

2 2 500 100 400

3 3 500 100 400

4 4 500 100 400

5 5 500 100 400

6 6 500 100 400

7 7 500 100 400

8 8 500 100 400
Total 4000 800 3200

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 9943.373 9793.084
AIC 9943.373 9809.084
SBC 9943.373 9846.561

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSqg
Likelihood Ratio 150.2891 8 <.0001
Score 154.2562 8 <.0001
Wald 143.1425 8 <.0001

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > Chisg
Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .
Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0 . . .

Previously, with one stratum per choi ce set within subject, we compared these modelsasfollows: “ Thedifference
2425.214 — 2424.812 = 0.402 is distributed 2 with 8 — 5 = 3 df and is not Statistically significant.” The
difference between two —2 log(L ¢)’s equal s the difference between two —2 log(L g)’s, since the constant terms

186
(800 x log(100)) cancel, 9793.486 — 9793.084 = 2425.214 — 2424.812 = 0.402.

Choice and Breslow Likelihood Comparison

This section explains why the -2 LOG L values differ by a constant with aggregate data versus individual data.
It may be skipped by all but the most dedicated readers.

Consider the choice model with a common price slope. Let z o represent the price of the brand. Let 21, 22, z3,
and z4 be indicator variables representing the choice of brands. Let x = (z¢ z1 z2 x3 z4) be the vector of
alternative attributes. (A sixth element for “Other” is omitted, since its parameter is always zero given the other
brands.)

Consider the first choice set. There are five distinct vectors of alternative attributes
x;=(3.991000) =x2=(5990100) x3=(3.990010) x4=1(5990001)
x5 =(4.990000)

The vector x-, for example, represents choice of Brand 2, and x 5 represents the choice of Other. One hundred
individuals were asked to choose one of them = 5 brands from each of the eight sets. Let f1, fs, f3, f1, and f5
be the number of times each brand was chosen. For thefirst choice set, f1 = 4, fo = 29, f3 = 16, f4 = 42, and
f5 = 9. Let N bethe total frequency for each choice set, N = E?:l f; = 100. Thelikelihood L for the first
choice set datais

exp ((2?21 fjxj) ﬁ)
S e

1 =
Thejoint likelihood for all eight choice sets is the product of the likelihoods
8
Le=]]Lf
k=1

The Breslow likelihood for this example, L2, for the kth choice set, is the same as the likelihood for the choice
model, except for a multiplicative constant.

L = NVL§ =100 L}

Therefore, the Breslow likelihood for all eight choice setsis
8
Lp=]]LE =N"NLo=100"%"Le
k=1

Thetwo likelihoods are not exactly the same, because each choice set is designated as a separate stratum, instead
of each choice set within each subject.

Thelog likelihood for the choice model is

log(£Lc) = 800 x log(100) + log(Lp),
log(Lc) = 800 x log(100) + (—0.5) x 9793.486,
log(Lc) = —1212.607

and —2log(L¢) = 2425.214, which matches the earlier output. However, it is usually not necessary to obtain
thisvalue.

187

Food Product Example with Asymmetry and
Availability Cross Effects

This is the choice example from Kuhfeld, Tobias, and Garratt (1994). Consider the problem of using a discrete
choice modél to study the effect of introducing aretail food product. This may be useful, for instance, to refine a
marketing plan or to optimize aproduct prior to test market. A typical brand team will have several concernssuch
as knowing the potential market share for the product, examining the source of volume, and providing guidance
for pricing and promotions. The brand team may also want to know what brand attributes have competitive clout
and want to identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen entrees.
The client has one nationally branded competitor, aregional competitor in each of three regions, and a profusion
of private label products at the grocery chain level. The product may comein two different forms: stove-top or
microwaveable. The client believes that the private labels are very likely to mimic this line extension and to sell
it at alower price. The client suspects that this strategy on the part of private labels may work for the stove-top
version but not for the microwaveable, where they have the edge on perceived quality. They also want to test the
effect of a shelf-talker that will draw attention to their product.

The Multinomial Logit Model

This problem may be set up as a discrete choice model in which a respondent’s choice among brands, given
choice set C, of available brands, will correspond to the brand with the highest utility. For each brand 7, the
utility U; is the sum of a systematic component V; and a random component e;. The probability of choosing
brand ¢ from choice set C,, istherefore:

P(i|C.) = P(Us > max(U)) = P(Vi + e > max(V; +¢) V (j #1) € Cl

Assuming that the e; follow an extreme value type | distribution, the conditional probabilities P(i|C,) can be
found using the multinomial logit (MNL) formulation of McFadden (1974)

P(i|Ca) = exp(Vi)/ Ljec, exp(V5)

One of the consequences of the MNL formulation is the property of independence from irrelevant alternatives
(I1A). Under the assumption of I1A, al cross effects are assumed to be equal, so that if abrand gainsin utility, it

draws share from all other brands in proportion to their current shares. Departures from 1A exist when certain

subsets of brands are in more direct competition and tend to draw a disproportionate amount of share from each

other than from other membersin the category. One way to capture departuresfrom I1A isto use the mother logit

formulation of McFadden (1974). In these models, the utility for brand ¢ is a function of both the attributes of

brand 7 and the attributes of other brands. The effect of one brand’s attributes on another is termed a cross effect.

In the case of designs in which only subsets C', of the full shelf set C' appear, the effect of the presence/absence
of one brand on the utility of another istermed an availability cross effect. (See pages 175, 180, 301, and 305 for

other discussions of 11A.)

St Up

In the frozen entree example, there are five dternatives: the client, the client’s line extension, a national branded
competitor, aregiona brand and a private label brand. Several regional and private labels can be tested in each
market, then aggregated for the final model. Note that the line extension is treated as a separate alternative rather
than asalevel of the client brand. Thisenables usto model the source of volumefor the new entry and to quantify
any cannibalization that occurs. Each brand is shown at either two or three price points. Additional price points
areincluded so that quadratic models of price elasticity may be tested. The indicator for the presence or absence

188

of a brand in the shelf set is coded using one level of the Price variable. The layout of factors and levelsis
given in the following table.

Factorsand Levels

Alternative Factor Levels Brand Description
1 X1 4 Client 3 prices + absent
2 X2 4 Client Line Extension 3 prices + absent
X3 2 microwave/stove-top
X4 2 shelf-talker yes/no
3 X5 3 Regional 2 prices + absent
4 X6 3 Private Label 2 prices + absent
X7 2 microwave/stove-top
5 X8 3 Competitor 2 prices + absent

In addition to intercepts and main effects, we also require that all two-way interactions within alternatives be
estimable: x2*x3, x2*x4, x3*x4 fortheline extension and x6*x7 for private labels. Thiswill enable us
to test for different price elaticities by form (stove-top versus microwaveable) and to see if the promotion works
better combined with alow price or with different forms. Using alinear model for x1 -x8, the total number of
parametersincluding the intercept, all main effects, and two-way interactionswith brand is 25. This assumes that
priceistreated as qualitative. The actual number of parametersin the choice model is larger than this because of
theinclusion of cross effects. Using indicator variables to code availability, the systematic component of utility
for brand 7 can be expressed as:

Vi=ai+ 3 (bir X mir) + 3254, 2 (dij + 32, (gij0 X z51))
where

a; =intercept for brand i

by, = effect of attribute & for brand i, wherek =1, .., K;

zir, = level of attribute £ for brand

d;; = availability crosseffect of brand j on brand :

1 ifjedC,,

0 otherwise

gij1 = cross effect of attribute ! for brand j on brand ¢, wherel! =1, .., L ;
zj = level of attribute for brand j.

z; = availability code =

The z;; and z;; might be expanded to include interaction and polynomial terms. In an availability-cross-effects
design, each brand is present in only afraction of choice sets. The size of thisfraction or subdesignis afunction
of the number of levels of the aternative-specific variable that is used to code availability (usualy price). For
instance, if price has three valid levels and a fourth zero level to indicate absence, then the brand will appear in
only three out of four runs. Following Lazari and Anderson (1994), the size of each subdesign determines how
many model equations can be written for each brand in the discrete choice model. If X ; is the subdesign matrix
corresponding to V;, then each X; must be full rank to ensure that the choi ce set design provides estimates for all
parameters.

To create the design, a full-factorial candidate set is generated consisting of 3456 runs. It is then reduced to 2776
runs that contain between two and four brands so that the respondent is never required to compare more than

189

four brands at atime. In the algorithm model specification, we designate al variables as classification variables
and require that all main effects and two-way interactionswithin brands be estimable. The number of runsto use
follows from a calculation of the number of parameters that we wish to estimate in the various submatrices X ;
of X. Assuming that there is a None alternative used as areference level, the numbers of parameters required for
various aternatives are shown in the next table along with the size of submatrices (rounded down) for various
numbers of runs. Parameters for quadratic price models are given in parentheses. Note that the effect of private
label being in a microwaveable or stove-top form (stove/micro cross effect) is an explicit parameter under the
client line extension.

Parameters

Client Private
Effect Client Line Extension Regional Label Competitor
intercept 1 1 1 1 1
availability cross effects 4 4 4 4 4
direct price effect 12 12 1 1 1
price cross effects 4(8) 4(8) 4 4 4
stove versus microwave - 1 - 1 -
stove/micro cross effects - 1 - - -
shelf-talker - 1 - - -
price* stove/microwave - 1(2 - 1 -
price* shelf-talker - 1(2 - - -
stove/micro*shelf-talker - 1 - - -
Total 10(15) 16(23) 10 12 10
Subdesign size
22 runs 16 16 14 14 14
26 runs 19 19 17 17 17
32 runs 24 24 21 21 21

The subdesign sizes are computed by taking the floor of the number of runs from the marginal times the expected
proportion of runs in which the alternative will appear. For example, for the client brand which has three prices
and not available and 22 runs, floor(22 x 3/4) = 16; for the competitor and 32 runs, floor(32 x 2/3) = 21. The
number of runs chosen wasn=26. This number provides adequate degrees of freedom for the linear price model
and will also allow estimation of direct quadratic price effects. To estimate quadratic cross effectsfor price would
require 32 runs at the very least. Although the technique of using two-way interactions between nominal level
variableswill usually guaranteethat all direct and cross effects are estimable, it is sometimes necessary and good
practice to check the ranks of the submatrices for more complex models (Lazari and Anderson 1994).

Designing the Choice Experiment

We will use the %MKTDES autocall macro to create the design. (All of the autocall macros used in this report
are documented starting on page 261.) We will start by trying small candidate sets first, as we did in the other
examples. The following code shows our first attempt at finding an efficient design.

title ’Consumer Food Product Example’;

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

190

Theoption factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3 namesx1 and x2 asfour-level factors,
x3, x4, and x7 as two-level factors, and x5, x6 and x8 as three-level factors. The number of choice sets is
n=26. Theoption interact=x2*x3 x2*x4 x3*x4 x6*x7 names the two-way interactions of interest.
The option procopts=seed=7654321 names the random number seed. This example also uses awhere=
option that we have not seen in previous examples. Thewhere= option is used to exclude certain combinations
from the candidate set.

Each of the price variables, x1, x2, x5, x6, and x8, has one level — the maximum level — that indicates the
alternative is not available in the choice set. The goal is to create choice sets with either 2, 3, or 4 aternatives
available. If (x1 < 4) then the first dternative is available, if (x2 < 4) then the second aternative is
available, if (x5 < 3) thenthethird alternative is available, and so on. The Booleanterm (x1 < 4) isone
when x1 isless than 4 and zero otherwise. Hence,

((x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3)) isthe number of available al-
ternatives. The where= option keeps all of the choice sets in which either 2, 3, or 4 alternatives are available.
The value of the where= option must be avalid SAS System where clause. This step does not work. PROC
OPTEX exits with the messages:

ERROR: Can’t estimate the model parameters from the given candidates.
ERROR: No design to output.

The problem is the candidate set had only 64 runs before the exclusions and only 48 after. The exclusions were
severe enough that it is not possible from this candidate set to create a design in 26 runsin which all effectsare
estimable. Asin previous examples, we can try different sizes and a two-step process.

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, size=1024,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, size=2048,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

%$mktdes (factors=x1 x2=4 x3 x4 x7=2, run=factex, step=1l, size=64,
interact=x2*x3 x2*x4 x3*x4)
%mktdes (factors=x5 x6 x8=3, n=26, run=factex optex, step=2, size=27,
otherint=x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

The second step produces a design with D-efficiency=82.2623. Since the full-factorial design has 3,456 runs for
this problem, it is reasonableto try it. We specify big=5000, a number larger than the size of the full-factorial
so that the macro will use PROC PLAN to create the full factorial instead of PROC FACTEX.

title ’Consumer Food Product Example’;

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
interact=x2*x3 x2*x4 x3*x4 x6%*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

After exclusions, the candidate set has 2776 runs. This size, while well within the reasonable range is large
enough that local optima will likely be a problem. That is, PROC OPTEX will have a tough time finding the
optimal design, although as always, we would expect it to come very close very quickly. The PROC PLAN step
took less than a second, and the PROC OPTEX step took about 28 seconds to create 10 designs.

191

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 83.7773 68.5707 60.5171 1.1782
2 83.5351 66.5636 56.3773 1.1973
3 83.4898 66.6937 53.3434 1.1887
4 83.0419 66.7546 57.1022 1.1854
5 82.9902 67.1331 58.7965 1.1883

When You Have a Long Time to Search for an Efficient Design

With a moderate to large candidate set such as this one, it is likely that we can do better with more iterations.
The next steps show how to repeatedly run PROC OPTEX from a macro, each time with a different (clock
determined) seed. Thisjob is run in batch over lunch, overnight, or over the weekend. First, the %MK TDES
macro is run once to create the candidate set. The ad hoc macro %DOIT runs PROC OPTEX up to 10,000 times.
Each time, the best efficiency found so far and the random number seed used to find it are reported and stored.

%$mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
run=plan)

%macro doit;
%let best 0;
%let seed = 5;

%do i = 1 %to 10000;

title "&i"; %put &i;

proc optex data=Candl seed=&seed;
ods output efficiencies=e;
class x1 x2 x3 x4 x5 x6 x7 x8 / param=orthref;
model x1 x2 x3 x4 x5 x6 x7 x8 x2*x3 x2*x4 x3*x4 x6*x7;
generate n=26 iter=20 keep=1 method=m federov;
output out=Design;
run; quit;

data null ;
set e;
if DCriterion > &best then do;
call symput(’best’, put(DCriterion, 8.4));
call symput (’bestseed’, symget(’seed’));
end;
seed = abs(le6 * (le-5 + time() - floor(time())));
call symput(’seed’, compress(put(seed, 12.0)));
run;

data sasuser.results;
DCriterion = &best;
Seed = &bestseed;
run;

192

%$put seed=&seed, best=&best, best seed=&bestseed;
%end;

%$mend ;

%doit

The macro variable Bes t, the best efficiency found, isinitialized to zero. The random number seed isinitiaized
to an arbitrary value, in this case 5. The macro do loop loops over the PROC OPTEX step and the DATA steps
that report and store the results. The PROC OPTEX code came from copying the code that the macro wrote,
modifying the random number seed to use a macro variable and modifying iter= and keep= to iterate 20
times and report the best design. In addition, an ods output efficiencies=e Statement is added so the
efficiency of the best design will be availablein a SAS data set.

The data _null_ step reads the D-efficiency for the latest PROC OPTEX step, and if it is better than the
previous best, stores it in a macro variable along with the random number seed. This step also generates a
new random number seed from the clock time. Finally, the results are stored in a permanent SAS data set
SASUSER.RESULTS. This approach is preferred over simply specifying something like iter= 100000 with
PROC OPTEX because intermediate results are quickly available. If there is a power failure or other problem
whilethejob runs, you should still get useful information. On some operating systems, you can even monitor the
progress of the job. If this macro was stored in afilemacro. sas and run by typing sas macro.sas, then
theresults are in the filesmacro.1lst andmacro. log. For example, on awork station running UNIX, you
can look at thesefiles asthejob is running. Since clock timeis used to make random number seeds, these results
will not exactly be reproduced if this same codeisrun again.

Looking at the end of thelist file, we find the maximum efficiency of 85.3985in run 9576 of PROC OPTEX. The
next table shows the PROC OPTEX run where the best efficiency changed and the percent improvement. This
table shows efficiency ranging from the best D-efficiency found in thefirst 20 iterationsto the largest D-efficiency
found anywhere.

PROC

OPTEX Percent
Run | D-Efficiency | Improvement

1 83.8959
2 83.9890 0.11%
3 84.3763 0.46%
6 84.7548 0.45%
84 85.1561 0.47%
1535 85.3298 0.20%
9576 85.3985 0.08%

This example is interesting because it shows the diminishing value of increasing numbers of iterations. PROC
OPTEX was run 10,000 times over the winter holiday vacation, from December 22 through January 2, creating
atotal of 200,000 designs. Six minutes into the search, in the first six passes through the macro (6 x 20 = 120
total iterations), we find a design with reasonably good D-efficiency=84.7548. Over an hour into the search, with
(84 —6) x 20 = 1560 moreiterations, we get asmall 0.47% increasein efficiency to 85.1561. About one day into
the search, with (1535 — 84) x 20 = 29, 020 more iterations, we get another small 0.20% increasein efficiency,
85.3298. Finally, almost a week into the search, with (9576 — 1535) x 20 = 160, 820 more iterations, we get
another small 0.08% increase in efficiency to 85.3985. Our overall improvement above the best design found in
120 iterations was 0.75952%, about three-quarters of a percent. These numberswill change with other problems
and other seeds. However, as these results show, usualy the first few iterations will give you a good, efficient
design, and usually, subsequent iterations will give you dight improvements but with a cost of much greater run
times.

193

data; input n e; datalines;

1 83.8959
2 83.9890
3 84.3763
6 84.7548

84 85.1561

1535 85.3298

9576 85.3985

proc gplot;

title 'Maximum D-Efficiency Found Over Time’;
plot e * n / vaxis=axisl;
symbol i=join;
axisl order=(0 to 90 by 10);
run; quit;

The plot of maximum D-efficiency as a function of PROC OPTEX run number clearly shows that the gain is
slight over increased iterations.

Maximum D —Efficiency Found Over Time

e
907

807

707

60

507

401

307

201

107

0

IRAREEEERL) IRAREEEEEL IRREREREES IRARERERRL IRAREEEESL T
0 2000 4000 6000 8000 10000

Recreating the Best Design

From the log file or from looking at SASUSER.RESULTS we see that the most efficient design was found with
seed=41611.

title ’Consumer Food Product Example’;

proc print data=sasuser.results; run;

Consumer Food Product Example
Obs DCriterion Seed

1 85.3985 41611

This design can be recreated by explicitly specifying this seed.

194

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
out=sasuser.choicdes,
interact=x2*x3 x2*x4 x3*x4 x6%*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=41611, iter=20, keep=1)

The PROC OPTEX step took 57 seconds and produced the following results.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 85.3985 71.4573 63.7881 1.1461

Examining the Design
Here is the code that prints the frequency of occurrence of each level and each two-way interaction.

proc summary data=sasuser.choicdes;
class all ;
ways 1 8;
output out=sum;
run;

proc print; by type ; run;

proc freq data=sasuser.choicdes;
tables x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
run;

Here are the results, summarized in atable.

Level | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X2by X3 | X2by X4 | X3 by X4 | X6 by X7

1 7 6| 13| 13| 10 7] 14 913 3|3 3|6 74
2 6 6| 13| 13 9 9| 12 713 3|3 3|7 6 |4
3 7 6 71| 10 10 | 3 313 3 6
4 6 8 4 414 4

195

Examining the Submatrices

We mentioned previoudly, “it is sometimes necessary and good practice to check the ranks of the submatrices for
more complex models (Lazari and Anderson 1994).” Hereis away to do that. For convenience, we use a macro
since PROC OPTEX must berun five times, once per alternative, with only achangein thewhere statement. We
need to evaluate the design when the client’s alternative is available (x1 ne 4), whenthe client line extension
aternativeis available (x2 ne 4), when the regional competitor is available (x5 ne 3), when the private
label competitor is available (x6 ne 3), and when the national competitor is available (x8 ne 3). Weuse
the samemodel statement as before but not the same class statement. This is because we only have enough
runs to consider linear price effects within each availability group. Hence, the price variables are no longer
designated class.

%macro evaleff (where);
proc optex data=sasuser.choicdes;
class x3 x4 x7 / param=orthref;
model x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
generate method=sequential initdesign=sasuser.choicdes;
where &where;
run; quit;
%$mend;

%evaleff (x1 ne 4)
%evaleff (x2 ne 4)
%evaleff (x5 ne 3)
%evaleff (x6 ne 3)
%evaleff (x8 ne 3)

Each PROC OPTEX step took just over two seconds. We hope to not see any efficiencies of zero, and we hopeto
not get the message WARNING: Can’t estimate model parameters in the final design.
Here are the results.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 62.3892 38.6926 91.6206 0.8062
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 62.6819 40.2703 86.9954 0.8498
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 66.9433 49.6260 85.7154 0.8272

196

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 73.0870 57.7546 90.5666 0.9014
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 58.6329 38.7890 90.8714 0.9014

Examining the Information and Variance Matrices

It is also a good idea to look at the information and variance matrices. This is done by adding the statement
examine i v toany PROC OPTEX run.

proc optex data=sasuser.choicdes;
class x3 x4 x7 / param=orthref;
model x1-x8 x2*x3 x2*x4 x3*x4 X6*x7;
generate method=sequential initdesign=sasuser.choicdes;
where x1 ne 4;
examine i v;
run; quit;

In theinterest of space, only some of the results are shown.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 62.3892 38.6926 91.6206 0.8062
Consumer Food Product Example
The OPTEX Procedure
Examining Design Number 1
Log determinant of the information matrix 3.2811E+01
Maximum prediction variance over candidates 0.7743
Average prediction variance over candidates 0.6500
Average variance of coefficients 0.1292
D-Efficiency 62.3892

A-Efficiency 38.6926

Information Matrix

Intercept x

Intercept 20.0 0.
x1 0.0 14.
x2 1.3 2.
x3 0.0 2.
x4 0.0 2.
x5 -2.0 2.
x6 2.0 0.
x7 0.0 -2.
x8 2.0 -3.
x2*x3 0.0 4.
x2*x4 0.0 0.
x3*x4 0.0 0.
x6*x7 0.0 -2.
Intercept x1

Intercept 0.0639 -0.0040

x1 -0.0040 0.0913

x2 -0.0687 0.0037

x3 -0.0005 -0.0044

x4 -0.0074 -0.0083

x5 0.0131 -0.0168

x6 -0.0334 0.0001

x7 -0.0380 0.0137

x8 -0.0464 0.0207

X2*x3 -0.0090 -0.0289

x2*x4 0.0003 0.0071

x3*x4 -0.0054 0.0005

xX6*x7 -0.0019 0.0111

»
w

1 x2
0 1.3 0.
0 2.0 2.
0 11.1 0.
0 0.0 20.
0 0.0 0.
0 0.7 2.
0 -4.7 0.
0 -8.0 0.
0 -4.7 0.
0 0.0 1.
0 0.0 0.
0 0.0 0.
0 0.0 -2.
Variance Matrix
x2 x3
-0.0687 -0.0005
0.0037 -0.0044
0.4145 -0.0004
-0.0004 0.0522
0.0410 -0.0014
-0.0297 -0.0070
0.1582 0.0007
0.2157 -0.0012
0.2223 -0.0025
0.0513 -0.0052
-0.0044 -0.0002
0.0278 0.0028
0.0044 0.0069

O OO WOoOOoOOoOOoOOoOOoOOoOoOoo

¥
K

N

NoORrRoOoObMOODMOOONDNO
e e e e . e e e e e

x4

.0074
.0083
.0410
.0014
.0605
.0063
.0134
.0232
.0397
.0135
.0053
.0054
.0073

.)
O O WOoOOoOOoOOoOOoOOoOOoOOoOOoOo

W

x5

.0131
-0.
-0.
-0.
.0063
.0819
-0.
-0.
-0.
.0083
-0.
-0.
.0006

0168
0297
0070

0087
0194
0205

0085
0084

e e e e e e e e e e e e
OO NJOOOoOOoOOoOOoONoo

ul

O OO 0O O0OO0OO0OO0OO0OOoOOoOOoOOo

»
)

x6

.0334
.0001
.1582
.0007
.0134
.0087
.1482
.0851
.0717
.0197
.0154
.0431
.0111

e e e e e e e e s e e e e
O OWOoOOoOO0OO0OOoOOoOOoOSNOoOOo

197

Examining the Aliasing Structure

It isalso good to look at the aliasing structure of the design. We use PROC GLM to do this, so we must create a
dependent variable. We will use a constant Y=1. The first PROC GLM step just checks the model to make sure
none of the specified effects are aliased with each other. This step is not necessary since our D-efficiency value
greater than zero already guaranteesthis.

data temp;
set sasuser.choicdes;
y = 1;
run;

proc glm data=temp;

model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7 / e aliasing;

run;

Here are the results, ignoring the ANOVA and regression tables, which are not of interest. Each of theselinesis

198

alinear combination that is estimable. It issimply alist of the effects.

Intercept
x1

x2

x3

x4

x5

x6

x7

x8
x2*x3
x2*x4
x3*x4

Contrast this with a specification that includes all simple effects and two-way interactions. We specify the model
of interest first, so all of thosetermswill belisted first, then we specify al main effects and two-factor interactions
using the notation x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8@2. Thislist will generate all of the effects of interest, x1 -
x8 x2*x3 x2*x4 x3*x4 x6*x7, and al the other two-way interactions, but that is not a problem since
PROC GLM automatically eliminates duplicate terms.

proc glm data=temp;
model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7
x1|x2|x3|x4|x5|x6|x7|x8@2 / e aliasing;
run;

Intercept - 7.2928*x2*x7 + 3.9403*x3*x7 - 3.8348%*x4*x7 + 8.943*x5*x7 -
3.5093*x1*x8 - 10.789%x2*x8 - 3.0971*x3*x8 - 2.6715*%x4*x8 - 3.4108*x5*x8 -
1.2232*x6*x8 - 14.437*x7*x8

X1l - 1.4634*x2*x7 + 1.8795*x3*x7 - 3.7098*x4*x7 + 6.1087*x5*x7 - 1.5265*x1*x8 +
4.388*%x2*x8 + 0.9191*x3*x8 - 0.2793*x4*x8 + 1.8472*x5*x8 + 0.816*xX6*x8 -
8.4327*x7*x8

X2 + 2.2518*x2*x7 - 0.5586*x3*x7 + 1.8045*x4*x7 - 2.6429*x5*x7 + 5.345*x1*x8 +
0.8605*x2*x8 + 1.722*x3*x8 + 0.425*x4*x8 + 0.0336*x5*x8 + 1.2263*x6*x8 +
2.7259*x7*x8

x2*x3 - 0.355%x2*x7 + 0.4404*x3*x7 - 0.9841*x4*x7 + 0.6352*x5*x7 - 2.0611*x1*x8
- 0.1886*x2*x8 - 0.4661*x3*x8 - 0.3117*x4*x8 + 0.8003*x5*x8 + 0.2153*x6*x8 -
1.1787*x7*x8

x2*x4 + 0.1913*x2*x7 + 0.2884*x3*x7 + 1.2156*x4*x7 - 0.3771*x5*x7 + 2.5548*x1*x8
+ 1.365*x2*x8 + 0.4744*x3*x8 + 0.2408*x4*x8 + 0.0595*x5*x8 - 0.7713*x6*x8 +
1.219*x7*x8

Again, we havealist of linear combinationsthat are estimable. This shows that the I ntercept cannot be estimated
independently of the x2*x7 interaction, the x3*x7 interaction, the x4*x7 interaction, ..., and the x7*x8
interaction. Similarly, x1 is confounded with lots of two way interactions, and so on. Thisis why we want to
be estimabl e the two-way interactions between factors that are combined to create an attribute. We did not want
something like x2*x3, the client-line extension’s price and microwave/stove top interaction to be confounded
with say another brand's price.

199

The Final Design

This code creates the final choice design, stored in SASUSER.FINCHDES, sorted by the shelf-talker variable,
and randomized within shelf talker.

proc format;

value £1 1 = ’$1.29’ 2 = '$1.69’ 3 = ’$2.09’ 4 = 'N/A’;
value f2 1 r$1.39" 2 ’$1.89’ 3 = $2.39’ 4 = 'N/A’;
value £3 1 = ’'micro’ 2 = ’'stove’;

value £5_ 1 = ’$1.99’ 2 = ’$2.49’ 3 = 'N/A’;

value £6 1 = ’$1.49’ 2 = '$2.29’ 3 = 'N/A’;

value £8 1 = ’$1.99’ 2 = "$2.39’ 3 = 'N/A’;

value yn 1 = ’'Yes’ 2 'No’ ;

run;

data choicdes;
length bl-b5 $ 12;
set sasuser.choicdes;
r = uniform(7); /* for randomization within shelf talker */
bl = put(xl,£fl1 .);
b2 = put(x2,£f2_.);
if b2 ne 'N/A’ then b2
b3 = put(x5,£f5 .);
b4 = put(x6,£6_.);
if b4 ne 'N/A’ then b4 = trim(b4)||’/’||put(x7,£3_.);
b5 = put(x8,£f8 .);
label bl = ’‘Client Brand’
b2 = ’Client Line Extension’
b3 = 'Regional Brand’

trim(b2) ||/’ | |put(x3,£3 .);

b4 = ’'Private Label’
b5 = 'National Competitor’
x4 = ’'Shelf Talker’;

format x4 yn.;
run;

proc sort out=sasuser.finchdes (drop=r); by descending x4 r; run;

proc print label; var b:; by descending x4; run;

Hereisthe design.

Consumer Food Product Example

Client Client Line Regional Private National
Obs Brand Extension Brand Label Competitor

1 $1.29 $1.89/micro $1.99 N/A $1.99

2 $1.29 $1.39/stove $1.99 $2.29/micro N/A

3 $2.09 $2.39/micro $1.99 $2.29/stove N/A

4 $1.69 N/A $1.99 $1.49/stove $2.39

5 $1.29 N/A N/A $2.29/stove N/A

6 $2.09 $1.89/stove $2.49 N/A N/A

7 N/A $1.39/micro $2.49 $2.29/stove $2.39

8 N/A N/A $1.99 $2.29/micro N/A

9 N/A $2.39/stove $2.49 N/A $1.99
10 $2.09 N/A $2.49 $1.49/micro $1.99
11 $1.69 $1.39/micro N/A N/A N/A
12 $1.29 $2.39/micro N/A N/A $2.39
13 $1.69 $1.89/stove N/A $1.49/micro $2.39

Client Client Line Regional Private National
Obs Brand Extension Brand Label Competitor

14 $1.69 N/A $1.99 $2.29/stove $2.39
15 N/A N/A $1.99 $1.49/micro N/A

16 $2.09 $2.39/stove $1.99 N/A $1.99
17 N/A $1.39/stove N/A $2.29/stove $1.99
18 $2.09 $1.89/micro N/A $2.29/micro $2.39
19 $1.69 N/A $2.49 $2.29/micro $1.99
20 $2.09 N/A N/A $1.49/stove $1.99
21 N/A $2.39/micro $2.49 N/A $1.99
22 $1.29 $2.39/stove $2.49 $1.49/stove N/A

23 $1.69 $1.89/micro $2.49 N/A N/A

24 $1.29 $1.89/stove $1.99 N/A $1.99
25 $1.29 $1.39/micro $1.99 $1.49/micro N/A

26 $2.09 $1.39/stove $2.49 N/A $2.39

One issue remains to be resolved regarding this design and that concerns the role of the shelf-talker when the
client line extension is not available. The second block of the design consists of choice sets in which the shelf-
talker is present and calls attention to the client line extension. However, in four of those choice sets, the client
line extension is unavailable. This problem can be handled in several ways. Here are a few:

¢ Rerun the design creation and evaluation programs excluding all choice sets with shelf-talker present and
client line extension unavailable. However, this requires changing the model because the excluded cell
will make unestimable the interaction between client-line-extension price and shelf-talker. Furthermore,
the shelf-talker variable will almost certainly no longer be balanced. In fact our best design when we tried
this (not shown) had the shelf-talker in only 10 of 26 choice sets.

e Move the choice sets with client line extension unavailable to the no-shelf-talker block and rerandomize.
Then the shelf-talker is on for al of the last nine choice sets.

o L et the shelf-talker go on and off as needed.
e Let the shelf-talker call attention to a brand that happens to be out of stock. It is easy to imagine this
happening in areal store.

Other options are available as well. No one approach is obviously superior to the alternatives. For this example,
we will take the latter approach and allow the shelf-talker to be on even when the client line extension is not
available. Note that if the shelf-talker is turned off when the client line extension is not available then the design
must be manually modified to reflect this fact.

Generating Artificial Data
This DATA step generates some artificial data.

%let m = 6;
%let mml = %eval(&m - 1);
%let n = 26;

data null ;
array brands[&m] temporary (5 7 1 2 3 -2);
array ul&m];
do rep = 1 to 300;
if mod(rep, 2) then put;
put rep 3. +2 @@;

do j =1

to &n;

set sasuser.finchdes point=j;
do brand = 1 to &m;

u[brand] = brands[brand] + 2 * normal(7);
end;
if x4 = 1 then u2 = u2 + 1; /* shelf-talker */
if x3 = 1 then u2 = u2 + 1; /* microwave */
if x7 = 1 then u4 = u4 + 1; /* microwave */
* pull prices out of the formats;
if x1 ne 4 then ul = ul - input(substr(put(xl,fl .),2),4.);
else ul = .;
if x2 ne 4 then u2 = u2 - input(substr(put(x2,£f2 .),2),4.);
else u2 = .;
if x5 ne 3 then u3 = u3 - input(substr(put(x5,£f5 .),2),4.);
else u3 = .;
if x6 ne 3 then u4 = u4 - input(substr(put(x6,£f6 .),2),4.);
else u4 = .;
if x8 ne 3 then u5 = u5 - input(substr(put(x8,£8 .),2),4.);
else u5 = .;

* Choose the most preferred alternative.;
m = max (of ul-ué&m);

n(ul) and
if n(u2) and
if n(u3) and
if n(u4) and
if n(u5) and

if
else
else
else
else
else
put +
end;
end;
stop;
run;

(-1) c ee;

This DATA step reads the data.

data results;

1
3
5

.

.

input Subj
datalines;

abs (ul
abs (u2
abs (u3
abs (u4
abs (u5

(choosel-choose&n)

22251224212125422245212222
22251123512221422216222121
22211223552225422241222222

(

2
4
6

297 22441223242211322214221122 298
299 52211224242251422211212122 300

7

- m) < le-4 then c = 1;
- m) < le-4 then ¢ = 2;
- m) < le-4 then c = 3;
- m) < le-4 then c = 4;
- m) < le-4 then c = 5;

c = 6;
1.) ee;

51111224232221622211222522
11211224242215422211222212
12211224252211425214222122

22251224512221422245222112
22211224262221422251222212

201

202

Processing the Data

The analysis proceeds in a fashion similar to before. For analysis, the design will have four factors as shown
by the variablesin the data set KEY. Brand is the alternative name; its values are directly read from the KEY
in-stream data. Price is an attribute whose values will be constructed from the factors x1, x2, x5, x6, and
x8 in SASUSER.FINCHDES data set. Micro, the microwave factor,is constructed from x3 for the client line
extension and x7 for the private label. Shel£, the shelf talker factor, is created from x4 for the extension.

data key;
input Brand $ 1-10 (Price Micro Shelf) (%);
datalines;

Client x1 .

Extension x2 x3 x4

Regional x5 .

Private x6 x7
National x8 .
None

The Price factors are different for each alternative. Therefore, we will map the factors in the design from

valuesof 1, 2, ... directly to prices before acommon pricefactor is created. Not availablewill be coded asaprice
of zero.

proc format;

value pl 1 = "1.29' 2 = "1.69’ 3 = '2.09" 4 = '0’';
value p2 1 = “1.39’ 2 = "1.89’ 3 = "2.39" 4 = '0’';
value p5 1 = ’1.99’ 2 = 2,49’ 3 = '0’;
value p6 1 = "1.49’ 2 = "2.29" 3 = '0";
value p8 1 = "1.99’ 2 = 2.39" 3 = '0’;
run;
data temp;
set sasuser.finchdes;
x1 = input(put(xl, pl_.), 5.);
x2 = input(put(x2, p2_.), 5.);
x5 = input (put(x5, p5_.), 5.);
x6 = input(put(x6, p6_.), 5.);
x8 = input(put(x8, p8_.), 5.);

keep x1-x8;

run;
The design is converted from one row per choice set to one row for each alternative of each choice set using
the %MKTROLL macro. The macro %MKTROLL is used to create the data set ROLLED from TEMP using
the mapping in KEY and using the variable Brand as the adternative ID variable. By default, al of the origina
factorsin the design= data set are dropped after they are used to create the factorsin the out = data set. In this
case, we specify keep=x1 x2 x5 x6 x8 becausewe need to keep al of the original price factorsto use in
cross effects.

$mktroll (design=temp, key=key, alt=brand, out=rolled, keep=xl x2 x5 x6 x8)

These next steps show the input and results for the first two choice sets. The data set is converted from a design
matrix with one row per choice set to a design matrix with one row per aternative per choice set.

proc print data=temp (obs=2); run;

proc print data=rolled(obs=12); run;

203

Obs

0ONd U WN R

Set

MMM PRPRRPRPRPRRPRR

Obs x1

1 1.29
2 1.29

Brand

Client
Extension
Regional
Private
National
None

Client
Extension
Regional
Private
National
None

Consumer Food Product Example

x2 x3 x4 x5
1.89 1 No 1.99
1.39 2 No 1.99

x6

0.00
2.29

Consumer Food Product Example

Price Micro Shelf
1.29 . .
1.89 1 2
1.99 .

0.00 1

1.99

1.29 . .
1.39 2 2
1.99 .

2.29 1

0.00

HHErHERRHBER RPRRBRRR

x1

.29
.29
.29
.29
.29
.29

.29
.29
.29
.29
.29
.29

HFHEHHERRBER PRRBRRR

x2

.89
.89
.89
.89
.89
.89

.39
.39
.39
.39
.39
.39

x7

HHErHERBER RPRRBRRR

x5

.99
.99
.99
.99
.99
.99

.99
.99
.99
.99
.99
.99

x8

1.99
0.00

N DNMNDNMDNMDNMDN OO O O O o

x6

.00
.00
.00
.00
.00
.00

.29
.29
.29
.29
.29
.29

oOooocooo PFFPKFRFERELRER

x8

.99
.99
.99
.99
.99
.99

.00
.00
.00
.00
.00
.00

Consider the first two observationsin the data set ROLLED.

Brand
Price
Micro
Shelf
x1
x2
x5
x6
x8

Brand
Price
Micro
Shelf
x1
x2
x5
x6
x8

“Client”
x1=1.29

1.29
1.89
1.99
0,

1.99

“Extension’
x2 =1.89
1

2

1.29

1.89

1.99

0,

1.99

Set 1, Alternative 1

the brand for this aternative
the price of this alternative
does not apply to this brand
does not apply to this brand

the price of the client brand in this choice set
the price of the extension in this choice set

the price of the regional competitor in this choice set
private label unavailablein this choice set
the price of the national competitor in this choice set

Set 1, Alternative 2

the brand for this aternative
the price of this alternative
Microwave, yes

Shelf Talker, No

the price of the client brand in this choice set
the price of the extension in this choice set

the price of the regional competitor in this choice set
private label unavailablein this choice set
the price of the national competitor in this choice set

Notice that x1 through x8 are constant within each choice set. The variable x1 is the price of aternative one,
which is the same no matter which alternativeit is stored with.

The data and design are merged in the usual way using the %MKTMERGE macro.

204

%$mktmerge (design=rolled, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

proc print data=res2 (obs=18); run;

Here are the data and design for the first two choice sets for the first subject.

Consumer Food Product Example

Obs Subj Set Brand Price Micro Shelf x1 x2 x5 x6 x8 ¢
1 1 1 Client 1.29 . . 1.29 1.89 1.99 0.00 1.99 2
2 1 1 Extension 1.89 1 2 1.29 1.89 1.99 0.00 1.99 1
3 1 1 Regiomnal 1.99 . . 1.29 1.89 1.99 0.00 1.99 2
4 1 1 Private 0.00 1 . 1.29 1.89 1.99 0.00 1.99 2
5 1 1 National 1.99 . . 1.29 1.89 1.99 0.00 1.99 2
6 1 1 None . . . 1.29 1.89 1.99 0.00 1.99 2
7 1 2 Client 1.29 . . 1.29 1.39 1.99 2.29 0.00 2
8 1 2 Extension 1.39 2 2 1.29 1.39 1.99 2.29 0.00 1
9 1 2 Regional 1.99 . . 1.29 1.39 1.99 2.29 0.00 2

10 1 2 Private 2.29 1 . 1.29 1.39 1.99 2.29 0.00 2
11 1 2 Natiomnal 0.00 . . 1.29 1.39 1.99 2.29 0.00 2
12 1 2 None . . . 1.29 1.39 1.99 2.29 0.00 2

We need to do afew more things before we are ready to code. Since we will betreating Price as aquantitative
factor (not a class variable), we need to convert the missing price for the constant “None” aternative to zero.
We also need to convert the missings for when Micro and shel £ do not apply to 2 for “No”. Finally, we need
to output just the alternatives that are available (those with a nonzero price and also the none alternative).

data res3;
set res2;

if price = . then price = 0;
if micro = . then micro = 2;
if shelf = . then shelf = 2;

if brand = ’‘None’ or price ne 0;
format micro shelf yn.;
run;

proc print data=res3 (obs=10); run;

Consumer Food Product Example

Obs Subj Set Brand Price Micro Shelf x1 x2 x5 x6 x8 ¢
1 1 1 Client 1.29 No No 1.29 1.89 1.99 0.00 1.99 2
2 1 1l Extension 1.89 Yes No 1.29 1.89 1.99 0.00 1.99 1
3 1 1 Regiomnal 1.99 No No 1.29 1.89 1.99 0.00 1.99 2
4 1 1l Natiomnal 1.99 No No 1.29 1.89 1.99 0.00 1.99 2
5 1 1l None 0.00 No No 1.29 1.89 1.99 0.00 1.99 2
6 1 2 Client 1.29 No No 1.29 1.39 1.99 2.29 0.00 2
7 1 2 Extension 1.39 No No 1.29 1.39 1.99 2.29 0.00 1
8 1 2 Regionmnal 1.99 No No 1.29 1.39 1.99 2.29 0.00 2
9 1 2 Private 2.29 Yes No 1.29 1.39 1.99 2.29 0.00 2

10 1 2 None 0.00 No No 1.29 1.39 1.99 2.29 0.00 2

205

Cross Effects

These next steps code the design for analysis.

proc transreg data=res3 design=5000 nozeroconstant norestoremissing;

model class(brand / zero=’None’)
class (brand / zero='None’ separators=’'’ ' ’) * identity(price)
class(shelf micro / lprefix=12 12 zero='No’ ’'No’)
identity (x1 x2 x5 x6 x8) *
class (brand / zero='None’ separators=’ ’ ' on ') /
lprefix=0;

output out=coded(drop= type name intercept

where=(brand = ‘None’ or price ne 0));
id subj set c;
label x1 = 'CE, Client’

X2 = ’'CE, Extension’
x5 = 'CE, Regional’
x6 = 'CE, Private’

x8 = ’'CE, National’

shelf = ’"Shelf Talker’

micro = ’‘Microwave’;
run;

The specification class (brand / zero='None’) creates the brand effects for each brand except the
none aternative. The specification class (brand / zero='None’ separators=" ' ’) * iden-
tity (price) createsthe alternative-specific price effects. The zero= ' None’ option, like zero='Home’

and other zero='literal-string’ optionswe have seen in previous examples, names the actual formatted value of
the class variable that is to be excluded from the coded variables because the coefficient will be zero. Do not
confuse zero=none and zero='None’. The zero=none option specifies that you want al dummy vari-
ables to be created, even including the last level. In contrast, the option zero='None’ (or zero= any quoted
string) names a specific formatted value, in this case “None”, for which dummy variables are not to be created.
The separators=" ' ’ optioninthe class specification specifies the separators that are used to construct
the labels for the main effect and interaction terms. The main-effects separator, which is the first separa-

tors=value, ”, isignored since 1prefix=0. Specifying * asthe second value creates labels of the form
brand-blank-price instead of the default brand-blank-asterisk-blank-price. The specification class (shelf
micro / lprefix=12 12 zero='No’ ’No’) namesthe shelf talker and microwave variables as cate-
gorical variables and creates dummy variables for the“Yes’ categories, not the “No” categories. Thefirst No’

applies to shelf and the second ‘No’ applies to Micro. The specification identity (x1 x2 x5 x6
x8) * class(brand / zero='None’ separators=’ ’ ’ on ') creates the cross effects. The
separators= option is specified with asecond valueof * on ’ to create cross effect labels like “CE, Client
on Extension” (where CE means cross effect). More will be said on the cross effects when we look at the actual

coded values in the next few pages.

Note that PROC TRANSREG produces the following warning twice.

WARNING: This usage of * sets one group’s slope to zero. Specify | to allow
all slopes and intercepts to vary. Alternatively, specify CLASS(vars)
* identity(vars) identity(vars) for separate within group functions
and a common intercept. This is a change from Version 6.

Thisis because ontwo occasionsclass wasinteracted with ident i ty using the asterisk instead of the vertical
bar. In alinear model, this might be a sign of a coding error, so the procedure prints a warning. If you get this
warning while coding a choice model specifying zero='constant-alternative-level’, you can safely ignore it.
Still, it is always good to print out one or more coded choice sets to check the coding as we will do next. Before
we look at the coded data, recall that the design for the first choice setsis as follows.

206

Client Client Line Regional Private National
Obs Brand Extension Brand Label Competitor
1 $1.29 $1.89/micro $1.99 N/A $1.99
2 $1.29 $1.39/stove $1.99 $2.29/micro N/A
3 $2.09 $2.39/micro $1.99 $2.29/stove N/A
4 $1.69 N/A $1.99 $1.49/stove $2.39
5 $1.29 N/A N/A $2.29/stove N/A

We will ook at the coded data set in several ways. First, here are the Brand, Price, ¢, microwave and shelf
talker variables, printed by choice set. Information from just the first subject and the first five choice sets is
printed.

proc print data=coded(obs=23) label;
var Brand Price c Shelf Micro;

by set;
run;
Consumer Food Product Example
------------------------------------ Set=1l -------- e e e - -
Shelf
Obs Brand Price c Talker Microwave
1 Client 1.29 2 No No
2 Extension 1.89 1 No Yes
3 Regional 1.99 2 No No
4 National 1.99 2 No No
5 None 0.00 2 No No
———————————————————————————————————— Set=2 --- e e e -
Shelf
Obs Brand Price c Talker Microwave
6 Client 1.29 2 No No
7 Extension 1.39 1 No No
8 Regional 1.99 2 No No
9 Private 2.29 2 No Yes
10 None 0.00 2 No No
------------------------------------ Set=3 -------- e -
Shelf
Obs Brand Price c Talker Microwave
11 Client 2.09 2 No No
12 Extension 2.39 1 No Yes
13 Regional 1.99 2 No No
14 Private 2.29 2 No No
15 None 0.00 2 No No

207

------------------------------------ Set=4 ------- - -
Shelf
Obs Brand Price c Talker Microwave
16 Client 1.69 2 No No
17 Regional 1.99 2 No No
18 Private 1.49 2 No No
19 National 2.39 1 No No
20 None 0.00 2 No No
------------------------------------ Set=5 ------- - -
Shelf
Obs Brand Price c Talker Microwave
21 Client 1.29 1 No No
22 Private 2.29 2 No No
23 None 0.00 2 No No

Unlike all previous examples, the number of alternativesis not the samein al of the choice sets. Thefirst choice
set consists of five alternatives including “None”. The private label brand is not available in this choice set.
The second choice set consists of five alternatives including “None”. The national competitor are not available
in this choice set. The fifth choice set consists of three alternatives including “None”’. The extension, regional
competitor, and national competitor are not available in this choice set.

Here are the brand effects and alternative-specific price effects.

proc print data=coded(obs=5) label;
id Brand;
var BrandClient -- BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var BrandClientPrice --BrandPrivatePrice;

run;
Consumer Food Product Example
Brand Client Extension Regional National Private
Client 1 0 0 0 0
Extension 0 1 0 0 0
Regional 0 0 1 0 0
National 0 0 0 1 0
None 0 0 0 0 0
Consumer Food Product Example
Client Extension Regional National Private
Brand Price Price Price Price Price Price
Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

208

The brand effects and alternative-specific price effectsare similar to what we have seen previoudly. Thedifference
isthe presence of al zero columnsfor unavailable alternatives, in this case the private label. Thisfollowing code
prints the cross effects along with Brand and Price for thefirst choice set.

proc print data=coded(obs=5) label;
id Brand Price;
var xlBrandClient -- xl1BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x2BrandClient -- x2BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x5BrandClient -- x5BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x6BrandClient -- x6BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x8BrandClient -- x8BrandPrivate;
run;

The cross effects are printed in panels. Thisfirst panel shows the terms that capture the effect of the client brand
being available at $1.29 on the utility of the other brands. These terms represent the interaction of the continuous
and constant within choice set variablex1 = 1.29 and the binary coded brand effects. The term “CE, Client
on Extension” represents the cross effect of the client brand at its price on the utility of the extension. The term
“CE, Client on Client” representsin some sense the cross effect of the client brand at its price on the utility of the
client brand. In other words, it is exactly the same as the client price effect and hence will have a zero coefficient
in the analysis.

Consumer Food Product Example

CE, Client CE, Client CE, Client

CE, Client on on on CE, Client
Brand Price on Client Extension Regional National on Private
Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.29 0.00 0.00 0
Regional 1.99 0.00 0.00 1.29 0.00 0
National 1.99 0.00 0.00 0.00 1.29 0
None 0.00 0.00 0.00 0.00 0.00 0

This next panel shows the terms that capture the effect of the extension being available at $1.89 on the utility of
the other brands. These terms represent the interaction of the continuous and constant within choice set variable
x2 = 1.89 and the binary coded brand effects. The term “CE, Extension on Regional” represents the cross
effect of the client brand extension at its price on the utility of the regional competitor. Theterm “ CE, Extension
on Extension” representsin some sense the cross effect of the extension at its price on the utility of the extension.
In other words, it is exactly the same as the extension price effect and hence will have a zero coefficient in the
analysis.

209

Consumer Food Product Example

CE, CE, CE,

CE, Extension Extension Extension CE,

Extension on on on Extension

Brand Price on Client Extension Regional National on Private
Client 1.29 1.89 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.89 0.00 0
National 1.99 0.00 0.00 0.00 1.89 0
None 0.00 0.00 0.00 0.00 0.00 0

Similarly, this next panel shows the terms that capture the effect of the regional competitor being available at
$1.99 on the utility of the other brands.

Consumer Food Product Example

CE, CE, CE,
CE, Regional Regional Regional CE,
Regional on on on Regional

Brand Price on Client Extension Regional National on Private
Client 1.29 1.99 0.00 0.00 0.00 0
Extension 1.89 0.00 1.99 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

This next panel shows the private label, unavailablein this choice set, has no effect on the utility of the brandsin
this set.

Consumer Food Product Example

CE, CE, CE, CE, CE,
Private on Private on Private on Private on Private on

Brand Price Client Extension Regional National Private
Client 1.29 0 0 0 0 0
Extension 1.89 0 0 0 0 0
Regional 1.99 0 0 0 0 0
National 1.99 0 0 0 0 0
None 0.00 0 0 0 0 0

This next panel shows the terms that capture the effect of the national competitor being available at $1.99 on the
utility of the other brands.

210

Brand

Client

Extension

Regional
National
None

Price

.29
.89
.99
.99
.00

oORrR R KRR

Consumer Food Product Example

CE,
National
on Client

.99
.00
.00
.00
.00

O oo oRr

CE,
National

on
Extension

.00
.99
.00
.00
.00

o O o BRr o

National

Regional

o o pRr oo

CE,

on

.00
.00
.99
.00
.00

CE,
National
on
National

.00
.00
.00
.99
.00

O Rr O oo

CE,
National
on Private

O O o oo

Coding and Fitting the Cross Effects Model

These next steps aggregate, code, and perform the analysis. Thisis the logical order to do things: aggregate
then code and analyze the data. The data set size is greatly reduced by the aggregation, which makes both the
TRANSREG and the PHREG steps run in just afew seconds. Aggregation is faster too since the aggregationis
based on a smaller number of uncoded variables. We coded before aggregating previously just to make it easier

to show the results of the coding.

proc summary data=res3 nway;

class set brand price shelf micro x1 x2 x5 x6 x8 c;
output out=agg(drop= type);

run;

proc print; where set = 1;

All of thevariablesused in the analysisare named as c1as s variablesin PROC SUMMARY. PROC SUMMARY

run;

reduces the data set from 34,500 observationsto 209. Here are the aggregated data for the first choice set.

Obs Set Brand
1 1 Client
2 1 Client
3 1 Extension
4 1 Extension
5 1 National
6 1 National
7 1 None
8 1 Regional
9 1 Regional

Consumer Food Product Example

Price Shelf Micro
1.29 No No 1
1.29 No No 1
1.89 No Yes 1
1.89 No Yes 1
1.99 No No 1
1.99 No No 1
0.00 No No 1
1.99 No No 1
1.99 No No 1

x1

.29
.29
.29
.29
.29
.29
.29
.29
.29

RFRRRERRRRRR

x2

.89
.89
.89
.89
.89
.89
.89
.89
.89

RFRRBRRERRERRBRPRPR

x5

"
a

.99
.99
.99
.99
.99
.99
.99
.99
.99

Ooooooooo
RFRRERRERRRBRPRR

x8

.99
.99
.99
.99
.99
.99
.99
.99
.99

¢ _FREQ
1 68
2 232
1 225
2 75
1 6
2 294
2 300
1 1
2 299

In thefirst choice set, the client brand was chosen (¢ = 1) atotal of _ freq._ =68 timesand not chosen (c = 2)
atotal of _ freq_ = 232 times. Each alternative was chosen and not chosen atotal of 300 times, which is the

number of subjects. These next steps code and run the analysis.

211

proc transreg data=agg design=5000 nozeroconstant norestoremissing;

model class(brand / zero=’None’)
class (brand / zero='None’ separators=’'’ ' ’) * identity(price)
class(shelf micro / lprefix=12 12 zero=’No’ ’No’)
identity(x1 x2 x5 x6 x8) *
class (brand / zero='None’ separators=’ ’ ' on ') /
lprefix=0 order=data;

output out=coded(drop= type name intercept

where=(brand = ’'None’ or price ne 0));
id set ¢ freq ;
label x1 = ‘CE, Client’

x2 = 'CE, Extension’
x5 = 'CE, Regional’
X6 = 'CE, Private’

x8 = 'CE, National’

shelf = ’"Shelf Talker’

micro = ’‘Microwave’;
run;

proc phreg data=coded;
strata set;

model c*c(2) = & trgind / ties=breslow;
freq _freq_;
run;

PROC TRANSREG is run like before, except now the data set AGG is specified and the ID variable includes
_ freq_, thefrequency variable but not Subj the subject number variable. Analysisisthe same aswe have seen
previously with aggregate data. PROC PHREG is run to fit the mother logit model, complete with availability
cross effects.

Multinomial Logit Model Results

These steps produced the following results. (Recall that we used $phchoice (on) on page 71 to customize
the output from PROC PHREG.)

Consumer Food Product Example
The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2
Frequency Variable _FREQ

Ties Handling BRESLOW

212

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen
1 1 1500 300 1200
2 2 1500 300 1200
3 3 1500 300 1200
4 4 1500 300 1200
5 5 900 300 600
6 6 1200 300 900
7 7 1500 300 1200
8 8 900 300 600
9 9 1200 300 900
10 10 1500 300 1200
11 11 900 300 600
12 12 1200 300 900
13 13 1500 300 1200
14 14 1500 300 1200
15 15 900 300 600
16 16 1500 300 1200
17 17 1200 300 900
18 18 1500 300 1200
19 19 1500 300 1200
20 20 1200 300 900
21 21 1200 300 900
22 22 1500 300 1200
23 23 1200 300 900
24 24 1500 300 1200
25 25 1500 300 1200
26 26 1500 300 1200
Total 34500 7800 26700
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Consumer Food Product Example
The PHREG Procedure
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 111923.05 98180.822
AIC 111923.05 98244.822
SBC 111923.05 98467.602
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > Chisg
Likelihood Ratio 13742.2313 32 <.0001
Score 15093.5363 32 <.0001
Wald 4823.7301 32 <.0001

Multinomial Logit Parameter Estimates

Client
Extension
National
Regional
Private

Client Price
Extension Price
National Price
Regional Price
Private Price
Shelf Talker Yes
Microwave Yes

CE, Client on Client
CE, Client on Extension
CE, Client on Natiomnal
CE, Client on Regional
CE, Client on Private

CE, Extension on Client
CE, Extension on Extension
CE, Extension on National
CE, Extension on Regiomnal
CE, Extension on Private

CE, Regional on Client
CE, Regional on Extension
CE, Regional on National
CE, Regional on Regional
CE, Regional on Private

CE, Private on Client
CE, Private on Extension
CE, Private on National
CE, Private on Regional
CE, Private on Private

CE, National on Client
CE, National on Extension
CE, National on National
CE, National on Regional
CE, National on Private

=}
o]

HHORRKR ORKFRKHKE RPORKRKH RFRFRPOR FHRKHO KRR RPRRERPREPRERL RBPRRERKRE

Parameter
Estimate

5.46733
5.58334
3.50597
3.80078
3.13270

-0.67421
-0.07049
-0.22402
-1.18081
-0.96577

0.61900
0.72858

0
0.28194
-0.06563
-0.06821
0.30073

0.46570
0
0.19053
-0.09000
0.14278

0.26312
0.29864
0.33478

0
0.13963

-0.29806
-0.20526
-0.40419
-0.28243

0

0.02888
0.08796

0

0.32827
0.0004496

Standard
Error

0.85358
0.86685
1.13426
1.47533
0.71627

0.32250
0.31052
0.38973
0.65386
0.28492

0.08419
0.07334

0.31256
0.33552
0.36875
0.28794

0.29571
0.32421
0.35402
0.29837

0.18077
0.18450
0.18863

0.18898

0.28888
0.28899
0.30925
0.32123

.

0.22009
0.22309
0.29212
0.23537

Chi-Square

41.0265
41.4861
9.5541
6.6369
19.1287

4.3704
0.0515
0.3304
3.2613
11.4894

54.0569
98.7000

0.8137
0.0383
0.0342
1.0908

2.4801
0.3454
0.0646
0.2290

2.1188
2.6201
3.1497

0.5459

1.0646
0.5045
1.7082
0.7730

0.0172
0.1555
1.2628
0.0000

Pr > ChiSqg

<.0001
<.0001
0.0020
0.0100
<.0001

0.0366
0.8204
0.5654
0.0709
0.0007

<.0001
<.0001

0.3670
0.8449
0.8532
0.2963

0.1153
0.5567
0.7993
0.6323

0.1455
0.1055
0.0759

0.4600

0.3022
0.4775
0.1912
0.3793

0.8956
0.6934
0.2611
0.9985

213

Since the number of alternatives is not constant within each choice set, the summary table has nonconstant
numbers of aternatives and numbers not chosen. The number chosen, 300 (or one per subject per choice set),
is constant, since each subject always chooses one alternative from each choice set regardless of the number of
aternatives. The first choice set has 1500 alternatives, 5 available times 300 subjects; whereas the fifth choice
set has 900 alternatives, 3 available times 300 subjects.

The most to least preferred brands are: client line extension, client brand, regional competitor, national competi-
tor, private label, and finally the none alternative. The price effects are al negative. Both the shelf-talker and the
microwavesble option have positive utility. The cross effects are nonsignificant.

214

Modeling Subject Attributes

This example uses the same design and data as we have just seen, but this time we have some demographic
information about our respondents that we wish to model. The DATA step below reads a subject number, the
choices, and respondent age and income (in thousands of dollars). The data from two subjects appear on one
line.

data results;

input Subj (choosel-choose&n) (1.) age income @@;

datalines;
22251224212125422245212222 33 44 2 51111224232221622211222522 52 82
22251123512221422216222121 51 136 11211224242215422211222212 60 108
22211223552225422241222222 24 34 6 12211224252211425214222122 24 38

u W R
S

297 22441223242211322214221122 31 38 298 22251224512221422245222112 24 20
299 52211224242251422211212122 48 49 300 22211224262221422251222212 38 51

Merging the data and design is no different than we saw previoudly.

%$mktmerge (design=rolled, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

proc print data=res2;
by subj set;
where (subj = 1 and set 1) or
(subj = 2 and set 2) or
(subj 3 and set = 3) or
(subj = 300 and set = 26);

run;

Hereisasmall sample of the data.

Consumer Food Product Example

--------------------------------- Subj=1 Set=1 ------------- oo - -

Obs Age Income Brand Price Micro Shelf x1 x2 x5 x6 x8 «c
1 33 44 Client 1.29 . . 1.29 1.89 1.99 0 1.99 2
2 33 44 Extension 1.89 1 2 1.29 1.89 1.99 0 1.99 1
3 33 44 Regional 1.99 . . 1.29 1.89 1.99 0 1.99 2
4 33 44 Private 0.00 1 . 1.29 1.89 1.99 0 1.99 2
5 33 44 National 1.99 . . 1.29 1.89 1.99 0 1.99 2
6 33 44 None . . . 1.29 1.89 1.99 0 1.99 2
--------------------------------- Subj=2 Set=2 -----------m oo - -
Obs Age Income Brand Price Micro Shelf x1 x2 x5 x6 x8 c
163 52 82 Client 1.29 . . 1.29 1.39 1.99 2.29 01
164 52 82 Extension 1.39 2 2 1.29 1.39 1.99 2.29 0 2
165 52 82 Regional 1.99 . . 1.29 1.39 1.99 2.29 0 2
166 52 82 Private 2.29 1 . 1.29 1.39 1.99 2.29 0 2
167 52 82 National 0.00 . . 1.29 1.39 1.99 2.29 0 2
168 52 82 None . . . 1.29 1.39 1.99 2.29 0 2

Obs Age Income Brand

325 51
326 51
327 51
328 51
329 51
330 51

Obs Age Income

46795 38
46796 38
46797 38
46798 38
46799 38
46800 38

136 Client
136 Extension
136 Regional
136 Private
136 National
136 None

Brand

51 Client

51 Extension
51 Regional
51 Private
51 National
51 None

Subj=3 Set=3

2.09
2.39
1.99
2.29
0.00

.

2.09
1.39
2.49
0.00
2.39

[

N

N .

[y

Subj=300 Set=26

Price Micro Shelf x1

2.09
2.09
2.09
2.09
2.09
2.09

x2

2.39
2.39
2.39
2.39
2.39
2.39

x5

1.99
1.99
1.99
1.99
1.99
1.99

x6

2.29
2.29
2.29
2.29
2.29
2.29

x8

O OO o oo

Price Micro Shelf x1

2.09
2.09
2.09
2.09
2.09
2.09

x2

1.39
1.39
1.39
1.39
1.39
1.39

x5

2.49
2.49
2.49
2.49
2.49
2.49

2
2
2
2
2
2

O O O o oo

x8

.39
.39
.39
.39
.39
.39

NDNMNDNMNMDNDREDN

215

You can see that the demographic information matches the raw data and is constant within subject. The rest of
the data processing is virtually the same as well. The only differenceis since we have demographic information
we won't aggregate. There would have to be ties in both the demographics and choice for aggregation to have

any effect.

data res3;
set res2;
if price
if micro
if shelf
if brand

. then price
. then micro

. then
’None’

= 0;

= 2;
shelf = 2;
or price ne 0;

format micro shelf yn.;

run;

proc print data=res3 (obs=10) ;

run;

Consumer Food Product Example

Obs Subj Age Income Set Brand

33
33
33
33
33

33
33
33
33
33

O VW oo o Ul WM PR
RPRRRR BRRRR

[

44
44
44
44
44

44
44
44
44
44

NNMDNMNDNDMND RPRPRPRRBEP

Client
Extensi
Regiona
Nationa
None

Client
Extensi
Regiona
Private
None

Price Micro Shelf x1

on
1
1

on
1

1.29
1.89
1.99
1.99
0.00

1.29
1.39
1.99
2.29
0.00

No
Yes
No
No
No

No
No
No
Yes
No

No
No
No
No
No

No
No
No
No
No

1.29
1.29
1.29
1.29
1.29

1.29
1.29
1.29
1.29
1.29

x2

1.89
1.89
1.89
1.89
1.89

1.39
1.39
1.39
1.39
1.39

x5

1.99
1.99
1.99
1.99
1.99

1.99
1.99
1.99
1.99
1.99

x6

0.00
0.00
0.00
0.00
0.00

2.29
2.29
2.29
2.29
2.29

x8

1.99
1.99
1.99
1.99
1.99

0.00
0.00
0.00
0.00
0.00

Q

NNDMNMEND DNMNDDDREDND

We use PROC TRANSREG to code, adding Age and Income to the analysis.

216

proc transreg data=res3 design=5000 nozeroconstant norestoremissing;

model class(brand / zero=’'None’)

identity(age income) * class(brand / zero=’'None’ separators='’' '
class (brand / zero='None’ separators=’’ ' ') * identity(price)

class (shelf micro / lprefix=12 12 zero='No’ ’'No’)
identity(x1 x2 x5 x6 x8) *
class (brand / zero='None’ separators=’ ' ' on ') /
lprefix=0 order=data;
output out=coded(drop=_ type name intercept
where=(brand = ‘None’ or price ne 0));
id subj set c;
label x1 = 'CE, Client’

X2 = 'CE, Extension’
x5 = 'CE, Regional’
x6 = 'CE, Private’

x8 = 'CE, National’
shelf 'Shelf Talker’
micro = ’‘Microwave’;

run;

The Age and Income variables are incorporated into the analysis by interacting them with Brand. Demo-
graphic variables must be interacted with attributes to have any effect. If identity (age income) had been
specified instead of identity (age income) * class(brand / zero='None’ separators="
r, ') the coefficients for age and income would be zero. Thisis because age and income are constant within
each choice set and subject combination, that is constant within each stratum. The second separator * ,

used to create names for the brand/demographic interaction termslike “Age, Client”.

These next steps print the first coded choice set.

proc print data=coded(obs=5) label;
id brand price;
var BrandClient -- BrandPrivate Shelf Micro c;
run;

proc print data=coded(obs=5 drop=Age) label;
id brand price;
var Age:;
run;

proc print data=coded(obs=5 drop=Income) label;
id brand price;
var Income:;
run;

proc print data=coded(obs=5) label;
id brand price;
var BrandClientPrice -- BrandPrivatePrice;
run;

proc print data=coded(obs=5 drop=x1l) label; id brand price; var
proc print data=coded(obs=5 drop=x2) label; id brand price; var
proc print data=coded(obs=5 drop=x5) label; id brand price; var
proc print data=coded(obs=5 drop=x6) label; id brand price; var
proc print data=coded(obs=5 drop=x8) label; id brand price; var

Hereis the coded data set for the first choice set. The part that is new is the second and third panel, which will

be used to capture the brand by age and brand by income effects.

Here are the attributes and the brand effects.

x1l:;
x2:;
x5:;
x6:;
x8:;

run;
run;
run;
run;
run;

7

")

’is

217

Consumer Food Product Example

Shelf
Brand Price Client Extension Regional National Private Talker Microwave c
Client 1.29 1 0 0 0 0 No No 2
Extension 1.89 0 1 0 0 0 No Yes 1
Regional 1.99 0 0 1 0 0 No No 2
National 1.99 0 0 0 1 0 No No 2
None 0.00 0 0 0 0 0 No No 2
Here are the age by brand effects.
Consumer Food Product Example
Age, Age, Age, Age, Age,
Brand Price Client Extension Regional National Private
Client 1.29 33 0 0 0 0
Extension 1.89 0 33 0 0 0
Regional 1.99 0 0 33 0 0
National 1.99 0 0 0 33 0
None 0.00 0 0 0 0 0
Here are the income by brand effects.
Consumer Food Product Example
Income, Income, Income, Income, Income,
Brand Price Client Extension Regional National Private
Client 1.29 44 0 0 0 0
Extension 1.89 0 44 0 0 0
Regional 1.99 0 0 44 0 0
National 1.99 0 0 0 44 0
None 0.00 0 0 0 0 0
Here are the alternative-specific price effects.
Consumer Food Product Example
Client Extension Regional National Private
Brand Price Price Price Price Price Price
Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

Here are the client cross effects.

218

Consumer Food Product Example

CE, Client CE, Client

CE, Client

CE, Client on on on CE, Client
Brand Price on Client Extension Regional National on Private
Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.29 0.00 0.00 0
Regional 1.99 0.00 0.00 1.29 0.00 0
National 1.99 0.00 0.00 0.00 1.29 0
None 0.00 0.00 0.00 0.00 0.00 0
Here are the extension cross effects.
Consumer Food Product Example
CE, CE, CE,
CE, Extension Extension Extension CE,
Extension on on on Extension
Brand Price on Client Extension Regional National on Private
Client 1.29 1.89 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.89 0.00 0
National 1.99 0.00 0.00 0.00 1.89 0
None 0.00 0.00 0.00 0.00 0.00 0
Here are the regional competitor cross effects.
Consumer Food Product Example
CE, CE, CE,
CE, Regional Regional Regional CE,
Regional on on on Regional
Brand Price on Client Extension Regional National on Private
Client 1.29 1.99 0.00 0.00 0.00 0
Extension 1.89 0.00 1.99 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0
Here are the private label cross effects.
Consumer Food Product Example
CE, CE, CE, CE, CE,
Private on Private on Private on Private on Private on
Brand Price Client Extension Regional National Private
Client 1.29 0 0 0 0 0
Extension 1.89 0 0 0 0 0
Regional 1.99 0 0 0 0 0
National 1.99 0 0 0 0 0
None 0.00 0 0 0 0 0

Here are the national competitor cross effects.

219

Brand Price
Client 1.29
Extension 1.89
Regional 1.99
National 1.99
None 0.00

Consumer Food Product Example
CE, CE,
CE, National National National
National on on

on Client Extension Regional National

1.99
0.00
0.00
0.00
0.00

0.00 0.00
1.99 0.00
0.00 1.99
0.00 0.00
0.00 0.00

CE,

on

0.00
0.00
0.00
1.99
0.00

CE,
National
on Private

O O o oo

The PROC PHREG specification is the same as we have used before with nonaggregated data.

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;

model c*c(2)

strata subj set;

run;

proc freq;

& trgind / ties=breslow;

tables event * censored / list;
where n(stratum) ;

run;

This step took just about one minute and produced the following results.

Cons

umer Food Product Example

The PHREG Procedure

Model Information

Data Set WORK .CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2

Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 22944.047 9181.362
AIC 22944.047 9265.362
SBC 22944.047 9557.761

220

Test

Likelihood Ratio

Score
wald

Client
Extension
Regional
National
Private

Age, Client
Age, Extension
Age, Regiomnal
Age, National
Age, Private

Income, Client
Income, Extension
Income, Regional
Income, National
Income, Private

Client Price
Extension Price
Regional Price
National Price
Private Price

Shelf Talker Yes
Microwave Yes

CE, Client on Cli
CE, Client on Ext
CE, Client on Reg
CE, Client on Nat
CE, Client on Pri

CE, Extension on
CE, Extension on
CE, Extension on
CE, Extension on
CE, Extension on

CE, Regional on C
CE, Regional on E
CE, Regional on R

Testing Global Null Hypothesis: BETA=0

Chi-Square

13762.6845
15106.4909

4810.2570

DF

42
42
42

Pr > Chisg

<.0001
<.0001
<.0001

Multinomial Logit Parameter Estimates

ent
ension
ional
ional
vate

Client
Extension
Regional
National
Private

lient
xtension
egional

CE, Regional on Natiomnal

CE, Regional on P

CE, Private on Cl
CE, Private on Ex
CE, Private on Re
CE, Private on Na
CE, Private on Pr

rivate
ient
tension
gional
tional
ivate

o
|

ORRFRRFRRER PFROFRRER HHHOK RPFRREPKEPOKHKHHKEBHHHEHRERE BRERERRBE BPRRERER BHERRR

Parameter
Estimate

5.62995
6.08310
3.57233
3.95103
3.60708

0.01298
0.00707
0.02711
0.00389
0.0002107

-0.01053
-0.01181
-0.01405
-0.00898
-0.00701

-0.67517
-0.05907
-1.18447
-0.22350
-0.96861

0.61980
0.72954

0
0.28262
-0.06499
-0.06432
0.30177

0.47752
0
-0.07767
0.20479
0.15603

0.26281
0.29836

0
0.33442
0.13920

-0.29959
-0.20689
-0.28139
-0.40533

0

Standard
Error

0.97320
0.99039
1.56325
1.23858
0.84966

0.01620
0.01661
0.01777
0.01736
0.01572

0.00618
0.00635
0.00694
0.00666
0.00599

0.32292
0.31148
0.65400
0.38996
0.28537

0.08426
0.07339

0.31296
0.36901
0.33588
0.28829

0.29668

0.35478
0.32510
0.29926

0.18095
0.18468

0.18881
0.18915

0.28938
0.28951
0.32178
0.30973

Chi-Square

33.4658
37.7259

5.2221
10.1758
18.0227

0.6420
0.1812
2.3269
0.0502
0.0002

2.8990
3.4582
4.1040
1.8197
1.3711

4.3716
0.0360
3.2802
0.3285
11.5207

54.1031
98.8078

0.8155
0.0310
0.0367
1.0957

2.5907
0.0479
0.3968
0.2719

2.1095
2.6099
3.1371
0.5416

1.0718
0.5107
0.7647
1.7126

Pr > Chisg

<.0001
<.0001
0.0223
0.0014
<.0001

0.4230
0.6703
0.1272
0.8227
0.9893

0.0886
0.0629
0.0428
0.1773
0.2416

0.0365
0.8496
0.0701
0.5665
0.0007

<.0001
<.0001

0.3665
0.8602
0.8481
0.2952

0.1075
0.8267
0.5287
0.6021

0.1464
0.1062
0.0765
0.4618

0.3005
0.4748
0.3819
0.1906

CE,
CE,
CE,
CE,
CE,

221

National on Client 1 0.03005 0.22031 0.0186 0.8915
National on Extension 1 0.08905 0.22332 0.1590 0.6901
National on Regional 1 0.33125 0.29231 1.2842 0.2571
National on National 0 0 . . .
National on Private 1 0.00142 0.23558 0.0000 0.9952
Consumer Food Product Example
The FREQ Procedure
Cumulative Cumulative

Event Censored Frequency Percent Frequency Percent

1 2 1200 15.38 1200 15.38

1 3 2100 26.92 3300 42.31

1 4 4500 57.69 7800 100.00

The coefficients for the age and income variables are not significant in this analysis. In previous examples, when
we used PROC FREQ to summarize the summary table, the PROC FREQ output had only one line. In this case,
since our choice sets have either 3, 4, or 5 alternatives, we have three rows, one for each size choice set.

When Balance is of Primary Importance

Sometimesit is very important to get adesign that is as close to balanced as possible. More generally, sometimes
thereis some criterion in which you want the design to be good that is not perfectly correlated with efficiency. A
strategy for those cases is to generate a number of designs, keep the most efficient few, then use the one that is
best in terms of the secondary criterion of interest. In this example, we use a macro to repeatedly generate 1000
designs, output 200 of the most efficient, then evaluate their balance.

title ’Consumer Food Product Example’;

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
run=plan)

%macro baleval (niter);
%do iter = 1 %to &niter;
data null ;
seed = abs(le6 * (le-5 + time() - floor(time()))):;
call symput(’seed’, compress (put(seed, 12.0)));
run;
ods output efficiencies(persist=run)=e;
%$mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,

interact=x2*x3 x2*x4 x3*x4 x6*x7,
iter=5, keep=1l, run=optex, procopts=seed=&seed)

222

proc iml;

use design; read all into x;
use e (keep=DCriterion); read all into deff;
if &iter > 1 then do;
use balance; read all into balance; close balance;
end;
p = ncol(x); n = nrow(x);
bal = j(1, p, 0);
do j =1 to p;
x1 = design(x[,j]1) [+,];
nc = ncol(xl);
ball,j] = ssq(xl - n / nec) / (nc - 1);
end;
bal = balance // (&seed || deff || sum(bal) || bal);
create balance from bal; append from bal;
quit;

proc means min data=balance noprint;

output min(col3)=min out=min;
run;

data small (drop=min) ;

set balance;

if n = 1 then set min(keep=min);
if abs(col3 - min) <= le-6;
run;

proc sort; by descending col2; run;

proc print label noobs;

label coll = ’Seed’ col2 = ’'D-Efficiency’ col3 = ’Var
title2 ’'Design Balances’;

format col4-colll 5.2;

run;

%end;

%$mend ;

%baleval (200)

proc print label noobs data=balance;
label coll = ‘Seed’ col2 = ’'D-Efficiency’ col3 = ’‘Var Sum’;
title2 ’'Design Balances’;
format col4-colll 5.2;
run;

This code first uses the %MK TDES macro to create the candidate set. Then the %BALEVAL balance evaluation
macro is defined. This macro has a loop to repeatedly create designs and evaluate their balance. The DATA
step creates a random number seed based on clock time. Hence, no two runs of this macro will produce the
same results. The ods output statement using (persist=run) creates an output SAS data set from the
efficiencies table of PROC OPTEX. The %MKTDES macro is run to create five designs and output the best
one. The random number seed generated by the DATA step is used. Each design is read into PROC IML to
report on balance. The statementsuse designandread all into x readthedesigninto PROC IML. The

statements

if &iter > 1 then do;
use balance; read all into balance; close balance;
end;

read previous results to which these results are appended. The statementsp = ncol (x) andn

223

store the number of columns and rows in the design matrix. The statement bal = j (1, p, 0) initid-
izes the results vector BAL to 0. The statements in the do loop compute the variance of the frequency of
occurrence for each level within each factor. The statement x1 = design(x[,3j]1) [+,] countsthe num-
ber of timeseach level appears. The statementbal[,j] = ssq(xl - n / nec) / (nc - 1) computes
the variance. Note that n / nc is the expected frequency for an nc-level factor. Then bal = balance
// (&seed || deff || sum(bal) || bal) storestherandom number seed, D-efficiency, sum of the
variances and each column’s variance in a SAS data set. The PROC MEANS, DATA, PROC SORT and PROC
PRINT steps print information about the most balanced design found so far. Outside the macro, all of the balance
information is printed. Here are some of the resullts.

Consumer Food Product Example
Design Balances

Seed D-Efficiency Var Sum COL4 COL5 COL6 COL7 COL8 COLS9 COL1l0 COLll
381303 84.0781 1.66667 0.33 0.33 0.00 0.00 0.33 0.33 0.00 0.33

Consumer Food Product Example
Design Balances

Seed D-Efficiency Var Sum COL4 COL5 COL6 COL7 COL8 COLS COL1l0 COLl1ll

375419 83.5921 10.3333 0.33 1.00 2.00 2.00 2.33 0.33 0.00 2.33
707520 83.3048 12.0000 1.67 0.33 0.00 0.00 2.33 1.33 2.00 4.33
873439 83.4668 11.3333 0.33 1.00 0.00 0.00 6.33 1.33 0.00 2.33
381303 84.0781 1.6667 0.33 0.33 0.00 0.00 0.33 0.33 0.00 0.33
43072 83.8992 28.0000 1.00 1.00 8.00 8.00 0.33 1.33 8.00 0.33

The most nearly balanced of the designs has a variance sum of 1.6667. All factors are either perfectly balanced
or as close to perfectly balanced as a design with these factors in 26 runs can be. Perfect balance is impossible
for the three-level and four-level factors since three and four do not divide 26, so a standard deviation sum of
zero is not possible. This design has a D-efficiency of 84.0781 compared with 85.3985 (the D-efficiency for
the best design we found previously). This design can be regenerated by running the %MKTDES macro with
procopts=seed=381303 specified.

%mktdes (factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +
(x6 < 3) + (x8 < 3)) <= 4),
interact=x2*x3 x2*x4 x3*x4 x6*x7,
iter=5, keep=1, procopts=seed=381303)

proc freq; run;

224

Consumer Food Product Example

The FREQ Procedure

Cumulative Cumulative
x1 Frequency Percent Frequency Percent
1 7 26.92 7 26.92
2 7 26.92 14 53.85
3 6 23.08 20 76.92
4 6 23.08 26 100.00
Cumulative Cumulative

x2 Frequency Percent Frequency Percent

1 6 23.08 6 23.08

2 6 23.08 12 46.15

3 7 26.92 19 73.08

4 7 26.92 26 100.00
Cumulative Cumulative

x3 Frequency Percent Frequency Percent

1 13 50.00 13 50.00

2 13 50.00 26 100.00
Cumulative Cumulative

x4 Frequency Percent Frequency Percent

1 13 50.00 13 50.00

2 13 50.00 26 100.00
Cumulative Cumulative

x5 Frequency Percent Frequency Percent

1 9 34.62 9 34.62

2 8 30.77 17 65.38

3 9 34.62 26 100.00
Cumulative Cumulative

x6 Frequency Percent Frequency Percent

1 8 30.77 8 30.77

2 9 34.62 17 65.38

3 9 34.62 26 100.00
Cumulative Cumulative

x7 Frequency Percent Frequency Percent

1 13 50.00 13 50.00

2 13 50.00 26 100.00
Cumulative Cumulative

x8 Frequency Percent Frequency Percent

1 8 30.77 8 30.77

2 9 34.62 17 65.38

225

Allocation of Prescription Drugs

The previous examples have all modeled ssmple choice. However, sometimes the response of interest is not
simplefirst choice. For example, in prescription drug marketing, researchers often use allocation studies where
multiple, not single choices are made. Physicians are asked questions like “For the next ten prescriptions you
write for aparticular condition how many would you write for each of these drugs?’ The response, for example,
might be “5 for drug 1, nonefor drug 2, 3 for drug 3, and 2 for drug 4.”

This example will show how to design, process, code, and analyze an allocation study. The principles of design-
ing an allocation study are the same as for designing afirst-choice experiment, asis the coding and final analysis.
However, processing the data before analysisis different.

Designing the Allocation Experiment

In this study, physicianswere asked to specify which of ten drugs they would prescribe to their next ten patients.
In this study, ten drugs, Drug 1 — Drug 10, were available each at three different prices, $50, $75, and $100.
Inrea studies, real brand names would be used and there would probably be more attributes. Since design has
been covered in some detail in other examples, we chose a simple design for this experiment so that we could
concentrate on data processing. First, we use the %MKTRUNS autocall macro to suggest a design size. (All
of the autocall macros used in this report are documented starting on page 261.) We specify ten 3's for the 10
three-level factors.

title ’Allocation of Prescription Drugs’;

$mktruns(3 3 3 3 3 3 3 3 3 3))

Allocation of Prescription Drugs

Some Reasonable
Design Sizes Cannot Be
(Saturated=21) Violations Divided By

27
36
45
54
63
72
81
90
99
108

O OO oO0Oo0oo oo oo

We need at |east 21 choice sets and we see the optimal sizes are all divisible by nine. We will use 27 choice sets.

Next, we use the %MK TDES macro to create the design. In addition, one more factor, Block, is added to the
design. This factor will be used to block the design into three blocks of size 9. PROC FORMAT is used to
assign actual prices of $50, $75, $100to thelevels 1, 2, and 3. A DATA step and PROC SORT are used to assign
formats and sort the design into a random order within blocks.

%let nalts = 10;
%mktdes (factors=Brandl-Brand&nalts=3 Block=3, n=27, procopts=seed=7654321)
proc format;

value price 1 = ’ $50’ 2 = ’ $75’ 3 = $100’ . = ' ’;
run;

226

data sasuser.allocdes;
r = uniform(7);
set design;
format Brand: price.;
run;

proc sort data=sasuser.allocdes out=sasuser.allocdes (drop=r) ;
by block r;
run;

proc print data=sasuser.allocdes; by block; run;

proc freq;
tables block * (brand:) / list;
run;

For this problem, there exists a perfectly 100% efficient, orthogonal and balanced design. Infact, PROC FACTEX

producesit and the PROC OPTEX step is not actually necessary. Each level of each factor occurs threetimesin
each block.

Allocation of Prescription Drugs

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.9230
2 100.0000 100.0000 100.0000 0.9230
3 100.0000 100.0000 100.0000 0.9230
4 100.0000 100.0000 100.0000 0.9230
5 100.0000 100.0000 100.0000 0.9230

Obs Brandl Brand2 Brand3 Brand4 Brand5 Brandé Brand7 Brand8 Brand9 BrandlO

1 $50 $75 $50 $100 $100 $100 $75 $75 $75 $50
2 $100 $100 $100 $50 $75 $100 $75 $100 $50 $100
3 $50 $50 $50 $50 $50 $50 $50 $50 $50 $50
4 $75 $75 $75 $50 $100 $75 $100 $75 $50 $75
5 $75 $100 $75 $100 $75 $50 $50 $100 $75 $75
6 $100 $50 $100 $100 $50 $75 $100 $50 $75 $100
7 $100 $75 $100 $75 $100 $50 $50 $75 $100 $100
8 $50 $100 $50 $75 $75 $75 $100 $100 $100 $50
9 $75 $50 $75 $75 $50 $100 $75 $50 $100 $75

Obs Brandl Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 BrandlO

Brandl Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 BrandlO

$50
$75
$100
$75
$50
$100
$50
$100
$75

$50
$50
$100
$100
$75
$100
$75
$50
$75

Brandl

$100
$75
$50
$50
$75
$75
$50
$100
$100

$100
$50
$100
$75
$50
$50
$75
$75
$100

$75
$100
$50
$75
$50
$75
$100
$100
$50

$50
$75
$75
$50
$50
$100
$75
$100
$100

$75
$50
$100
$50
$75
$100
$75
$100
$50

$100
$100
$50
$50
$75
$50
$75
$100
$75

$75 $75
$75 $75
$75 $75
$100 $50
$100 $50
$50 $100
$50 $100
$100 $50
$50 $100

$75 $50
$50 $75
$100 $100
$50 $75
$100 $100
$75 $50
$75 $50
$100 $100
$50 $75

Allocation of Prescription Drugs

The FREQ Procedure

Frequency

Percent

Cumulative
Frequency

$75
$100
$50
$100
$75
$50
$75
$50
$100

$100
$100
$75
$75
$50
$75
$50
$100
$50

$75
$50
$100
$75
$100
$75
$50
$50
$100

$75
$50
$50
$75
$75
$100
$50
$100
$100

Cumulative
Percent

Brand2

W wwwwwwww

Frequency

Percent

12
15
18
21
24
27

Cumulative
Frequency

88.
100.

Cumulative
Percent

10 $50
11 $100
12 $75
13 $75
14 $100
15 $100
16 $75
17 $50
18 $50
Obs

19 $75
20 $100
21 $75
22 $50
23 $100
24 $100
25 $50
26 $50
27 $75

Block

1

1

1

2

2

2

3

3

3

Block

1

1

1

2

2

2

3

3

3

WWwwwwwwwuw

$75
$50
$100
$100
$50
$50
$100
$75
$75

$50
$75
$50
$100
$75
$75
$100
$100
$50

227

228

Cumulative Cumulative
Block Brand3 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Cumulative Cumulative
Block Brand4 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Cumulative Cumulative
Block Brand5 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Cumulative Cumulative
Block Brandé6 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Cumulative Cumulative
Block Brand?7 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

229

Cumulative Cumulative
Block Brand8 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Cumulative Cumulative
Block Brand9 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Cumulative Cumulative
Block Brandl1l0 Frequency Percent Frequency Percent
1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44 .44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00
Processing the Data

Questionnaires are generated and data collected using a minor modification of the methods discussed in earlier
examples. The differenceis instead of asking for first choice data, allocation data are collected instead. Each
row of the input data set contains a block, subject, and set number, followed by the number of times each of the
ten alternatives was chosen. If al of the choice frequencies are zero, then the constant aternative was chosen.
The i £ statement is used to check data entry. For convenience, choice set number is recoded to run from 1 to 27
instead of consisting of three blocks of nine sets. This gives us one fewer variable on which to stratify.

230

data results;
input Block Subject Set @9 (freql-freqg&nalts) (2.);
if not (sum(of freq:) in (0, &nalts)) then put all ;

set = (block - 1) * 9 + set;

datalines;
1 11 0080200000
1 12 0080002000
1 13 000O0O0O0O0OO0O10O0
1 14 1001330020
1 15 2080000000
1 16 0131000014
1 17 0131120020
1 18 0030021004
1 19 0250000030
2 21 1102030111
2 22 1031011021

7

The first step in creating an analysis data set for an allocation study is to reformat the data from one row per
choice set per block per subject (9 x 3 x 100 = 2700 observations) to one per aternative (including the constant)
per choice set per block per subject ((10 + 1) x 9 x 3 x 100 = 29700 observations). For each choice set, 11
observations are written storing the choi ce frequency in the variable Count and the brand in thevariableBrand.
If none of the alternatives are chosen then the constant aternative is chosen ten times, otherwiseit is chosen zero

times.

data allocs (keep=block set brand count);
set results;

array freqgl&nalts];

* Handle

do

b =

Brand

Count

the &nalts alternatives;
to &nalts;
= ’Brand ’ || put(b, 2.);
= freqlbl;

output;
end;

* Constant alternative choice is implied if nothing else is chosen.
brand

bra
cou

nd
nt

output;
run;

proc print

I

1

' ' is used to flag the constant alternative.;

r .
7

0 * (sum(of freq:) = 0);

data=results (obs=3) label noobs; run;
proc print data=allocs (obs=33); run;

The PROC PRINT steps show how the first three observations of the RESULTS data set are transposed into the
first 33 observations of the ALLOCS data set.

Allocation of Prescription Drugs

Block Subject Set Freql Freq2 Freq3 Freq4 Freqg5 Freqg6 Freq7 Freq8 Freq9 FreqlO

[

[

1 0 0 8 0 2 0 0 0 0 0
2 0 0 8 0 0 0 2 0 0 0
3 0 0 0 0 0 0 0 0 10 0

231

Allocation of Prescription Drugs

Obs Block Set Brand Count
1 1 1 Brand 1 0
2 1 1 Brand 2 0
3 1 1 Brand 3 8
4 1 1 Brand 4 0
5 1 1 Brand 5 2
6 1 1 Brand 6 0
7 1 1 Brand 7 0
8 1 1 Brand 8 0
9 1 1 Brand 9 0

10 1 1 Brand 10 0
11 1 1 0
12 1 2 Brand 1 0
13 1 2 Brand 2 0
14 1 2 Brand 3 8
15 1 2 Brand 4 0
16 1 2 Brand 5 0
17 1 2 Brand 6 0
18 1 2 Brand 7 2
19 1 2 Brand 8 0
20 1 2 Brand 9 0
21 1 2 Brand 10 0
22 1 2 0
23 1 3 Brand 1 0
24 1 3 Brand 2 0
25 1 3 Brand 3 0
26 1 3 Brand 4 0
27 1 3 Brand 5 0
28 1 3 Brand 6 0
29 1 3 Brand 7 0
30 1 3 Brand 8 0
31 1 3 Brand 9 10
32 1 3 Brand 10 0
33 1 3 0

The next step aggregates the data. It stores in the variable Count the number of times each aternative of each
choice set was chosen. This creates a data set with 297 observations (3 blocks x 9 sets x 11 alternatives = 297).

* Aggregate, store the results back in count.;

proc summary data=allocs nway missing;
class set brand;
output sum(count)=Count out=allocs(drop= type freq);
run;

The next step rolls out the experimental design data set to match the choice alocations data set. The data set

is transposed from one row per choice set to one row per aternative per choice set. This data set aso has 297
observations. Aswe saw in many previous examples, the %MK TROL L macro can be used to processthe design.

232

data key(keep=Brand Price);
input Brand $ 1-8 Price $;

datalines;
Brand 1 Brandl
Brand 2 Brand2
Brand 3 Brand3
Brand 4 Brand4
Brand 5 Brand5
Brand 6 Brandé6
Brand 7 Brand?7
Brand 8 Brand$8
Brand 9 Brand?9
Brand 10 BrandlO

$mktroll (design=sasuser.allocdes, key=key, alt=brand, out=rolled)

proc print data=rolled(obs=11); format price price.; run;

Allocation of Prescription Drugs

Obs Set Brand Price
1 1 Brand 1 $50
2 1 Brand 2 $75
3 1 Brand 3 $50
4 1 Brand 4 $100
5 1 Brand 5 $100
6 1 Brand 6 $100
7 1 Brand 7 $75
8 1 Brand 8 $75
9 1 Brand 9 $75

10 1 Brand 10 $50
11 1

Both data sets must be sorted the same way before they can be merged. The constant alternative, indicated by a
missing brand, is last in the design choice set and hence is out of order. Missing must come before nonmissing
for the merge. The order is correct in the ALLOCS data set since it was created by PROC SUMMARY with
Brand asaclass variable.

proc sort data=rolled; by set brand; run;

Thedataare merged along with error checking to ensure that the merge proceeded properly. Both data sets should
have the same observations and set and brand variables, so the merge should be oneto one.

data allocs2;
merge allocs(in=flagl) rolled(in=flag2);
by set brand;
if flagl ne flag2 then put ’'ERROR: Merge is not 1 to 1.’;
format price price.;
run;

proc print data=allocs2 (obs=22);
var brand price count;
sum count;
by notsorted set;
run;

In the aggregate and combined data set, we see how often each aternative was chosen for each choice set. For

233

example, in the first choice set, the constant alternative was chosen zero times, Brand 1 at $50 was chosen 103
times, and so on. The 11 alternatives were chosen a total of 1000 times, 100 subjects times 10 choices each.

Allocation of Prescription Drugs

———————————————————————————————————— Set=l -----m e - -

Obs Brand Price Count
1 0

2 Brand 1 $50 103

3 Brand 2 $75 58

4 Brand 3 $50 318

5 Brand 4 $100 99

6 Brand 5 $100 54

7 Brand 6 $100 83

8 Brand 7 $75 71

9 Brand 8 $75 58
10 Brand 9 $75 100
11 Brand 10 $50 56
Set 1000

———————————————————————————————————— Set=2 - -- - m e - -

Obs Brand Price Count
12 10
13 Brand 1 $100 73
14 Brand 2 $100 76
15 Brand 3 $100 342
16 Brand 4 $50 55
17 Brand 5 $75 50
18 Brand 6 $100 77
19 Brand 7 $75 95
20 Brand 8 $100 71
21 Brand 9 $50 72
22 Brand 10 $100 79
Set 1000

At this point, the data set contains 297 observations (27 choice sets times 11 alternatives) showing the number
of times each aternative was chosen. This data set must be augmented to al so include the number of times each
aternative was not chosen. For example, in the first choice set, brand 1 was chosen 103 times, which means it
was not chosen 0 + 58 + 318 + 99 + 54 + 83 + 71 + 58 + 100 + 56 = 897 times. We use amacro, %oMKTALLO
for “marketing all ocation study” to process the data. We specify theinput data=allocs2 dataset, the output
out=allocs3 dataset, the number of alternativesincluding the constant (nalts=%eval (&nalts + 1)),
the variables in the data set except the frequency variable (vars=set brand price), and the frequency
variable (Ereqg=Count). The macro counts how many times each alternative was chosen and not chosen and
writes the results to the out = data set along with the usual ¢ = 1 for chosen and ¢ = 2 for unchosen.

%mktallo(data=allocs2, out=allocs3, nalts=%eval (&nalts + 1),
vars=set brand price, freg=Count)

proc print data=allocs3 (obs=22);
var set brand price count c;
run;

234

Thefirst 22 records of the allocation data set are shown next.

Allocation of Prescription Drugs

Obs Set Brand Price Count c
1 1 0 1
2 1 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
7 1 Brand 3 $50 318 1
8 1 Brand 3 $50 682 2
9 1 Brand 4 $100 99 1

10 1 Brand 4 $100 901 2
11 1 Brand 5 $100 54 1
12 1 Brand 5 $100 946 2
13 1 Brand 6 $100 83 1
14 1 Brand 6 $100 917 2
15 1 Brand 7 $75 71 1
16 1 Brand 7 $75 929 2
17 1 Brand 8 $75 58 1
18 1 Brand 8 $75 942 2
19 1 Brand 9 $75 100 1
20 1 Brand 9 $75 900 2
21 1 Brand 10 $50 56 1
22 1 Brand 10 $50 944 2

In thefirst choice set, the constant alternative is chosen zero times and not chosen 1000 times, Brand 1 is chosen
103 times and not chosen 1000 — 103 = 897 times, Brand 2 is chosen 58 times and not chosen 1000 — 58 = 942
times, and so on. Note that alocation studies do not aways have fixed sums, so it is important to use the
%MKTALLO macro or some other approach that actually counts the number of times each alternative was
unchosen. It is not always sufficient to simply subtract from afixed constant.

Coding and Analysis

The next step codes the design for analysis. Dummy variables are created for Brand and Price. All of the
PROC TRANSREG options have been discussed in other examples.

proc transreg design data=allocs3 nozeroconstant norestoremissing;
model class(brand price / zero=none) / lprefix=0;
output out=coded(drop= type name intercept);
id set c count;
run;

Analysis proceedslike it hasin al other examples. We stratify by choice set number. We do not need to stratify
by Block since choice set number does not repeat within block.

proc phreg data=coded;
where count > 0;
model c*c(2) = & trgind / ties=breslow;
freq count;
strata set;
run;

We used the where statement to exclude observationswith zero frequency; otherwise PROC PHREG complains
about them.

235

Multinomial Logit Model Results

Here are the results. Recall that we used $phchoice (on) on page 71 to customize the output from PROC
PHREG.

Allocation of Prescription Drugs
The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value (s) 2
Frequency Variable Count

Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 11000 1000 10000
2 2 11000 1000 10000
3 3 11000 1000 10000
4 4 11000 1000 10000
5 5 11000 1000 10000
6 6 11000 1000 10000
7 7 11000 1000 10000
8 8 11000 1000 10000
9 9 11000 1000 10000
10 10 11000 1000 10000
11 11 11000 1000 10000
12 12 11000 1000 10000
13 13 11000 1000 10000
14 14 11000 1000 10000
15 15 11000 1000 10000
16 16 11000 1000 10000
17 17 11000 1000 10000
18 18 11000 1000 10000
19 19 11000 1000 10000
20 20 11000 1000 10000
21 21 11000 1000 10000
22 22 11000 1000 10000
23 23 11000 1000 10000
24 24 11000 1000 10000
25 25 11000 1000 10000
26 26 11000 1000 10000
27 27 11000 1000 10000
Total 297000 27000 270000

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

236

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 502505.13 489044.70
AIC 502505.13 489068.70
SBC 502505.13 489167.14

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisg
Likelihood Ratio 13460.4283 12 <.0001
Score 18359.1337 12 <.0001
Wald 14099.9841 12 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSqg
Brand 1 1 2.09228 0.06766 956.1751 <.0001
Brand 2 1 2.08440 0.06769 948.1852 <.0001
Brand 3 1 3.53545 0.06484 2973.0894 <.0001
Brand 4 1 2.09032 0.06767 954.1811 <.0001
Brand 5 1 2.07845 0.06771 942.1769 <.0001
Brand 6 1 2.02852 0.06790 892.5031 <.0001
Brand 7 1 2.06241 0.06777 926.0726 <.0001
Brand 8 1 2.07895 0.06771 942.6783 <.0001
Brand 9 1 2.11027 0.06760 974.5421 <.0001
Brand 10 1 2.05684 0.06779 920.5101 <.0001
$50 1 0.04627 0.01617 8.1842 0.0042
$75 1 -0.02108 0.01640 1.6525 0.1986

$100 0 0 . . .

The output shows that there are 27 strata, one per choice set, each consisting of 1000 chosen alternatives (10
choices by 100 subjects) and 10,000 unchosen alternatives. All of the brand coefficients are “significant” *, with
the Brand 3 effect being by far the strongest. Thereis avery small effect for Price = $50.

*We will soon see that this fact should be ignored.

Analyzing Proportions

Recall that we collected data by asking physiciansto report which brands they would prescribe the next ten times
they write prescriptions. Alternatively, we could ask them to report the proportion of time they would prescribe
each brand. We can simulate having proportion data by dividing our count data by 10. Then our frequencieswill

not be integers. We specify thenotruncate option on PROC PHREG to allow noninteger frequencies.

data coded2;
set coded;

count = count / 10;

run;

proc phreg data=coded2;
where count > 0;

model c*c(2)

= & trgind / ties=breslow;

freq count / notruncate;

strata set;
run;

237

When we do this, we see the number of alternatives and the number chosen and not chosen decrease by afactor of
10 as do al of the Chi-Squaretests. The coefficients are unchanged. Thisimplies that market share calculations
areinvariant to the different scalings of the frequencies. However, the p-values are not invariant. The sample size

isartificialy inflated by the data manipul ations so p-values are not interpretable in an all ocation study.

Summary of

Stratum

W oo Jo Ul WD PR

P RREPRRRRRR
0 Jo Ul WDNDBKEO

Allocation of Prescription Drugs

The PHREG Procedure

Model Information

Data Set

Dependent Variable
Censoring Variable
Censoring Value(s)
Frequency Variable
Ties Handling

WORK .CODED2
c

c

2

Count
BRESLOW

Subjects, Sets, and Chosen and Unchosen Alternatives

Number of
Set Alternatives
1 1100.0
2 1100.0
3 1100.0
4 1100.0
5 1100.0
6 1100.0
7 1100.0
8 1100.0
9 1100.0
10 1100.0
11 1100.0
12 1100.0
13 1100.0
14 1100.0
15 1100.0
16 1100.0
17 1100.0
18 1100.0

Chosen
Alternatives

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

O OO0 000000000000 OO OoOOo

Not
Chosen

1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.

O OO0 0000000000 O0OOoOOoOOoOOo

238

1100.0
1100.0
1100.0
1100.0
1100.0
1100.0
1100.0
1100.0
1100.0

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
1000.0

Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand 1

$50
$75
$100

Convergence Status

29700.0

2700.0

27000.0

Convergence criterion (GCONV=1E-8) satisfied.

Allocation of Prescription Drugs

Without

Covariates

37816.553
37816.553
37816.553

With
Covariates

36470.511
36494.511
36565.323

Testing Global Null Hypothesis: BETA=0

Chi-Square

1346.0428
1835.9134
1409.9984

DF Pr >

12
12
12

Multinomial Logit Parameter Estimates

19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
tal
Criterion
-2 LOG L
AIC
SBC
Test
Likelihood Ratio
Score
Wald
Parameter
DF Estimate
1 1 2.09228
2 1 2.08440
3 1 3.53545
4 1 2.09032
5 1 2.07845
6 1 2.02852
7 1 2.06241
8 1 2.07895
9 1 2.11027
0 1 2.05684
1 0.04627
1 -0.02108
0 0

Standard
Error

0.21397
0.21406
0.20504
0.21399
0.21413
0.21472
0.21432
0.21412
0.21377
0.21438

0.05114
0.05187

.

Chi-Square

95.6175
94.8185
297.3089
95.4181
94.2177
89.2503
92.6073
94.2678
97.4542
92.0510

0.8184
0.1652

.

Chisqg

<.0001
<.0001
<.0001

Pr > ChiSqg

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

0.3656
0.6844

.

239

Chair Design with Generic Attributes

This study illustrates creating an experimental design for a purely generic choice model. In a purely generic
study there are no brands, just bundles of attributes. Say a particular manufacturer is interested in designing one
or more new chairs. They can vary the attributes of the chairs, present subjects with descriptions of competing
chair designs, and model the effects of the attributes on choice.

Factor Attribute Levels

X1 Color 3 Colors
X2 Back 3 Styles
X3 Seat 3 Styles

X4 ArmRest 3 Styles
X5 Material 3 Materials

Assume subjects will be shown descriptions of three chairs at atime. If we were to model our design after the
approach used in previous examples, we would use the %MKTDES autocall macro to create a design with 15
factors, five for the first chair, five for the second chair, and five for the third chair. This design would have to
haveat least 15 x (3 — 1) + 1 = 31 runs. Hereis how we might have made the design.

title ’Generic Chair Attributes’;

* This design will not be used;
%mktdes (factors=x1-x15=3, n=33)

The %MKTDES approach to designing an experiment like this allows you to fit very general models including
model s with alternative-specific effects and even mother logit models. However, at analysis time for this purely
generic model, we will fit a model with 10 parameters, two for each of the five factors, class (x1-x5).
Creating adesign with over 30 choice setsis overkill for a problem like this. Since we do not need a complicated
model for this example, we will instead use adifferent approach. Recall the discussion of linear design efficiency,
choice model design efficiency, and using linear design efficiency as a surrogate for choi ce design efficiency from
the“Preliminaries’ section starting on page 68. Instead of using linear design efficiency as a surrogate for choice
design efficiency, we can directly optimize choice design efficiency given an assumed model and 3 parameter
vector.

Purely Generic Attributes, Alternative Svapping

Thispart of theexamplewill illustrate creating an efficient choice design using an algorithm that swapsindividual
alternatives (as opposed to entire choice sets) in and out of the design. First, we will use the %MKTDES macro
to create a candidate set. It will consist of 5 three-level factors, one for each of the five generic attributes. It
will also consist of three flag variables, £1-£3, one for each aternative. Since there are three alternatives, the
candidate set must contain those observations that may be used for aternative 1, those observations that may
be used for alternative 2, and those observations that may be used for aternative 3. The observations for the
different alternatives may be all different, all the same, or any pattern in between depending on the problem. For
example, the candidate set may contain one observation that is only used for the last, constant alternative. The
flag variable for each alternative consists of ones for those candidates that may be included for that alternative
and zeros or missings for those candidates that may not be included for that alternative. In this purely generic
case, each flag variable consists entirely of onesindicating that any candidate can appear in any alternative. The
following code creates the candidates.

%mktdes (factors=x1-x5=3 £f1-£3=1, run=factex)

proc print; run;

We specified the run=£factex option in the %oMKTDES macro. We do not need to run PROC OPTEX since
we are just creating a candidate set. The columns x1-x5 are the generic attributes, and £1- £3 are the flags.
The canidate set has 27 observations, although we certainly could create larger candidate sets for this problem
by specifying the size= option.

240

Generic Chair Attributes

Obs x1 x2 x3 x4 x5 f1 f2 £3
1 1 1 1 1 1 1 1 1
2 1 1 2 3 3 1 1 1
3 1 1 3 2 2 1 1 1
4 1 2 1 3 3 1 1 1
5 1 2 2 2 2 1 1 1
6 1 2 3 1 1 1 1 1
7 1 3 1 2 2 1 1 1
8 1 3 2 1 1 1 1 1
9 1 3 3 3 3 1 1 1

10 2 1 1 3 2 1 1 1
11 2 1 2 2 1 1 1 1
12 2 1 3 1 3 1 1 1
13 2 2 1 2 1 1 1 1
14 2 2 2 1 3 1 1 1
15 2 2 3 3 2 1 1 1
16 2 3 1 1 3 1 1 1
17 2 3 2 3 2 1 1 1
18 2 3 3 2 1 1 1 1
19 3 1 1 2 3 1 1 1
20 3 1 2 1 2 1 1 1
21 3 1 3 3 1 1 1 1
22 3 2 1 1 2 1 1 1
23 3 2 2 3 1 1 1 1
24 3 2 3 2 3 1 1 1
25 3 3 1 3 1 1 1 1
26 3 3 2 2 3 1 1 1
27 3 3 3 1 2 1 1 1

Next, we will search that candidate set for an efficient design for the model specification class (x1-x5) and
the assumption 3 = 0. We will use the %CHOICEFF autocall macro to do this. (All of the autocall macros used
in this report are documented starting on page 261.) This approach is based on the work of Huber and Zwerina
(1996) who proposed constructing efficient experimental designsfor choice experimentsunder an assumed model
and 3. The %CHOICEFF macro uses a modified Federov algorithm (Federov (1972) and Cook and Nachtsheim
(1980)) to optimize the choice model variance matrix. This specification requests a generic design with 9 choice
sets each consisting of three alternatives.

%choiceff (data=candl, model=class(x1-x5), nsets=9,
seed=9999, flags=fl-f3, beta=zero);

The data=cand1 option names the input data set of candidates. Themodel=class (x1-x5) option spec-
ifies the most general model that might be considered at analysistime. The nsets=9 specifies the number of
choice sets. Note that this is considerably smaller than the minimum of 31 that would be required if we were
just using the %MK TDES linear-design approach. The seed=9999 option specifies the random number seed.
The flags=£1- £3 specifies the flag variables for aternatives 1 to 3. Implicitly, this option also specifies the
fact that there are three aternatives since three flag variables were specified. Thebeta=zero option specifies
the assumption 3 = 0. A vector of numberslikebeta=-1 0 -1 0 -1 0 -1 0 -1 0 -1 0 couldbe
specified. When you wish to assume al parameters are zero, you can specify beta=zero instead of typing a
vector of the zeros. You can also omit thebeta= option if you just want the macro to list the parameters. You
can use thislist to ensure that you specify the parametersin the right order.

Thefirst part of the output from the macrois alist of al of the effects generated and the assumed values of 3. It
is very important to check this and make sureit is correct. In particular, when you are explicitly specifying the 3
vector, you need to make sure you specified all of the valuesin the right order.

241

O VW o NJoaudh WwWwbhR B

[

Generic Chair Attributes

Name Beta

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52

O OO OO0 o oo oo

Label

x1
x1
x2
x2
x3
x3
x4
x4
x5
x5

MNEREPNMREPDNMREPDMDMREDNDR

Next, the macro produces the iteration history. Note that thisis not output from PROC OPTEX. The macro uses
PROC IML and a modified Federov algorithm to iteratively improve the efficiency of the choice design given
the specified candidates, model, and 3. Also note that these efficiencies are not on a 0 to 100 scale. In fact for
this design, 1.7320508076 is the optimum. Iterations can be slow, so by default only two sets of iterations are
performed. You can increase this by specifying themaxiter= option.

Design

Iteration

D-Efficiency

Design

Iteration

0.79212136
1.632279118
1.7320508076
1.7320508076

D-Efficiency

.2624328172
.6126403193
.5773502692
.5773502692

0.8952159032
1.5464072418
1.679907245
1.679907245

.1170489671
.6466601895
.5952709609
.5952709609

Next, the macro shows which design it chose and the final efficiency and D-Error (D-Efficiency = 1/ D-Error).

Final Results:

Design
Efficiency
D-Error

=1
1.7320508076
0.5773502692

Next, it shows the variance, standard error, and df for each effect. It is important to ensure that each effect is

estimable: (df = 1).

242

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error
1 x11 x1 1 0.66667 1 0.81650
2 x12 x1l 2 0.66667 1 0.81650
3 x21 x2 1 0.66667 1 0.81650
4 x22 x2 2 0.66667 1 0.81650
5 x31 x3 1 0.66667 1 0.81650
6 x32 x3 2 0.66667 1 0.81650
7 x41 x4 1 0.66667 1 0.81650
8 x42 x4 2 0.66667 1 0.81650
9 x51 x5 1 0.66667 1 0.81650
10 x52 x5 2 0.66667 1 0.81650

10

The data set BEST contains the final, best design found.
proc print; run;

The data set contains in the variable Design the number of the design with the maximum efficiency, in E£ -
ficiency theefficiency of thisdesign, in Index the candidate set observation number, in Set the choice set
number, in Prob the probability that this alternative will be chosen given 3, in n the observation number, in
x1-x5 thedesign, andin £1- £3 theflags.

Generic Chair Attributes

Obs Design Efficiency Index Set Prob n x1 x2 x3 x4 x5 £f1 £f2 f£3
1 1 1.73205 6 1 0.33333 1 1 2 3 1 1 1 1 1
2 1 1.73205 10 1 0.33333 2 2 1 1 3 2 1 1 1
3 1 1.73205 26 1 0.33333 3 3 3 2 2 3 1 1 1
4 1 1.73205 9 2 0.33333 4 1 3 3 3 3 1 1 1
5 1 1.73205 22 2 0.33333 5 3 2 1 1 2 1 1 1
6 1 1.73205 11 2 0.33333 6 2 1 2 2 1 1 1 1
7 1 1.73205 16 3 0.33333 7 2 3 1 1 3 1 1 1
8 1 1.73205 23 3 0.33333 8 3 2 2 3 1 1 1 1
9 1 1.73205 3 3 0.33333 9 1 1 3 2 2 1 1 1

10 1 1.73205 2 4 0.33333 10 1 1 2 3 3 1 1 1
11 1 1.73205 13 4 0.33333 11 2 2 1 2 1 1 1 1
12 1 1.73205 27 4 0.33333 12 3 3 3 1 2 1 1 1
13 1 1.73205 21 5 0.33333 13 3 1 3 3 1 1 1 1
14 1 1.73205 14 5 0.33333 14 2 2 2 1 3 1 1 1
15 1 1.73205 7 5 0.33333 15 1 3 1 2 2 1 1 1
16 1 1.73205 19 6 0.33333 16 3 1 1 2 3 1 1 1
17 1 1.73205 8 6 0.33333 17 1 3 2 1 1 1 1 1
18 1 1.73205 15 6 0.33333 18 2 2 3 3 2 1 1 1
19 1 1.73205 4 7 0.33333 19 1 2 1 3 3 1 1 1
20 1 1.73205 18 7 0.33333 20 2 3 3 2 1 1 1 1
21 1 1.73205 20 7 0.33333 21 3 1 2 1 2 1 1 1
22 1 1.73205 12 8 0.33333 22 2 1 3 1 3 1 1 1
23 1 1.73205 5 8 0.33333 23 1 2 2 2 2 1 1 1
24 1 1.73205 25 8 0.33333 24 3 3 1 3 1 1 1 1

243

25 1 1.73205 1 9 0.33333 25 1 1 1 1 1 1 1 1
26 1 1.73205 24 9 0.33333 26 3 2 3 2 3 1 1 1
27 1 1.73205 17 9 0.33333 27 2 3 2 3 2 1 1 1

This design has 27 runs (9 choice sets x 3 alternatives). This happens to be the same number as the number of
candidate aternatives from the fractional-factorial design, although in general these numbers do not have to be
the same. Noticethe Index variable. It contains the candidate set observation number, that is the number of the
observation in the candidate set that matches this aterative. Notice that in this problem, each number appears
once, so each candidate was selected for inclusion in the design exactly once. For this problem (a generic design
with 5 three-level factors, 9 choice sets, three dternatives, and 3 = 0) the optimal design can be constructed by
optimally sorting the 27 alternatives in a fractional-factorial design. Also notice that in this design, each level
occurs exactly oncein each factor and each choice set.

Generic Attributes, a Constant Alternative, and Alter native Svapping

Now let's make a design for the same problem but this time with a constant alternative. We will first use the
%MKTDES macro just like before to make a design for the nonconstant alternatives and store the results in a
candidate set CAND1. Then we will use the %MK TDES macro again to create the constant alternative. Next,
we use a DATA step to combine the two candidate sets.

%mktdes (factors=x1-x5=3 f1-£3=1, run=factex)
%mktdes (factors=x1-x5=1 f4=1, run=plan, cand=cand2)
data cand3; set candl cand2; run;

proc print; run;

Hereis the candidate set.

Generic Chair Attributes

Obs x1 x2 x3 x4 x5 f1 f2 £3 f4
1 1 1 1 1 1 1 1 1
2 1 1 2 3 3 1 1 1
3 1 1 3 2 2 1 1 1
4 1 2 1 3 3 1 1 1
5 1 2 2 2 2 1 1 1
6 1 2 3 1 1 1 1 1
7 1 3 1 2 2 1 1 1
8 1 3 2 1 1 1 1 1
9 1 3 3 3 3 1 1 1

10 2 1 1 3 2 1 1 1
11 2 1 2 2 1 1 1 1
12 2 1 3 1 3 1 1 1
13 2 2 1 2 1 1 1 1
14 2 2 2 1 3 1 1 1
15 2 2 3 3 2 1 1 1
16 2 3 1 1 3 1 1 1
17 2 3 2 3 2 1 1 1
18 2 3 3 2 1 1 1 1

244

19 3 1 1 2 3 1 1 1
20 3 1 2 1 2 1 1 1
21 3 1 3 3 1 1 1 1
22 3 2 1 1 2 1 1 1
23 3 2 2 3 1 1 1 1
24 3 2 3 2 3 1 1 1
25 3 3 1 3 1 1 1 1
26 3 3 2 2 3 1 1 1
27 3 3 3 1 2 1 1 1 .
28 1 1 1 1 1 1

Thefirst 27 observations may be used for any of thefirst three alternatives and the 28¢h observation may only be
used for fourth or constant alternative. In this example, the constant alternative is composed solely from the first
level of each factor. Of course this could be changed depending on the situation.

The %CHOICEFF macro invocation is the same as before, except now we have four flags, and now we ask for
more iterations.

%choiceff (data=cand3, model=class(x1-x5), nsets=9, maxiter=10,
seed=9999, flags=fl-f4, beta=zero);
proc print; run;

You can see in the final design that there are now four aternatives and the last alternative in each choice set is
constant and is always flagged by £4=1. In the interest of space, most of the iteration histories are omitted.

Generic Chair Attributes

n Name Beta Label
1 x11l 0 x1l 1
2 x12 0 x1l 2
3 x21 0 x2 1
4 x22 0 X2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Design

Iteration

D-Efficiency

Design

Iteration

0.8599706425
1.3044476431
1.4152340172
1.4243278149
1.4282701243

D-Efficiency

1.1628303928

0.766608001
0.7065969217
0.7020855659
0.7001476702

Final Results:

W o Joaud WwWwbhR

[
o

Obs Design Efficiency Index Set Prob n

00 Jo Ul B WDNBRE
0 00 00 0 0 0 0 0

Design
Efficiency
D-Error

Variable
Name

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52

1.49630
1.49630
1.49630
1.49630

1.49630
1.49630
1.49630
1.49630

0.7424273661
1.3594472951

1.436915059
1.4962970242
1.4962970242

Generic Chair

8
1.496297024
0.668316506

Generic Chair

Label V.

x1
x1
x2
x2
x3
x3
x4
x4
x5
x5

NEPENMNREPDNMRPDMDMDREDNDR

Generic Chair

26 1 0.2
21 1 0.2
15 1 0.2
28 1 0.2
7 2 0.2
14 2 0.2
21 2 0.2
28 2 0.2

1.3469331085
0.7355930631
0.6959353608
0.6683165066
0.6683165066

Attributes

2
6

Attributes

ariance DF

0.76376
0.85986
0.77177
0.88889
0.76376
0.85986
0.76376
0.85986
0.77177
0.88889

HRERHERRPRRRERRRER

10

Attributes

5 253
5 254
5 255
5 256

5 257
5 258
5 259
5 260

HWNHE RBENDWW
HFRENMWRNDR W

R WNRE FPWWN

x1 x2 x3 x4

HF WERENDRFRWWDND

Standard
Error

0.87394
0.92729
0.87851
0.94281
0.87394
0.92729
0.87394
0.92729
0.87851
0.94281

x5 f1 £2 £3 f4

3 1
1 1
2 1
1 .
2 1
3 1
1 1
1 .

N

B R

e

B R

245

246

9 8 1.49630 27 3 0.25 261 3 3 3 1 2 1 1 1
10 8 1.49630 2 3 0.25262 1 1 2 3 3 1 1 1
11 8 1.49630 13 3 0.25263 2 2 1 2 1 1 1 1 .
12 8 1.49630 28 3 0.25 264 1 1 1 1 1 . 1
13 8 1.49630 6 4 0.25 265 1 2 3 1 1 1 1 1
14 8 1.49630 17 4 0.25 266 2 3 2 3 2 1 1 1
15 8 1.49630 19 4 0.25267 3 1 1 2 3 1 1 1 .
16 8 1.49630 28 4 0.25 268 1 1 1 1 1 . 1
17 8 1.49630 11 5 0.25 269 2 1 2 2 1 1 1 1
18 8 1.49630 9 5 0.25 270 1 3 3 3 3 1 1 1
19 8 1.49630 22 5 0.25 271 3 2 1 1 2 1 1 1 .
20 8 1.49630 28 5 0.25 272 1 1 1 1 1 . 1
21 8 1.49630 5 6 0.25273 1 2 2 2 2 1 1 1
22 8 1.49630 12 6 0.25 274 2 1 3 1 3 1 1 1
23 8 1.49630 25 6 0.25 275 3 3 1 3 1 1 1 1 .
24 8 1.49630 28 6 0.25 276 1 1 1 1 1 . 1
25 8 1.49630 23 7 0.25 277 3 2 2 3 1 1 1 1
26 8 1.49630 16 7 0.25278 2 3 1 1 3 1 1 1
27 8 1.49630 3 7 0.25279 1 1 3 2 2 1 1 1 .
28 8 1.49630 28 7 0.25 280 1 1 1 1 1 . 1
29 8 1.49630 4 8 0.25281 1 2 1 3 3 1 1 1
30 8 1.49630 18 8 0.25 282 2 3 3 2 1 1 1 1
31 8 1.49630 20 8 0.25 283 3 1 2 1 2 1 1 1 .
32 8 1.49630 28 8 0.25 284 1 1 1 1 1 . 1
33 8 1.49630 24 9 0.25 285 3 2 3 2 3 1 1 1
34 8 1.49630 8 9 0.25 286 1 3 2 1 1 1 1 1
35 8 1.49630 10 9 0.25 287 2 1 1 3 2 1 1 1 .
36 8 1.49630 28 9 0.25 288 1 1 1 1 1 1

When there were three aternatives, each aternative had a probability of choice of 1/3, and now with four al-
ternatives, the probability is 1/4. They are al equal because of the assumption 3 = 0. With other assumptions
about 3, typically the probabilities will not all be equal. Note that missing flags are treated the same as zero.
Also notice that some candidate alternatives appear in the design more than once and some do not appear at al.

Generic Attributes, a Constant Alternative, and Choice Set Swapping

The %CHOICEFF macro can be used in avery different way. Instead of providing a candidate set of alternatives
to swap in and out of the design, you can provide a candidate set of entire choice sets. For this particular example,
swapping aternatives will almost certainly be better. However, sometimes, if you need to impose restrictions on
which alternative can appear with which other aternative, then you must use the set swapping options. We will
start by using the %MKTDES macro to make a candidate design, with one run per choice set and one factor
for each attribute of each alternative (just like we did in the vacation, fabric softener, and food examples). Then
we will process the candidates from one row per choice set to one row per aternative per choice set using the
%MKTROLL macro. We will then run the %CHOICEFF macro, only this time we will specify nalts=4
instead of £1lags=£1-£4. Since there are no aternative flag variables to count, we have to tell the macro how
many alternatives are in each choice set.

%mktdes (factors=x1-x15=3, run=factex, size=81 * 81)

data key;
input (x1-x5) ($):;
datalines;
xl x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15

.

~

%mktroll (design=candl, key=key, out=rolled)

* Code the constant alternative;
data cand2;
set rolled;

if alt_

run;

= 4 then do;

x1l = 1; x2 = 1; x3 = 1; x4

%choiceff (data=cand2, model=class(x1l-x5), nsets=9,

beta=zero,

seed=109) ;

end;

nalts=4,

247

O VW oo o UL B WDNRE =]

[y

Generic Chair Attributes

Name Be

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52

ta Label

x1
x1
x2
x2
x3
x3
x4
x4
x5
x5

O O OO0 oo o oo
NEFEFNMNREMEDMDMDEREDNDR

Generic Chair Attributes

1.1952954689
0.7550920443
0.7403227383
0.730814997
0.730814997

1.1039169932
0.7493546743
0.7249970671
0.7249970671

Generic Chair Attributes

Design Iteration D-Efficiency

1 0 0.8366132274

1 1.3243418568

2 1.3507622396

3 1.3683353572

4 1.3683353572

Design Iteration D-Efficiency

2 0 0.905865211

1 1.3344815671

2 1.3793159247

3 1.3793159247

Final Results: Design = 2

Efficiency = 1.3793159247
D-Error = 0.7249970671

248

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error
1 x11 x1 1 0.80431 1 0.89683
2 x12 x1l 2 1.06350 1 1.03126
3 x21 x2 1 0.73761 1 0.85884
4 x22 x2 2 0.96773 1 0.98373
5 x31 x3 1 0.85405 1 0.92415
6 x32 x3 2 0.93511 1 0.96701
7 x41 x4 1 0.97698 1 0.98842
8 x42 x4 2 0.95917 1 0.97937
9 x51 x5 1 0.85520 1 0.92477
10 x52 x5 2 0.99226 1 0.99612

10

Data collection, processing, and analysis is basically the same as before, so we will not go through another
example of it. The only differenceis that our design data set is already arrayed with one row per aternative, so
we will not have to put it in that form during the processing step. However, note that the model statement in
PROC TRANSREG should match or be no more complicated than the model specification that generated the
design:

model class(x1-x5);

A model with fewer degrees of freedom is safe, although the design will be suboptimal. For example, if x1-x5
are numeric, this would be safe;

model identity(x1-x5);

However, using this design in a branded study and specifying alternative-specific effects like this could lead to a
lot of unestimable parameters.

* Bad idea for this design!!;
model class (brand)
class (brand * x1 brand * x2 brand * x3 brand * x4 brand * x5);

Design Algorithm Comparisons

It is instructive to compare the three approaches outlined in this report in the context of this problem. There
are 33*° = 14, 348,907 choice sets for this problem (three-level factors and 3 alternatives times 5 factors per
alternative). If we wereto usethe pure linear design approach using the %MK TDES macro and FACTEX/PLAN
and OPTEX, we could never begin to consider all possible candidate choice sets. Similarly, with the choice set
swapping agorithm of the %CHOICEFF macro, we could never begin to consider all possible candidate choice
sets. Furthermore, with the linear design approach, we could not create a design with nine choice sets since the
minimum sizeis2 x 15+ 1 = 31. Now consider the alternative swapping algorithm. It uses at most a candidate
set with only 244 observations (3° +1). Fromit, every possible choice set can potentially be constructed although
the macro will only consider atiny fraction of the possibilities. So the alternative swapping algorithm generally
has more freedom to find a good design.

Both uses of the %CHOICEFF macro have the advantage that they are explicitly minimizing the variances of
the parameter estimates given a model and a 3 vector. They can be used to produce smaller, more specialized,
and better designs. However, if the 3 vector or model is badly misspecified, the designs could be horrible. How
badly do things have to be misspecified before you will have problems? Who knows. More research is needed.
In contrast, the linear model %MKTDES approach is very conservative and safe in that it should let you specify
avery general model and still produce estimable parameters. The cost is you may be using many more choice
sets than you need, particularly for nonbranded generic attributes. If you really have some information about

249

your parameters, you should use them to produce a smaller and better design. However, if you have little or no
information about parameters and if you anticipate specifying very general models like mother logit, then you
probably want to use the linear design approach.

250

Other Design Strategies

Thissectionillustrates some design strategiesthat are not in other sections. Included are examplesfor factorswith
many levels, when quantitative factorshave extralevels, designs with many factors, improving an existing design,
adding random choice sets to the candidate set, creating candidate sets by permuting columns, and efficiently
augmenting fixed choice sets. We will not actually use any designs from this section.

Very Big Designs

A researcher needs to design a choice experiment with 16 alternatives. Each alternative is composed of 1 eight-
level factor, 3 four-level factors, and 15 two-level factors. So the full designis 2 240448816 (240 two-level factors,
48four-level factors, and 16 eight-level factors). Since 2, 4, and 16 are multiples of 2, we can makeadesignfrom
adesign with al two-level factors as follows. This code creates each eight-level factor from the main effects and
all interactions of 3 two-level factors and each four-level factor from the main effects and al interactions of 2
two-level factors.

%$mktdes (factors=x1-x240=2 yl-y48=4 z1-z16=8, run=factex)
Unfortunately, on many computers, this step will not run due to insufficient memory.

The fact that we could not directly create adesign for this problem means we need to take aless direct approach.
We were ableto get adesignin less than five minutes asfollows. First, we use the %MK TDES macro to generate
adesign for just the four and eight-level factors. In addition, we create ninefactorsa b ¢ d e £ g h 1i,
by specifying otherfac=a|b|c|d|e|f|g]|h|i,themain effects and interactions of 9 two-level variables.
By specifying these termsin the other fac= option, we do not ensure that they are estimable. They only get
specified in the PROC FACTEX factors statement and not in the estimate= specification.

%let indexes
%let nindexes
%let indbar

abcdefghij;
9;
alblc|d|e|f[g|h|i;

%mktdes (otherfac=&indexes, factors=f1-£f48=4 el-el6=8,
nlev=2, size=512, run=factex)

Here are some of the lines of code that the macro generated.

proc factex;
factors abcde f ghi 1- 144 / nlev=2;
size design=512;

model estimate=(

1.2
95| 96

97| 98| 99

142| 143| 144
)i

251

output out=Candl (drop=_:)
[[1 2]=fl nvals=(1 to 4)

[95 961=f48 nvals=(1 to 4)
[97 98 99]=el nvals=(1l to 8)

[142 143 144]=el6 nvals=(1 to 8)
run; quit;
Next, we use a DATA step to add a variable y (not of interest) so PROC GLM can tell us which effects in
alb|c|d|e|£|g|h|iareestimable, giventhefour and eight-level factors of interest. The results were stored
inthe outstat= dataset RES.

data temp; set candl; y = 1; run;

proc glm data=temp outstat=results noprint;
class f1-£f48 el-el6;
model y = £f1-f48 el-el6 &indbar / ssl;
run;

Here are some selected observationsin the out stat= data set.

Obs _NAME _SOURCE_ _TYPE DF ss F PROB
1 Yy ERROR ERROR 0 0
2 y f1 ss1l 3 0
49 y f48 ss1l 3 0
50 y el ss1l 7 0
65 y elé6 ss1l 7 0
66 y a Ss1 0 0
67 y b ssi 0 0
68 y a*b ss1l 0 0
69 y c Ss1 0 0
129 y g ss1l 1 0
130 y a*g ss1l 1 0
145 y e*g Ss1 1 0
149 y c*e*g Ss1 1 0
423 y b*c*f*g*i ssi 0 0
424 y a*b*c*frg*i Ssi1 1 0
576 y a*b*c*d*e*xfrxgrh*i ssi 0 0

The four-level factors have 3 df, the eight-level factorshave 7 df, many of theeffectsina|b|c|d|e|f|g|h|i
have 0 df, and the remaining effectsin a|b|c|d|e| £|g|h| i have 1 df, which means they are available for
creating two-level factors. The next step outputs just those effects with 1 df and counts them, storing the result
in macro variable &n.
data res2(keep=_source);
set results;

if df = 1;

n + 1;

call symput(’n’,put(n,3.));
run;

Then we use each of these estimable 1 df terms to create the two-level factors. This next DATA step creates
255 two-level factors from the estimable effectsina|b|c|d|e|£|g|h|i. For example, when _ SOURCE._
= ’a*g’,atwo-level factor is created from the a*g interaction.

252

data candid(drop=&indexes termi) ;
set temp;
array tl[&n];
array terms[&nindexes] &indexes;
do ind = 1 to &n;
set res2 point=ind;
t[ind] = 1;
do termi = 1 to &nindexes;
if index(source , substr(compress("&indexes"),termi, 1))
then t[ind] = t[ind] * terms([termil];
end;
end;
run;

This next step checks the results.

proc glm;
class f£1-£f48 el-el6;
model y = £1-f48 el-el6 tl-t&n / ss2;
run;

Here are some selected results. If everything is right (and the full listing shows that it is), then all four-level
factors have 3 df, all eight-level factors have 7 df, and all two-level factors have 1 df.

Source DF Type II SS Mean Square F Value Pr > F
f1 3 0 0
f48 3 0 0
el 7 0 0
el6 7 0 0
tl 1 0 0
t255 1 0 0

Thisdesign is saturated; there are 512 runs and 511 df plus the intercept.

Improving an Existing Design

Another useful techniqueis trying to improve an existing design. In this case, we use the %MK TDES macro to
create adesign in 80 runsfor 25 four-level factors using a 2048 run candidate set.

title ’25 Factors, Try to Improve an Existing Design’;

%mktdes (factors=x1-x25=4, nlev=2, size=2048, n=80, procopts=seed=7654321)

25 Factors, Try to Improve an Existing Design

The OPTEX Procedure

Average

Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

253

Next, we create more potential candidate sets CAND?2 through CAND5 of sizemin (128), 256, 512, and 1024.
The question we ask is can we improve our design, substituting points from all of our candidate sets?

%mktdes (factors=x1-x25=4, nlev=2, size=min, run=factex, cand=cand2)
%mktdes (factors=x1-x25=4, nlev=2, size=256, run=factex, cand=cand3)
%mktdes (factors=x1-x25=4, nlev=2, size=512, run=factex, cand=cand4)
%mktdes (factors=x1-x25=4, nlev=2, size=1024, run=factex, cand=cand5)

We can combine the candidate sets, eliminating any duplicates, by sorting them and then merging them on all of
the variables.

proc sort data=candl; by x1-x25; run;
proc sort data=cand2; by x1-x25; run;
proc sort data=cand3; by x1-x25; run;
proc sort data=cand4; by x1-x25; run;
proc sort data=cand5; by x1-x25; run;

data cand;

merge candl cand2 cand3 cand4 cand5;

by x1-x25;

run;
Our new candidate set has 3946 runs. Then we take DESIGN, created from the 2048-run resolution |11 candidate
set and try to improve it using candidate set CAND. We explicitly run PROC OPTEX, specifying initde-
sign=design method=m_federov inthe generate statement to do this. The %MKTDES macro does
not subsume all of the considerable functionality of the FACTEX and OPTEX procedures. Sometimes, for more
esoteric problems, we have to run those procedures directly.

proc optex seed=123 data=cand;
title ’25 Factors, Try to Improve an Existing Design’;
class x1-x25 / param=orthref;
model x1-x25;
generate n=80 initdesign=design method=m federov;
output out=des2;
run; quit;

This step produced the following results.

25 Factors, Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 82.9917 63.4906 59.2462 1.2218

Normally, by default there are ten iterations from ten random starts. With initdesign= thereis only one
iteration because there are no random starting points. For this particular problem, we did not do better than we
have done previously.

254

When Some Choice Sets are Fixed in Advance

Another useful technique is creating an efficient design when certain choice sets are fixed in advance and must
be included in the design. Stated differently, PROC OPTEX can be used to efficiently augment a small starting
design with other choice sets. We will illustrate thisin the context of an unrealistic but pedagogical example. In
this case we want an efficient design with 9 two-level factors and 12 three-level factorsin 36 runs. The best way
to create this design is simply to select the relevant columns from the L 3¢ tabled design. Instead, we will create
acandidate set that containsthis design and other choice sets and see if PROC OPTEX can find the L 3. We will
use the %MK TDES macro to create a candidate set. Then we merge this design with the L 5.

%let sets = 36; /* Number of choice sets */
%let alts = 6; /* Number of alternatives */
%let factors = bl-bl2 al-a9; /* Linear Design Factors */

data 136; /* al-all - two-level, bl-bl2 - three-level */

input (al-all bl-bl2) (23*1.) ee;

if mod(n , 3) = 0 then input;

datalines;
111111111112223322321121111111111133311331322311111111111111221121331
212111222122222121212232121112221233332323233121211122212111131313112
221211122212232213122322212111222133133212331322121112221112113231121
122121112222211232233221221211122233223133113312212111222113312112211
212212111222311223312112122121112231223311232221221211122123311223133
221221211122313131111322212212111231212122221322122121112123232333321
222122121112322112133112221221211131332232112222212212111121133132233
122212212112331311221211222122121131121223323212221221211122323311313
112221221212131322113331122212212132121332211111222122121132321133222
111222122122132231331131112221221232133121122111122212212132112322332
211122212212113113323232111222122132212211313121112221221133233221212
121112221222123333232311211122212232311113131212111222122131222212123

H

* Create candidate set for this situation;

%mktdes (factors=al-a9=2 , step=1l, run=factex)
%mktdes (factors=bl-bl2=3, step=2, run=factex)

data both;
set 136 cand2;
run;

title ’'Use MKTDES to Generate Design’;

%$mktdes (factors=al-a9=2 bl-bl2=3, procopts=seed=51000,
iter=500, n=&sets, cand=both, run=optex)

proc optex data=both seed=7654321;
title 'Evaluate L 36 Design’;
class &factors / param=orthref;
model &factors;
generate n=&sets method=sequential initdesign=136;
quit;

These steps produced the following results.

255

Use MKTDES to Generate Design

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.9718
2 86.4336 74.4076 66.9333 1.1266
3 85.9883 71.9545 65.9474 1.1457
4 85.9390 72.6370 66.5752 1.1403
5 85.9325 72.4818 67.4581 1.1415
Evaluate L 36 Design
The OPTEX Procedure
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.9718

In 500 iterations, PROC OPTEX found the L34 only once. The second step shows the L 34 is 100% efficient. It
is not surprising that the optimal designis hard to find. There are over 9 x 102 designs with 36 runs that can be
selected from a 468-run candidate set. They could not all be evaluated in the entire history of the universe even
by atrillion computers each evaluating one trillion designs every nanosecond.

Next, we will see what happens if we give PROC OPTEX an initial design with fixed choice sets that must
appear in the final design. We sample four choice sets from the L 3¢, store them in the data set INIT, and specify
augment= inthe generate statement.

data init;
retain k 4; /* Randomly sample EXACTLY 4 points. */
set 136;
if uniform(11l) < k / (37 - n) then do;
output;
k + -1;
end;
if k = 0 then stop;
run;

proc optex data=both seed=72555;
title "Use OPTEX to Augment 4 Existing Design Points";
class &factors / param=orthref;
model &factors;
generate n=36 method=m federov augment=init;
quit;

These steps produced the following results.

256

Use OPTEX to Augment 4 Existing Design Points

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 100.0000 100.0000 100.0000 0.9718

2 100.0000 100.0000 100.0000 0.9718

3 100.0000 100.0000 100.0000 0.9718

4 100.0000 100.0000 100.0000 0.9718

5 84.7174 69.2709 64.6258 1.1677

6 84.5309 69.2777 63.4149 1.1676

7 84.2451 69.3293 66.9899 1.1672

8 84.0934 67.2020 62.6912 1.1855

9 83.6454 67.7776 65.5860 1.1804

10 83.2917 66.2490 64.3089 1.1940

With just four randomly chosen points from the L 34 fixed, PROC OPTEX achieves 100% efficiency in four out
of tentries.

Sx-Level Factors

A researcher needs to create a design with 10 six-level factors. Fractional-factorial designs for six-level factors
cannot be created directly by design algorithms like PROC FACTEX uses. These algorithms work with levels
that are prime or a power of a prime.

2 — prime, can be created directly

3 — prime, can be created directly

4 — primesquared, can be created directly

5 — prime, can be created directly

6 — notprime, cannot be created directly

7 — prime, can be created directly

8 — primecubed, can be created directly

9 — primesguared, canbe created directly
10 — not prime, cannot be created directly
11 — prime, can be created directly
12 — not prime, cannot be created directly
13 — prime, can be created directly

and so on

Hereis the most obvious approach.

title ’'Six-Level Factors’;

%$mktdes (factors=x1-x10=6, n=60, procopts=seed=7654321, size=1024)

This approach makes six-level factors from 3 two-level pseudo-factors. For example, x1 is created from
-1].2|.3 withthemapping [-1 -2 _3]1=x1 nvals=(1 to 6 1 6). The problem with this ap-
proach is eight levels are mapped to six, so the candidate set is imbalanced and it is likely the design will be
imbalanced. Most factors will have more ones and sixes than twos through fives.

257

Six-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 82.7201 64.9653 60.6132 1.1047
2 82.6667 65.5906 63.0546 1.1089
3 82.6580 64.7216 59.4145 1.1129
4 82.4430 65.0258 63.0317 1.1052
5 82.2820 64.2499 61.3416 1.1180

The %MKTDES macro provides a special way to handle six-level factors. You can use a two-step process to
create a design with two-level and three-level factors. Then you can use the %MKTDES6 macro to combine
them into six-level factors. The %MK TDES6 macro is provided with the %MK TDES macro. Useit in a DATA
step to combine the two= list and the three= list, storing the resultsin the two= variables. Then you can use
the %MK TDES macro to search for an efficient design.

%mktdes (factors=x1-x10=2, step=1, n=60, run=factex, size=32)
%mktdes (factors=bl-bl0=3, step=2, n=60, run=factex, size=27)

data cand;
set cand2;

*---Create 6-levels from 2-levels and 3-levels---;
%mktdes6 (two=x1-x10, three=bl-bl0);
run;

%mktdes (factors=x1-x10=6, n=60, run=optex, cand=cand, procopts=seed=7654321)

Six-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 82.4576 62.2158 60.2928 1.1689
2 81.3020 62.1989 61.4858 1.1690
3 81.0982 61.5894 58.0499 1.1748
4 80.8932 60.3483 56.4664 1.1868
5 80.6477 60.1977 57.6953 1.1883

As you can see from the output, there is no guarantee that using the %MKTDES6 macro will produce a more
efficient design, but it should produce a better balanced design.

You could also base the design on only three-level factors by specifying nlev=3. This approach makes six-
level factors from 2 three-level pseudo-factors. For example, x1 is created from _ 1| _ 2 with the mapping [- 1
-2]=x1 nvals=(1 to 6 1 4 6).

title ’Six-Level Factors’;

%mktdes (factors=x1-x10=6, n=60, nlev=3, procopts=seed=7654321)

258

Six-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 84.6808 67.4270 57.6530 1.0728
2 84.6808 67.4270 57.6530 1.0728
3 84.6808 67.4270 57.6530 1.0728
4 84.6808 67.4270 57.6530 1.0728
5 84.4295 66.5160 55.3460 1.0813

Similarly, you could base the design on five-level factors by specifying nlev=5. This approach makes six-level
factors from 2 five-level factors. For example, x1 is created from _1|_2 with themapping [_1 _2]=x1
nvals=(1 to 6 1 to 6 1 to 6 1 to 6 1). Thisshould makeamuch better balanced candidate set
than we got using two-level or three-level factors as the base.

title ’Six-Level Factors’;

%mktdes (factors=x1-x10=6, n=60, nlev=5, procopts=seed=7654321)

Six-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 78.4326 58.2505 59.2676 1.2059
2 77.6983 56.7929 58.3282 1.2217
3 77.4057 55.6193 55.9998 1.2343
4 77.2037 55.1903 55.8364 1.2400
5 77.1410 55.5539 55.9045 1.2337

You could base the design on two-level pseudo-factors, but more than the default three per factor. Recall that we
can make a six-level factor x1 from _1|_2|_3and [_1 _2 _3]1=x1 nvals=(1 to 6 1 6). Toget
better balance, we could specify (4) in factors=x1-x10=6 (4) to use 4 two-level pseudo-factorsfor each
six-level factor: _1|_2|_3|_4 withthemapping [.1 _2 _3 _4]=x1 nvals=(1 to 6 1 to 6 1
3 4 6).

title ’Six-Level Factors’;

%mktdes (factors=x1-x10=6(4), n=60, procopts=seed=7654321, size=1024)

259

Six-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 78.5916 59.1543 60.4969 1.1912
2 78.4422 58.3053 59.3152 1.2020
3 78.1623 57.6540 59.5914 1.2096
4 78.0190 57.6495 56.7703 1.2115
5 77.9914 58.4882 60.7042 1.1992

Of courseall of these examples could be tried with different candidate set sizes. It isdifficult to predict in advance
which approach will work best for any particular problem. However, like the results of this example, we have
frequently seen that using more than the minimum number of pseudo-factorstends to increase balance at a cost
of decreased efficiency.

Ten-Level Factors
A researcher needs to create a design with 5 ten-level factors. Like six-level factors (discussed starting on page
256), ten-level factors cannot be created directly. Here is the most obvious approach.

title 'Ten-Level Factors’;

%mktdes (factors=x1-x4=10, n=50, procopts=seed=7654321, size=1024)

This approach makes ten-level factors from 4 two-level pseudo-factors. For example, x1 is created from
-1|-2|-3|-4 withthemapping [-1 -2 _3 _4]=x1 nvals=(1 to 10 1 3 5 6 8 10). The
problem with this approach is 16 levels are mapped to ten, so the candidate set isimbalanced and it is likely the
design will be imbalanced. Most factorswill havemore 1's, 3's, 4's, 6's, 8's, and 10'sthan 2's, 5's, 7's, and 9's.

Ten-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 83.8294 69.3338 67.8612 1.0288
2 83.5641 68.9284 66.4021 1.0269
3 83.2275 68.1464 64.1257 1.0332
4 83.1952 68.1558 65.9666 1.0419
5 82.9385 67.2304 64.1725 1.0406

The %MKTDES macro provides a special way to handle ten-level factors. You can use a two-step process to
create a design with two-level and five-level factors. Then you can use the %MKTDES10 macro to combine
them into ten-level factors. The %MKTDES10 macrois provided with the %MK TDES macro. Useit in aDATA
step to combine the two= list and the £ive= list, storing the results in the two= variables. Then you can use
the %MK TDES macro to search for an efficient design.

%mktdes (factors=x1-x5=2, step=1, n=50, run=factex, size=16)
%mktdes (factors=bl-b5=5, step=2, n=50, run=factex, size=125)

260

data cand;
set cand2;
*---Create 10-levels from 2-levels and 5-levels---;
%mktdesl0 (two=x1-x5, five=bl-b5);
run;

%$mktdes (factors=x1-x5=10, n=50, run=optex, cand=cand, procopts=seed=7654321)

Ten-Level Factors

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 74.8865 51.6941 51.6550 1.3341
2 74.5708 52.1228 50.7978 1.3286
3 74.3059 51.0803 50.5599 1.3420
4 74.3042 50.9776 50.4575 1.3434
5 74.1494 50.1395 51.4421 1.3546

As you can see from the output, there is no guarantee that using the %MK TDES10 macro will produce a more
efficient design, but it should produce a better balanced design. Of course the techniquesillustrated for six-level
factors (starting on page 256) could also be used for ten-level factors.

261

TheMacros
The autocall macros that are used in this report are documented in this section on the indicated pages.
Macro Page Release Purpose
%MKTDES 261 80 efficient linear experimental design
%MKTDES6 266 8.0 making six-level factors
%MKTDES10 267 8.0 making ten-level factors
%MKTRUNS 268 8.0 experimental design size
%CHOICEFF 270 8.0 efficient choice design
%PHCHOICE 288 80 customizing the printed output from a choice model
%MKTROLL 281 81 rolling alinear design into a choice design
%MKTMERGE 285 8.1 merging a choice design with choice data
%MKTALLO 286 8.1 processing allocation data

The “Release” column indicates the first release of the SAS System in which the macros are distributed. 1f you
are using version 8.0, go to http://www.sas.com/techsup/downl oad/stat/ and get mlogit8.sas, or via anonymous
ftp, from ftp.sas.com, get techsup/download/stat/mlogit8.sas. These files contain al of the code used in this
report. You can also write saswfk@wnt.sas.com to request the macros. The Version 8.1 macros can be used in
Version 8.0; they were just finished too late to be shipped with Version 8.0. All of the macros have been updated
at least alittle since Version 8.0 was shipped, so if you have not yet installed Version 8.1 or a later release, you
should get the latest versions of all of the macros.

If your site has installed the autocall libraries supplied by SAS Institute and uses the standard configuration of
SAS software supplied by the Institute, you need only to ensure that the SAS system option mautosource is
in effect to begin using the autocall macros. That is, the macros do not have to be included (for example with a
%include statement). They can be called directly. For more information about autocall libraries, refer to SAS
Macro Language: Reference, First Edition, 1997. On a PC for example, the autocall library may beinstalled in
the stat\sasmacro directories. On MV, each macro will be a different member of a PDS. For details on
installing autocall macros, consult your host documentation.

%MKTDES Macro Overview

Throughout this report, we used the %MK TDES autocall macro to design our experiments. At the heart of the
%MKTDES macro are PROC PLAN, PROC FACTEX, and PROC OPTEX. We often use the macro instead of
calling these procedures directly because the macro has a simpler syntax designed for some of the complicated
problems marketing researchers face. In extreme cases, a single-line macro call can generate hundreds of lines
of otherwise tedious to write procedure code.

The %MKTDES macro creates efficient experimental designs. You specify the names of the factors and the
number of levels for each factor. You also specify the number of runs you want in your final design. Here for
exampleis how you can create adesign in 18 runswith 2 two-level factors (x1 and x2) and 3 three-level factors
(x3, x4, and x5).

%mktdes (factors=x1-x2=2 x3-x5=3, n=18)

You can also optionally specify interactionsthat you want to be estimable. The macro creates a candidate design
in which every effect you want to be estimable is estimable, but the candidate design is bigger than you want.
By default, the candidate set is stored in a SAS data set called CAND1. The macro then uses PROC OPTEX to
search the candidate design for an efficient final design. By default, the final experimental design is stored in a
SAS data set called DESIGN.

When the full-factorial is small (by default less than 2189 runs) the experimental design problem is straight-
forward. First, the macro uses PROC PLAN to create afull-factorial candidate set. Then PROC OPTEX searches
the full-factorial candidate set and will amost certainly find the optimal design or a very nearly optimal design

262

given sufficient iteration (for example, specify iter=100). Run time will typically be afew seconds or a few
minutes, but it could run up to an hour.

When the full-factorial design is larger, the design problem is less straight-forward and requires more thought.
Then the macro uses PROC FACTEX to create a fractional -factorial candidate set. The default size=,nlev=,
number of pseudo-factors, and so on will often give agood design. However, changing these values may increase
or decrease efficiency, 1, 2, 5, 10, perhaps up to 15%. Thisis the art of design — finding the options that make
the best design. Making a bigger candidate set may help, or it may not. Changing nlev= may make the design
better; it may make it worse. You have to try several things and see which one is best. Be careful how far you
generalize from your experiences. For example, for one problem, doubling the size of the candidate set may
increase efficiency afew percent. For the next problem it may decrease efficiency.

Start out small. In your first attempt to create a design for a problem, your candidate set should have no more
than a few-hundred runs, and run time should be well under a minute. Then you can try bigger candidate sets
and larger searches. Keep the size of your candidate set small, usually under 2000 - 5000. See page 108 for a
discussion of candidate set size. Here are some typical examples of usage:

*---Six three-level factors in 18 runs---;
%mktdes (factors=x1-x6=3, n=18)

*---Two two-level factors and 3 three-level factors in 18 runs---;
%mktdes (factors=x1-x2=2 x3-x5=3, n=18)

*---Mix in levels---;
%mktdes (factors=x2=2 x3=3 x4=4 x5=5 x6=6 x7=7 x8=8,
size=512, n=32);

*---Mixed 2-, 3-, 5-level factors, done in one step------ ;
%$mktdes (factors=x1-x3=2 x4-x6=3 x7-x9=5, n=30)

*---Mixed 2-, 3-, 5-level factors, done in three steps------ ;
%mktdes (factors=x1-x3=2, n=30, run=factex, step=1)
%$mktdes (factors=x4-x6=3, n=30, run=factex, step=2)

%mktdes (factors=x7-x9=5, n=30, run=factex optex, step=3)

*---Five ten-level factors, done in one step---;
%mktdes (factors=x1-x5=10, n=50)

*---Five ten-level factors, done in one step, based on seven-levels---;
%$mktdes (factors=x1-x5=10, n=50, nlev=7)

*-_--Fifteen three-level factors, different candidate set sizes---;
%mktdes (factors=x1-x15=3, n=36, out=desl, cand=candl)
%mktdes (factors=x1-x15=3, n=36, size=81*3, out=des2, cand=cand2)
%mktdes (factors=x1-x15=3, n=36, size=81*9, out=des3, cand=cand3)
%mktdes (factors=x1-x15=3, n=36, size=81*27, out=des4, cand=cand4)

*---A design with interactions---;
%mktdes (factors=x1-x3=2 x4-x6=3(3) x7-x9=4, n=32, size=1024,
interact=x1|x2|x3@2 x4*x7)

*---Look at one-way and two-way frequencies---;
proc summary print;

ways 1 2;

class x:;

run;

263

%MKTDES Macro Options

Here are the options you can use with the %MK TDES macro.

bi O=n

specifies the size at which the candidate set is considered to be big. By default, big=2188. If the size of the
full factorial isless than this size, and if PROC PLAN isin the run= list, the macro uses PROC PLAN instead
of PROC FACTEX to create the candidate set. The default of 2188 ismax(2!!,37) + 1). Specifying values as
largeabig=5000 is probably reasonable. However, run time can be very slow with sizes much bigger than the
default.

cand= saSdata-set
specifies the output data set with the candidate design (from PROC FACTEX or PROC PLAN). The default name
is“Cand” followed by the step number, for example: Cand1 for step 1, Cand2 for step 2, and so on.

coding= name

specifiesthe PROC OPTEX coding= option. If youareusing Version 7 or an earlier release of the SAS System,
and if you have a balanced and orthogonal candidate set, you may want to specify coding=orthcan. With
Version 8 of the SAS System, this option is usually not needed.

factor s= factor-list

specifies the factors and the number of levelsfor each factor. The factors= option must be specified. All other
options are optional. Optionally, the number of pseudo-factors can also be specified. Here is a smple example
of creating a design with 10 two-level factors.

%mktdes (factors=x1-x10=2)

First afactor list, which isavalid SAS variable list, is specified. The factor list must be followed by an equal
sign and an integer, which gives the number of levels. Multiple lists may be specified. For example, to create 5
two-level factors, 5 three-level factors, and 5 five-level factors, specify:

%mktdes (factors=x1-x5=2 x6-x10=3 x11-x15=5)

By default, this macro creates each factor from a minimum number of pseudo-factors. Pseudo-factors are used
to create factors of interest but are not themselves output. So for example, with nlev=2, athree-level factor x1
is created from 2 two-level pseudo-factors (- 1 and _ 2) and their interaction by coding down:

(1=1, 2=1) -> xl=1

(_1=1, _2=2) -> x1=2

(1=2, 2=1) -> x1=3

((1=2, 2=2) -> x1=1
This creates imbalance — the 1 level appears twice as often as 2 and 3. Somewhat better balance can be obtained
by instead using three pseudo-factors. The number of pseudo-factorsis specified in parentheses after the number
of levels. Example:

%mktdes (factors=x1-x5=2 x6-x10=3(3))

Thenthelevels1to 8 arecoded downto 123,12 3, 1, 3, which isalittle better balanced. The cost is candidate
set size may increase and efficiency may actually decrease. Many researchers are willing to sacrifice a little bit
of efficiency in order to achieve better balance.

264

gener ate= options
specifies PROC OPTEX generate statement options. By default, additional options are not added to the
generate Statement.

inter act=terms
specifies interactions that must be estimable. By default interactions are not guaranteed to be estimable. Exam-
ples:

interact=x1*x2
interact=x1*x2 x3*x4*x5
interact=x1-x5@2

Only “@" values of 2 or 3 are allowed. By default, no interactions are guaranteed to be estimable.

iter=x
specifiesthe PROC OPTEX iter= option which creates n designs. By default, iter=10.

keep=n
specifies the PROC OPTEX keep= option which keepsn designs. By default, keep=5.

nlev=rn
specifies the number of levels from which factors are constructed through pseudo-factors and coding down. The
value must be aprime or apower of aprime: 2, 3,4,5,7,8,9, 11.... Thisoption is used with PROC FACTEX:

factors factors / nlev=&nlev;

By default, the macro uses the minimum prime or power of a prime from the factors= list or 2 if no suitable
valueisfound.

method= name
specifies the PROC OPTEX method= search method option. The default ismethod=m _ federov (modified
Federov).

N= n|SATURATED

specifies the PROC OPTEX n= option which is the number of runsin the final PROC OPTEX created design.
The default is the PROC OPTEX default and depends on the problem. Typically, you will not want to use the
default. Instead pick a value that is divisible by all or most of the numbers of levels and their products. The
n=saturated option creates a design with the minimum number of runs.

0ptions= option-list
specifies general boolean options (currently thereis only one):

options=eval evaluatesthefinal efficiency using orthogonal coding. Thisis the default.

otherfac= variable list
specifies other terms to mention in the factors statement of PROC FACTEX. These terms are not guaranteed
to be estimable. By default there are no other factors.

265

otherint=terms

specifies interaction terms that will only be specified with PROC OPTEX for multi-step macro invocations.
By default, no interactions are guaranteed to be estimable. Normally, interactions that are specified via the
interact= option affect both the PROC FACTEX and the PROC OPTEX model statements. |n multi-step
problems, part of an interaction may not be in a particular PROC FACTEX step. In that case, the interaction
term must only appear in the PROC OPTEX step. For example, if x1 is created in one step and x4 is created in
another, and if the x1*x4 interaction must be estimable, specify otherint=x1*x4 onthefina step, the one
that runs PROC OPTEX.

%mktdes (step=1, factors=x1l-x3=2, n=30, run=factex)
%mktdes (step=2, factors=x4-x6=3, n=30, run=factex)
%mktdes (step=3, factors=x7-x9=5, n=30, run=factex optex, otherint=x1%*x4)

OUt= sASdata-set
specifies the output experimental design (from PROC OPTEX). By default, out=Design.

procopts=options
specifies PROC OPTEX statement options. The most common usage iS procopts=seed=n where n is a
random seed. By default, no options are added to the PROC OPTEX statement.

I'UN= procedure-list

specifies the list of procedures that the macro may run. Normally, the macro runs either PROC FACTEX or
PROC PLAN and then PROC OPTEX. By default, run=plan factex optex. You can omit steps — if for
example you only want the code listing — by omitting procedure names from this list. When both PLAN and
FACTEX arein the list, the macro chooses between them based on the size of the full factorial and the value of
big=. When PLAN is not in the list, the macro generates code for PROC FACTEX.

SIZe= n|MIN

specifies the candidate set size. Start with the default size=min and see how big that is. If you want, subse-
quently you can specify larger values that are nlev=n multiples of the minimum size. This option is used with
PROC FACTEX:

size design=&size;

Say you specified nlev=2 or the macro defaulted to nlev=2. Increase the size= value by a factor of two
each time. For example, if size=min impliessize=128, then 256, 512, 1024, and 2048 are reasonable sizes
to try. Integer expressionslike 128*4 are allowed.

step=~r

spe?:ﬁiesthe step number. By default, there is only one step. However, sometimes, a better design can be found
using a multi-step approach. Consider the problem of making a design with 3 two-level factors, 3 three-level
factors, and 3 five-level factors. The simplest approach is to do something like this — create a design from
two-level factors using pseudo-factors and coding down.

%mktdes (factors=x1-x3=2 x4-x6=3 x7-%x9=5, n=30)

However, for small problems like this, the following three-step approach will usually be better.

%mktdes (step=1, factors=x1l-x3=2, n=30, run=factex)
%mktdes (step=2, factors=x4-x6=3, n=30, run=factex)
%mktdes (step=3, factors=x7-x9=5, n=30, run=factex optex)

The first step uses PROC FACTEX to create a fractional-factorial design for the two-level factors. The second
step uses PROC FACTEX to create a fractional-factorial design for the three-level factors and cross it with the

266

two-level factors. The third step uses PROC FACTEX to create a fractional-factoria design for the five-level
factors and cross it with the design for the two and three-level factors and then run PROC OPTEX.

Each step stores globally two macro variables &&class&step and &&interé&step that are used to construct
the PROC OPTEX class and model statements. When step > 1, variables from the previous steps are used
inthe class and model statements. In the example above, the following PROC OPTEX code is created by
step 3:
proc optex data=Cand3;
class
x1-x3
x4-x6
x7-x9
/ param=orthref;
model
x1-x3
x4 -x6
x7-x9
generate n=30 iter=10 keep=5 method=m federov;
output out=Design;
run; quit;

This step uses the previously stored macro variablesclassl=x1-x3 and class2=x4-x6.

Wher e= where-clause
specifies a SAS where clause for candidate design, used to restrict the candidates. By default, the candidate
design is not restricted.

%MKTDESS Macro Overview

Also included with the %MK TDES autocall macro is the %MK TDES6 macro. It is used along with %MK TDES
to make six-level factors. Since six isnot apower of aprime number, six-level factors cannot be created by PROC
FACTEX except by coding down or using pseudo-factors. Alternatively, you could create two-level factorsin one
step and then three-level factorsin the next step. Then they could be combined, 2 x 3, to make six-level factors.
You must run the %MK TDES autocall macro before running the %MK TDES6 macro since the %MKTDES6
macro is only loaded when %MKTDES is caled. If you do not need to use %MKTDES first, run it with no
arguments.

%$mktdes;

The macro will print the message “ERROR: FACTORS= must be specified.” and quit, but it will load
all three macrosfirst.

%MKTDESG is used in a DATA step to combine the two-level and three-level factors returning the six-level
factorsin variables with the same names as the original two-level factors. Then the %MK TDES macro is run on
the results to search the candidate set for an efficient design.

*---Five six-level factors, done in multiple steps, post-processing---;
%mktdes (factors=x1-x5=2, n=30, run=factex, size=16, step=1l)
%mktdes (factors=x6-x10=3, n=30, run=factex, size=81, step=2)

data cand;
set cand2;
*---Create 6-levels from 2-levels and 3-levels---;
%mktdes6 (two=x1-x5, three=x6-x10);
run;

267

%mktdes (factors=x1-x5=6, n=30, run=optex, cand=cand)

%MKTDES6 Macro Options
The %MKTDES6 macro has two options.

tWO= variablelist
names the two-level factors.

three= variable-list
names the three-level factors.

%MKTDESLO Macro Overview

Alsoincluded with the %MK TDES autocall macroisthe %MK TDES10 macro. Itisused alongwith %MK TDES
to maketen-level factors. Sincetenisnot apower of aprime number, ten-level factors cannot be created by PROC
FACTEX except by coding down or using pseudo-factors. Alternatively, you could create two-level factorsin one
step and then five-level factorsin the next step. Then they could be combined, 2 x 5, to make ten-level factors.
You must run the %MK TDES autocall macro before running the %MK TDES10 macro since the %MK TDES10
macro is only loaded when %MKTDES is caled. If you do not need to use %MK TDES firgt, run it with no
arguments.

%mktdes;

The macro will print the message “ERROR: FACTORS= must be specified.” and quit, butit will load
al three macrosfirst.

%MKTDESIO is used in a DATA step to combine the two-level and five-level factors returning the ten-level
factorsin variables with the same names as the original two-level factors. Then the %MK TDES macro is run on
the results to search the candidate set for an efficient design.

*---Five ten-level factors, done in multiple steps, post-processing---;

%mktdes (factors=x1-x5=2, n=50, run=factex, step=1)
%mktdes (factors=x6-x10=5, n=50, run=factex, step=2)

data cand;
set cand2;
*---Create 10-levels from 2-levels and 5-levels---;
%mktdesl0 (two=x1-x5, five=x6-x10);
run;

%mktdes (factors=x1-x5=10, n=50, run=optex, cand=cand)

%MKTDESLO Macro Options
The %MKTDES10 macro has two options:

tWO= variablelist
names the two-level factors.

five= variable-list
names the five-level factors.

268

%MK TRUNS Macro Overview

The %MKTRUNS autocall macro calculates reasonable sizes for main-effects experimental designs. It tries to
find sizes in which perfect balance and orthogonality can occur, or at least sizes in which violations of orthogo-
nality and balance are minimized. Typically, the macro takes one argument, alist of the number of levels of each

factor. No error checking is performed.

For example, with 3 two-level and 4 three-level factors, specify the macrowith three 2’sand four 3's, the numbers

of levelsfor al of the factors.
%mktruns(2 2 2 3 3 3 3)

The output of the macro in this exampleis:

Some Reasonable
Design Sizes
(Saturated=12)

36
72
108
144
180
18
54
90
126
162

Violations

wWwwwwwooooo

Cannot Be
Divided By

PN NN

The macro reports that the saturated design has 12 runs and that 36 is an optimal design size. The macro picks
36 because it is the smallest integer >= 12 that can be divided by 2, 3,2 x 2,2 x 3, and 3 x 3. The macro also
reports 18 as a reasonable size. There are three violations with 18 because 18 cannot be divided by each of the
three pairsof 2 x 2, so perfect orthogonality in the two-level factorswill not be possible. The macro & so reports
larger sizes. To see every size the macro considered, simply run proc print after the macro finishes. The output

from this step is not shown.

proc print label data=nums split='-’';

id n;
run;

For 2 two-level factors, 2 three-level factors, 2 four-level factors, and 2 five-level factors specify:

%mktruns(2 2 3 3 4 4 5 5)

Here are the results:

Some Reasonable
Design Sizes
(Saturated=21)

120
180
60
144
48
72
80
96
160
192

3

6

7
15
16
16
16
16
16
16

Violations

Cannot Be
Divided By

16 25

16 25

8 16 25

10 15 20 25

5 10 15 20 25
6 5 10 15 20 25
6 9 12 15 25

5 10 15 20 25
6 9 12 15 25

5 10 15 20 25

VW wuwuwwPRr wvVvuwvowuvw

269

Among the smaller design sizes, 60 or 48 look like a good possibilities. The macro has a second, optional,
keyword parameter: max=. It specifies the maximum number of sizes to try. Usually you will not need to
specify themax= option. The smallest design considered is the saturated design. For example, this specification
tries 5000 sizes and reports that a perfect design can be found with 3600 runs.

$mktruns(2 2 3 3 4 4 5 5, max=5000)

Some Reasonable

Design Sizes Cannot Be

(Saturated=21) Violations Divided By
3600 0
720 1 25
1200 1 9
1440 1 25
1800 1 16
2160 1 25
2400 1 9
2880 1 25
4320 1 25
4800 1 9

Now consider again the problem with 3 two-level and 4 three-level factors, but this time we want to be estimable
the interaction of two of the two-level factors. So instead of specifying $mktruns(2 2 2 3 3 3 3) we
replace two of the 2’swith a 4.

$mktruns(2 4 3 3 3 3)

Some Reasonable
Design Sizes Cannot Be
(Saturated=13) Violations Divided By

72
144
36
108
180
18
24
48
54
90

ook HFH PP OO

B B OV W B 0 0

8 12
8 12

Now we need 72 runsfor perfect balance and orthogonality and there are six violationsin 18 runs (4,4 x 2,4 x 3,
4 x3,4x3,and4 x 3).

%MKTRUNS Macro Options

The %MKTDES macro has one positional parameter 1ist, that must be specified first. For positional param-
eters, just a value is specified (unlike keyword parameters which have the form KEY-WORD=value). The
macro also has a keyword parameter max=.

270

list
specifies the numbers of levels of all of the factors. This parameter must be specified first. For example, with 4
two-level factors, specifyalist of 2 2 2 2:

$mktruns(2 2 2 2)

max=n
specifies the maximum number of design sizes to try. By default, max=200. The macro tries max=n sizes
starting with the saturated design and reports the best 10 sizes.

%CHOICEFF Macro Overview

The %CHOICEFF autocall macro is used to find efficient experimental designs for choice experiments. You
supply a candidate set of either alternatives or sets of alternatives. The macro searches the candidates for an
efficient experimental design — adesign in which the variances of the parameter estimates are minimized, given
and assumed 3.

There are two primary ways to use the macro:

e You can create a candidate set of alternatives. Then the macro creates a design consisting of choice sets
built from the alternatives you supplied. You must designate for each candidate alternative the design
aternative(s) for which it is a candidate. For a branded study with (say) four brands, you must create four
lists of candidate alternatives, onefor each brand.

e You can create a candidate set of choice sets. Then the macro builds a design from the choice sets you
supplied.

Typically, you use as a candidate set either afull-factorial or fractional-factorial design, created with the %MK T-
DES macro. The macro either constructs a random initial design from the candidates or it uses an initial design
that you specify. Then it considers swapping out every design alternative/set and replacing it with each candidate
alternative/set. Swaps that increase efficiency are performed. Swapping continues until efficiency stabilizes.
Then the process is repeated with adifferent initial design. The best designis output for use.

The macro uses a modified Federov algorithm, just like PROC OPTEX. The key difference between this macro
and PROC OPTEX is this macro allows you to specify the true (or assumed true) parameters and optimizes the
variance matrix for amultinomial logit model, whereas PROC OPTEX optimizes the variance matrix for alinear
model which does not depend on the parameters.

Here are some usage samples. Thisfirst example creates a design for a generic model with 3 three-level factors.
First, the %MKTDES macro is used to create a candidate set where x1-x3 are the factorsand £1-£3 are the
flags. Since this is a generic model, each alternative can appear anywhere, so all flags are a constant; £1=1
f£2=1 £3=1. Thenthe %CHOICEFF macro isrun to find an efficient design for the unbranded, purely generic
model assuming 3 = 0.

%mktdes (factors=x1-x3=3 f1-£f3=1, run=plan)

%choiceff (data=candl, model=class(x1-x3), nsets=9,
flags=f1-f3, beta=zero, seed=145)

proc print; var set x1-x3; run;

Theoption data=candl namestheinput dataset, model=class (x1-x3) specifiesthe PROC TRANSREG
model statement for coding the design, nsets=9 specifies nine choice sets, flags=£1-£3 specifies the
three alternative flag variables, beta=zero specifies al zero parameters, and seed=145 specifies the random
number seed. Here is the output.

Design

Design

Final Results:

AUl W R

n Name Beta Label
1 x11 0 x1 1
2 x12 0 xl 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
Iteration D-Efficiency D-Error
0 0.7934651272 1.260294833
1 1.6792104859 0.5955179582
2 1.6954565904 0.589811621
3 1.6954565904 0.589811621
Iteration D-Efficiency D-Error
0 0.9948981202 1.0051280424
1 1.6252969583 0.6152721784
2 1.6779447607 0.5959671757
3 1.6872641431 0.5926754291
4 1.6872641431 0.5926754291
Design =1
Efficiency = 1.6954565904
D-Error = 0.589811621
Variable
Name Label Variance DF
x11 x1 1 0.69335 1
x12 xl 2 0.69335 1
x21 x2 1 0.67568 1
x22 x2 2 0.67568 1
x31 x3 1 0.70166 1
x32 x3 2 0.72973 1
6
Obs Set x1 x2 x3
1 1 1 3 1
2 1 2 1 2
3 1 3 2 3
4 2 2 1 3
5 2 3 3 1
6 2 1 2 2
7 3 1 1 3
8 3 3 3 2
9 3 2 2 1
10 4 1 3 1
11 4 2 1 3
12 4 3 2 2
13 5 1 2 1
14 5 2 3 2
15 5 3 1 3

Standard
Error

0.83267
0.83267
0.82199
0.82199
0.83765
0.85424

272

16
17
18
19
20
21
22
23
24
25
26
27

R DW NMRPW WEDNDDNDWR
R WD DWERE WEFE DM WED
R NDNW MDMWERER WDNMRFE WEFED

W WV W 00w W JIJIJ oy

The output consists of a list of the parameter names, values and labels, followed by two iteration histories, a
report in the most efficient design found, the parameter names, variances, df, and standard errors. Finaly, the
designis printed.

These next steps manually create an optimal design for this problem and evaluate its efficiency using the initial
design options. The data step creates a cyclic design. In a cyclic design, the factor levels increase cyclically (1,
2,30r2,3,10r3,1,2).

* Cyclic (Optimal) Design;
data x(keep=f1l-£f3 x1-x3);
retain f1-£3 1;
dl = ceil(n_/ 3); d2
do i = -1to 1;
x1 mod(dl + i, 3) + 1;
x2 mod(d2 + i, 3) + 1;
x3 mod(d3 + i, 3) + 1;
output;
end;
datalines;
123312231

H

mod(n - 1, 3) + 1; input d3 ee@;

%choiceff (data=candl, model=class(x1-x3), nsets=9, flags=£f1l-£3,
beta=zero, init=x, initvars=x1-x3, intiter=0);

The option init=x specifies theinitial design, initvars=x1-x3 specifies the factorsin the initial design,
and intiter=0 specifies the number of internal iterations. Specify intiter=0 when you just want to eval-
uate the efficiency of agiven design.

These next steps create a design for this same problem using the candidate set swapping algorithm. The first
steps create a candidate set of choice sets.

%mktdes (factors=x1-x9=3, size=2187, run=factex)

data key;
input (x1-x3) ($):;
datalines;

x1 x2 x3

x4 x5 x6

x7 x8 x9

$mktroll (design=candl, key=key, out=rolled)

%choiceff (data=rolled, model=class(x1-x3), nsets=9, nalts=3, beta=zero);

Thenalts=3 option specifies that there are three alternatives. When we swap choice sets we need to specify

273

nalts=. The output from these steps is not appreciably different from what we saw previoudly, so it is not
shown.

These next steps create a design for an example with brand effects using the alternative swapping a gorithm.

%mktdes (factors=x1-x3 Brand=3, run=plan)

data full (drop=i);
set candl;
array fI[3];
do i =1 to 3; £[i] = (brand eq i); end;
run;

proc print data=full (obs=6); run;

%choiceff (data=£full,
model=class (brand brand*xl brand*x2 brand*x3 / zero=' '),
nsets=15, flags=fl-£f3, beta=zero, converge=le-12);

The option converge=1e-12 specifies a convergence criterion smaller than the default. Notice that the can-
didate set consists of branded alternatives with flags such that only brand n is considered for the nth aternative
of each choice set. In the interest of space, not all of the output is shown. Here is the output.

Obs x1 x2 x3 Brand f1 £2 £3
1 1 1 1 1 1 0 0
2 1 1 1 2 0 1 0
3 1 1 1 3 0 0 1
4 1 1 2 1 1 0 0
5 1 1 2 2 0 1 0
6 1 1 2 3 0 0 1
n Name Beta Label
1 Brandl 0 Brand 1
2 Brand2 0 Brand 2
3 Brand3 0 Brand 3
4 Brandlxll 0 Brand 1 * x1 1
5 Brandlxl2 0 Brand 1 * x1 2
Design Iteration D-Efficiency D-Error
1 0 0
1 0

0.2968623575 (Ridged)

9 0
0.3060697239 (Ridged)

274

Design Iteration D-Efficiency D-Error
2 0 0
1 0

0.2988838889 (Ridged)

7 0
0.304627967 (Ridged)

Final Results: Design =1
Efficiency = 0
D-Error =
Redundant Variables:
Brand3
Variable Standard
n Name Label Variance DF Error
1 Brandl Brand 1 4.08854 1 2.02201
2 Brand2 Brand 2 4.44804 1 2.10904
3 Brand3 Brand 3 . 0 .
4 Brandlxll Brand 1 * x1 1 2.34244 1 1.53050
21 Brand3x32 Brand 3 * x3 2 2.23043 1 1.49346
20

Notice that at each step, the efficiency is zero, but a nonzero ridged value is printed. This model contains a
structural zero coefficient in Brand3. This can be seen from both the “Redundant Variables’ list and from
looking at the variance and df table. This makes the efficiency of the design zero. However, the macro can
still optimize the goodness of the design by optimizing a ridged efficiency criterion. That is what is shown in
the iteration history. The option converge=1e-12 was specified because for this example, iteration stops
prematurely with the default convergence criterion. These next steps switch to a full-rank coding, dropping the
redundant variable Brand3, and using the output from the last step as theinitial design.

%choiceff (data=full, init=best(keep=index), drop=brand3,
model=class (brand brand*xl brand*x2 brand*x3 / zero=’' '),
nsets=15, flags=fl-£f3, beta=zero, converge=le-12);

The option drop=brand3 is used to drop the parameter with the zero coefficient. In this usage of init= with
alternative swapping, the only part of theinitial design that is required isthe Index variable. It containsindices
into the candidate set of the alternatives that are used to make the initial design. This usage is for the situation
where the initial design was output from the macro. (In contrast, in the sample usage on page 272, the option
initvars=x1-x3 was specified becausetheinitial design was not created by the %CHOICEFF macro.) Here
is some of the output. Notice that now there are no zero parameters so D-efficiency can be directly computed.

Design Iteration D-Efficiency D-Error

1 0 0.685891335 1.4579568934
1 0.685891335 1.4579568934

Final Results:

W 0 Ul AW NP =]

NR PR BR BR RR R
O WwWw O Ul bW NMKHE O

Design =1

Efficiency = 0.685891335

D-Error = 1.4579568934
Variable
Name Label
Brandl Brand 1
Brand2 Brand 2
Brandlxll Brand 1 * x1 1
Brandlxl12 Brand 1 * x1 2
Brand2x11l Brand 2 * x1 1
Brand2x12 Brand 2 * x1 2
Brand3x1l Brand 3 * x1 1
Brand3x12 Brand 3 * x1 2
Brandlx21 Brand 1 * x2 1
Brandlx22 Brand 1 * x2 2
Brand2x21 Brand 2 * x2 1
Brand2x22 Brand 2 * x2 2
Brand3x21 Brand 3 * x2 1
Brand3x22 Brand 3 * x2 2
Brandlx31l Brand 1 * x3 1
Brandlx32 Brand 1 * x3 2
Brand2x31 Brand 2 * x3 1
Brand2x32 Brand 2 * x3 2
Brand3x31 Brand 3 * x3 1
Brand3x32 Brand 3 * x3 2

Variance

4.08854
4.44804
2.34244
2.49307
2.08522
2.09687
2.34500
2.09753
2.21583
2.15893
2.16923
1.81748
2.17901
1.75709
2.03717
2.08386
2.12721
2.37880
2.13410
2.23043

DF

I = T = = = T T R R e S e e S e e e e e

N
o

Standard
Error

2.02201
2.10904
1.53050
1.57895
1.44403
1.44806
1.53134
1.44829
1.48857
1.46933
1.47283
1.34814
1.47615
1.32555
1.42729
1.44356
1.45850
1.54234
1.46085
1.49346

275

These next steps handle the same problem only this time using the set swapping algorithm and we will specify
a parameter vector that is not zero. At first, we will omit thebeta= option to just see the coding. We specified
theeffects option in the PROC TRANSREG class specificiation of -1, 0, 1 coding.

%mktdes (factors=x1-x9=3,

data key;
input (Brand x1-x3) ($);
datalines;
x1 x2 x3
x4 x5 x6
x7 x8 x9

1
2
3

H

%mktroll (design=candl, key=key,

%choiceff (data=rolled, nsets=15,

Hereisthe output. Thistells us the parameter names and the order in which we need to specify parameters.

model=class (brand)
class (brand*xl brand*x2 brand*x3 / effects zero=' ’))

size=2187,

nalts=3,

run=£factex)

alt=brand, out=rolled)

W N R

Name

Brandl
Brand2
Brandlxll
Brandlxl2

Beta

Label

Brand 1
Brand 2

Brand 1 * x1 1
Brand 1 * x1 2

276

5 Brand2xll . Brand 2 * x1 1
6 Brand2x12 . Brand 2 * x1 2
7 Brand3xll . Brand 3 * x1 1
8 Brand3xl12 . Brand 3 * x1 2
9 Brandlx2l . Brand 1 * x2 1
10 Brandlx22 . Brand 1 * x2 2
11 Brand2x21l . Brand 2 * x2 1
12 Brand2x22 . Brand 2 * x2 2
13 Brand3x21 . Brand 3 * x2 1
14 Brand3x22 . Brand 3 * x2 2
15 Brandlx3l . Brand 1 * x3 1
16 Brandlx32 . Brand 1 * x3 2
17 Brand2x31l . Brand 2 * x3 1
18 Brand2x32 . Brand 2 * x3 2
19 Brand3x31 . Brand 3 * x3 1
20 Brand3x32 . Brand 3 * x3 2

Now that we are sure we know the order of the parameters, we specify the assumed betas on the beta= option.
Assume we have some good reason for picking these numbers. We also specified n=100 on thisrun, whichisa
sample size we are considering.

%choiceff (data=rolled, nsets=15, nalts=3, n=100,
beta=1 2 -0.5 0.5 -0.75 0.75 -1 1
-0.5 0.5 -0.75 0.75 -1 1 -0.5 0.5 -0.75 0.75 -1 1,
model=class (brand)
class (brand*x1l brand*x2 brand*x3 / effects zero=’ ’))

Here is some of the output. Notice that parameters and test statistics are incorporated into the output. The n=
valueisincorporated into the variance matrix and hence the efficiency statistics, variances and tests.

Prob >
Variable Assumed Standard Squared

n Name Label Variance Beta DF Error Wald Wald

1 Brandl Brand 1 0.014207 1.00 1 0.11919 8.3897 0.0001

2 Brand2 Brand 2 0.027615 2.00 1 0.16618 12.0353 0.0001

3 Brandlxll Brand 1 * x1 1 0.012304 -0.50 1 0.11092 -4.5076 0.0001

4 Brandlxl2 Brand 1 * x1 2 0.008256 0.50 1 0.09086 5.5027 0.0001

5 Brand2x1l Brand 2 * x1 1 0.009015 -0.75 1 0.09495 -7.8991 0.0001

6 Brand2x1l2 Brand 2 * x1 2 0.013755 0.75 1 0.11728 6.3949 0.0001

7 Brand3xll Brand 3 * x1 1 0.031508 -1.00 1 0.17751 -5.6336 0.0001

8 Brand3xl2 Brand 3 * x1 2 0.019487 1.00 1 0.13960 7.1635 0.0001

9 Brandlx2l Brand 1 * x2 1 0.011585 -0.50 1 0.10763 -4.6454 0.0001

10 Brandlx22 Brand 1 * x2 2 0.010046 0.50 1 0.10023 4.9885 0.0001
11 Brand2x2l Brand 2 * x2 1 0.012541 -0.75 1 0.11199 -6.6972 0.0001
12 Brand2x22 Brand 2 * x2 2 0.015142 0.75 1 0.12305 6.0950 0.0001
13 Brand3x2l Brand 3 * x2 1 0.020645 -1.00 1 0.14368 -6.9598 0.0001
14 Brand3x22 Brand 3 * x2 2 0.018324 1.00 1 0.13537 7.3874 0.0001
15 Brandlx3l Brand 1 * x3 1 0.008624 -0.50 1 0.09287 -5.3841 0.0001
16 Brandlx32 Brand 1 * x3 2 0.009486 0.50 1 0.09740 5.1336 0.0001
17 Brand2x31l Brand 2 * x3 1 0.011025 -0.75 1 0.10500 -7.1428 0.0001
18 Brand2x32 Brand 2 * x3 2 0.013454 0.75 1 0.11599 6.4659 0.0001

277

19 Brand3x31l Brand 3 * x3 1 0.023265 -1.00 1 0.15253 -6.5562 0.0001
20 Brand3x32 Brand 3 * x3 2 0.017184 1.00 1 0.13109 7.6286 0.0001

NI
o1

These next steps create adesign for a cross-effects model with five brands at three prices and a constant alterna-
tive. Note the choice set swapping algorithm can handle cross-effects but not the alternative swapping al gorithm.

%mktdes (factors=x1-x5=3, run=plan)

data key;
input (Brand Price) ($);
datalines;

x1

x2

x3

x4

x5

u s WD R

%$mktroll (design=candl, key=key, alt=brand, out=rolled, keep=x1-x5)

%choiceff (data=rolled,
model=class (brand brand*price / zero=none)
class (brand / zero=none) * identity(x1l-x5),
nsets=20, nalts=6, beta=zero);

Hereisatiny portion of the output.

Redundant Variables:

BrandlPrice3 Brand2Price3 Brand3Price3 Brand4Price3 Brand5Price3 Brandlxl
Brand2x2 Brand3x3 Brand4x4 Brand5x5

Next, we will run the macro again, thistime requesting afull-rank model. Thelist of dropped names was created
by copying from the redundant variable list. Also, zero=none was changed to zero=" ‘ so no level would
be zeroed for Brand but the last level of Price would be zeroed.

%choiceff (data=rolled,
model=class (brand brand*price / zero=’' ')
class (brand / zero=none) * identity(x1l-x5),
drop=Brandlxl Brand2x2 Brand3x3 Brand4x4 Brand5x5,
nsets=20, nalts=6, beta=zero);

Hereisthe last part of the output.

Variable Standard
n Name Label Variance DF Error
1 Brandl Brand 1 13.3592 1 3.65503
2 Brand2 Brand 2 11.0073 1 3.31773
3 Brand3 Brand 3 13.5813 1 3.68528
4 Brand4 Brand 4 12.2061 1 3.49372
5 Brand5 Brand 5 12.7614 1 3.57231
6 BrandlPricel Brand 1 * Price 1 2.8638 1 1.69226
7 BrandlPrice2 Brand 1 * Price 2 3.8494 1 1.96198
8 Brand2Pricel Brand 2 * Price 1 2.8912 1 1.70034
9 Brand2Price2 Brand 2 * Price 2 3.6813 1 1.91866

278

10 Brand3Pricel Brand 3 * Price 1 2.8555 1 1.68983
11 Brand3Price2 Brand 3 * Price 2 3.6010 1 1.89764
12 Brand4Pricel Brand 4 * Price 1 2.7100 1 1.64619
13 Brand4Price2 Brand 4 * Price 2 5.2074 1 2.28196
14 Brand5Pricel Brand 5 * Price 1 2.8557 1 1.68987
15 Brand5Price2 Brand 5 * Price 2 3.7769 1 1.94342
16 Brand2xl Brand 2 * x1 0.7155 1 0.84586
17 Brand3xl Brand 3 * x1 0.7159 1 0.84611
18 Brand4xl Brand 4 * x1 0.7155 1 0.84588
19 Brand5x1 Brand 5 * x1 0.7299 1 0.85437
20 Brandlx2 Brand 1 * x2 0.7227 1 0.85012
21 Brand3x2 Brand 3 * x2 0.7372 1 0.85858
22 Brand4x2 Brand 4 * x2 0.7401 1 0.86026
23 Brand5x2 Brand 5 * x2 0.7231 1 0.85034
24 Brandlx3 Brand 1 * x3 0.7141 1 0.84507
25 Brand2x3 Brand 2 * x3 0.7206 1 0.84889
26 Brand4x3 Brand 4 * x3 0.7275 1 0.85292
27 Brand5x3 Brand 5 * x3 0.7141 1 0.84506
28 Brandlx4 Brand 1 * x4 0.6867 1 0.82866
29 Brand2x4 Brand 2 * x4 0.6773 1 0.82298
30 Brand3x4 Brand 3 * x4 0.6774 1 0.82307
31 Brand5x4 Brand 5 * x4 0.6773 1 0.82299
32 Brandlx5 Brand 1 * x5 0.7282 1 0.85334
33 Brand2x5 Brand 2 * x5 0.7137 1 0.84480
34 Brand3x5 Brand 3 * x5 0.7141 1 0.84507
35 Brand4x5 Brand 4 * x5 0.7260 1 0.85204

%CHOICEFF Macro Options

The following options can be used with the %CHOICEFF macro. You must specify both the model= and
nsets= optionsand either the £1ags= or nalts= options. Therest of the options are optional.

You must specify both of these next two options.

model= model-specification
specifies a PROC TRANSREG model statement list of effects. There are many potential forms for the model
specification and a number of options. Seethe SAS/STAT PROC TRANSREG documentation.

Generic effects example:
model=class (x1-x3),

Brand and alternative-specific effects example:

model=class (b)
class (b*x1l b*x2 b*x3 / effects zero=' '),

Brand, alternative-specific, and cross effects:

model=class (b b*p / zero=' ')
class(b / zero=none) * identity(x1l-x5),

279

nsets=n
specifies the number of choice sets desired.

You must specify exactly one of these next two options. When the candidate set consists of aternatives to be
swapped, specify £lags=. When the candidate set consists of sets of entire choice sets to be swapped, specify
nalts=.

flags= variable-list

flags the alternative(s) for which each candidate may be used. There must be one flag variable per aternative.
For example, with three aternatives, specify flags=£1-£3, and create a candidate set where: alternative 1
candidatesareindicated by £1=1 £2=0 £3=0, alternative 2 candidatesareindicatedby £1=0 £2=1 £3=0,
alternative 3 candidates are indicated by £1=0 £2=0 £3=1.

If every candidate can be used in all alternatives, then the flagsare constant: £1=1 £2=1 £3=1.

nalts=r»
specifies the number of alternativesin each choice set.

The rest of the parameters are optional. You may specify zero or more of them.

beta=list
specifies the true parameters. By default, when beta= is not specified, the macro just reports on coding. You
may specify beta=zero to assume all zeros. Otherwise specify anumber list: beta=1 -1 2 -2 1 -1.

bestcov= sas data-set
specifies aname for the data set containing the covariance matrix for the best design. By default, this data set is
caled BESTCOV.

bestout= sAsdata-set
specifies aname for the data set containing the best design. By default, this data set is called BEST.

converge=n
specifies the D-efficiency convergencecriterion. By default, converge=0.005.

COV= SASdata-set
specifies a name for the data set containing all of the covariance matrices for all of the designs. By default, this
data set is called COV.

data= sAsdata-set
specifies the input choice candidate set. By default, the macro uses the last data set created.

280

drop= variable-list

specifies alist of variablesto drop from the model. If you specified aless-than-full-rank model= specification,
you can use drop= to produceafull rank coding. When there are redundant variables the macro printsalist that
you can use in the drop= option on a subsequent run.

fixed= variable-list

names the variable that flags the fixed alternatives. When £ixed=variable is specified, the init= data set
must contai n the named variable, which indicates which alternatives are fixed (cannot be swapped out) and which
ones may be changed. Example: fixed=fixed, init=init, initvars=x1-x3

e 1 - meansthis alternative may never be swapped out.
e 0- meansthisaternativeisused in theinitial design, but it may be swapped out.

e . - meansthis alternative should be randomly initialized, and it may be swapped out.

fixed= may be specified only when both init= and initvars= is specified.

INIT= sAS data-set

specifies an input initial design data set. Null means a random start. One usage is to specify the bestout=
data set for an initia start. When £lags= is specified, init= must contain the index variable. Example:
init=best (keep=index). When nalts= is specified, init= must contain the choice set variable. Ex-
ample: init=best (keep=set).

Alternatively, the init= data set can contain an arbitrary design, potentially created outside this macro.
Then you must also specify initvars=£factors, where factors are the factors in the design, for example
initvars=x1-x3. When aternatives are swapped, this data set must also contain the £lags= variables.
When init= isspecified with initvars=, the data set may also contain a variable specified on the fixed=
option, which indicates which aternatives are fixed, and which ones can be swapped in and out.

intiter=»
specifies the maximum number of internal iterations. Specify intiter=0 to just evaluate efficiency of an
existing design. By default, intiter=10.

Initvar S= variable ist
specifies the factor variablesin the ini t= data set that must match up with the variablesin the data= data set.
See init=. All of these variables must be of the same type.

maxiter=n
specifies the maximum iterations (designs to create). By default, maxiter=10.

MOrevar S= variable-list
specifies more variables to add to the model. This option gives you the ahility to specify alist of variables to
copy along as s, through the TRANSREG coding, then add them to the model.

N=n
Number of observationsto use in variance matrix formula. By default, n=1.

281

0ptions= options-list
lists binary options, for example options=coded tests. By default, options=tests.

e coded - printsthe coded candidate set.
e detail - printsthe details of the swaps.

e tests - printsthe diagonal of covariance matrix, and hypothesis tests for this n and beta. When betais
not zero, the results include a Wald test statistic which is normally distributed (Beta/ Standard Error) and
the probability of alarger squared Wald statistic.

e notes - stops the macro from submitting the statement options nonotes.
e orthcan - orthogonalizesthe candidate set.

e nocode - skips the PROC TRANSREG coding stage, assuming that WORK.TMP_CAND was created
by aprevious step. Thisis most useful with set swapping when the candidate set can be big. It isimportant
with options=nocode to note that the effect of morevars= and drop= in previous runs has already
been taken care of, so do not specify them (unless for instance you want to drop still more variables).

OUL= sASdata-set
specifies aname for the output SAS data set with the final designs. By default, this data set is called RESULTS.

seed=1»

specifies arandom number seed. By default seed=0 and clock timeis used as the random number seed.

Set= variable

specifies a choice set ID variable. For release 8.0 (or earlier releases) if you are using the 8.0 autocall macro and
not an updated macro, when you are using the set swapping algorithm and alarge candidate set, specify avariable
that identifies the choice sets. Then PROC TRANSREG will codeby &set which may be more efficient. The
8.1 macro ignores this option and codes up to blocks of 5000 observations at atime.

submat= number-list

specifies a submatrix for which efficiency calculations are desired. Specify an index vector. For example, with
3 three-level factors, a, b, and ¢, and the model class(a b ¢ a*b), Specify submat=1:6, to see the
efficiency of just the 6 x 6 matrix of main effects. Specify submat=3: 6, to see the efficiency of just the4 x 4
matrix of b and ¢ main effects.

wel ght= weight-variable
specifies an optional weight variable. Typical usage is with an availability design. Give unavailable alternatives
aweight of zero and available alternatives aweight of one.

%MKTROLL Macro Overview

The %MKTROLL autocall macro is used for manipulating the experimental design for choice experiments. It
takes as input a SAS data set containing an experimental design with one row per choice set, for example a
design created by the %MK TDES macro. This data set is specified in the design= option. This data set has
one variable for each attribute of each alternativein the choice experiment.

The output from this macro is an out= SAS data set containing the experimental design with one row per
aternative per choice set. There is one column for each different attribute. For example, in a simple branded

282

study, design= may contain the variables x1 -x5 which contain the prices of each of five alternative brands.
The output data set would have one factor, Price, that contains the price of each of the five alternatives. In
addition, it would have the number (or optionally the name) of each alternative.

The rules for determining the mapping between factors in the design= data set and the out= data set are
contained in the key= data set. For example, assume that the design= data set contains the variables x1 -x5
which contain the prices of each of five alternative brands. Brand A, B, C, D, and E. Here is how you would
create the key= data set. The choice design has two factors, Brand and Price. Brand A price is made from
x1, Brand B priceis made from x2, ..., and Brand E priceis made from x5.,

data key;
input (Brand Price) ($);
datalines;
A x1
B x2
C x3
D x4
E x5
This data set has two variables, Brand contains the brand names and Price contains the names of the factors
that are used to make the price effects for each of the alternatives. The out= data set will contain the variables
with the same names as the variablesin the key= data set.

Here is how you can create the design with one row per choice set:
%$mktdes (factors=x1-x5=3, n=12)

Hereis how you can create the design with one row per alternative per choice set:
$mktroll (design=design, key=key, out=sasuser.design, alt=brand)

For example, if the data set DESIGN contains the row:

Obs x1 x2 x3 x4 x5

9 1 3 2 3 1

Then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price
41 9 A 1
42 9 B 3
43 9 Cc 2
44 9 D 3
45 9 E 1

The pricefor Brand A is made from x1=1, ..., and the price for Brand E is made from x5=3.

Now assume that there are three alternatives, each composed of four factors. Brand, Price, Size, Color,
and shape. In addition, there is a constant alternative. First, the %MK TDES macro is used to create a design
with 12 factors, one for each attribute of each aternative.

%mktdes (factors=x1-x12=2, n=16)

Then the key= data set is created. It showsthat there are three brands, A, B, and C, & None.

283

data key;
input (Brand Price Size Color Shape) ($):;
datalines;
A x1 x2 x3 x4
B x5 X6 x7 x8
C x9 x10 x11 x12
None

Brand A iscreated fromBrand="A’, Price = x1, Size = x2, Color = x3, Shape = x4.
Brand B is created from Brand ='B’, Price = x5, Size = x6, Color = x7, Shape = x8.
Brand C iscreated from Brand="C’, Price = x9, Size = x10, Color =x11, Shape = x12.

The constant alternative is created from Brand = ’Non€e’ and none of the attributes. The’. notation is used to
indicate missing valuesin input data sets. The actual valuesin the SAS data set will be blank (character missing).

Hereis how you create the design with one row per alternative per choice set:
%$mktroll (key=key, design=design, out=sasuser.design, alt=brand)

For example, if the data set DESIGN contains the row:

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

8 2 1 1 1 1 1 2 2 2 2 1 2

Then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price Size Color Shape
29 8 A 2 1 1 1
30 8 B 1 1 2 2
31 8 (o] 2 2 1 2
32 8 None

Now assume like before that there are three alternatives, each composed of four factors. Brand, Price, Size,
Color, and shape. In additition, there is a constant alternative. Also, there is an alternative-specific factor,
Pattern, that only applies to Brand A and Brand C. First, the %MK TDES macro is used to create a design
with 14 factors, one for each attribue of each alternative.

%mktdes (factors=x1-x14=2, n=16)

Then the key= dataset is created. It shows that there are three brands, A, B, and C, plus None.

data key;
input (Brand Price Size Color Shape Pattern) ($);
datalines;

A x1 x2 x3 x4 x13
B x5 X6 x7 x8 .
Cc x9 x10 x11 x12 x14
None

Brand A is created from Brand = 'A’, Price = x1, Size = x2, Color = x3, Shape = x4, Pattern =
x13.

Brand B iscreated from Brand = 'B’, Price = x5, Size = x6, Color = x7, Shape = x8.

Brand Ciscreated fromBrand ='C’, Price =x9, Size =x10, Color =x11, Shape =x12, Pattern =
x14.

284

The constant alternative is Brand ='None' and none of the attributes.
Here is how you can create the design with one row per alternative per choice set:
$mktroll (key=key, design=design, out=sasuser.design, alt=brand)

For example, if the data set DESIGN contains the row:

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

8 2 1 1 1 1 1 2 2 2 2 1 2 2 1

Then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price Size Color Shape Pattern
29 8 A 2 1 1 1 2
30 8 B 1 1 2 2 .
31 8 c 2 2 1 2 1
32 8 None

Now assume we are going to fit a model with price cross effects so we need x1, x5, and x9 (the three price
effects) availablein the out = data set.

$mktroll (key=key, design=design, out=sasuser.design, alt=brand,
keep=x1 x5 x9)

Now the data set also contains the three original price variables.

Obs Set Brand Price Size Color Shape Pattern x1 x5 x9

29 8 A 2 1 1 1 2 2 1 2
30 8 B 1 1 2 2 . 2 1 2
31 8 Cc 2 2 1 2 1 2 1 2
32 8 None 2 1 2

The macro performs some rudimentary error checking. Every value in the key= data set must appear as a
variablein the design= dataset. The macro printsawarning if it encounters avariable namein the design=
data set that does not appear as avalue in the key= data set.

%MKTROLL Macro Options

The following options can be used with the %CHOICEFF macro. You must specify the design= and key=
options.

alt=variable

names the variablein the key= data set that contains the name of each alternative. Often this will be something
likealt=Brand. When alt= isnot specified, themacro createsavariable _Alt _ that containsthe alternative
number.

debug=1ist

notes - do not specify options nonotes during most of the macro.

285

design= sAs-data-set
names an input SAS data set with one row per choice set. The design= option must be specified.

keep= variable-list
names factors from the des ign= data set that should also be kept in the out = data set. This option is useful to
keep termsthat will be used to create cross effects.

key = SAS-data-set
names an input SAS data set containing the rules for mapping the design= data set to the out = data set. The
key= option must be specified.

OUL= sASdata-set
The out= option names the output SAS data set. If out= is not specified, the DATAN convention is used.

Set= variable
namesthe variablein the out = data set that will contain the choice set number. By default this variableis named
Set.

%MKTMERGE Macro Overview

The %MK TMERGE autocall macro merges a data set containing an experimental design for achoice model with
the data for the choice model. Here is atypical usage of the macro.

%$mktmerge (design=rolled, data=results, out=res2,
nsets=18, nalts=5, setvars=choosel-choosel8)

The design= data set comes from the %MKTROLL macro. The data= data set contains the data, and the
setvars= variables in the data= data set contain the numbers of the chosen alternatives for each of the 18
choice sets. The nsets= option specifies the number of choice sets, and the nalts= option specifies the
number of alternatives. The out= option names the output SAS data set that contains the experimental design
and avariable c that contains 1 for the chosen alternatives (first choice) and 2 for unchosen alternatives (second
or subsequent choice).

Whenthedata= dataset contains ablocking variable, nameit ontheblocks= option. When thereis blocking,
it is assumed that the design= data set contains blocks of nalts x nsets observations, one set per block. The
blocks= variablemust containvalues 1, 2, ..., n for n blocks. Here is an example of using the %oMKTMERGE
macro with blocking.

%$mktmerge (design=rolled, data=results, out=res2, blocks=form,
nsets=18, nalts=5, setvars=choosel-choosel8)

%MKTMERGE Macro Options

The following options can be used with the %MK TMERGE macro. You must specify the design=, nalts=,
nsets=, and setvars= options.

block s= 1jvariavle

either containsa 1 if there is no blocking or the name of avariablein the data= data set that contains the block
number. When there is blocking, it is assumed that the design= data set contains blocks of nalts x nsets
observations, one set per block. Theblocks= variable must contain values 1, 2, ..., n for n blocks.

286

data= sas-data-set
names an input SAS data set with data for the choice model. By default the data= data set is the last data set
created.

design= sASdata-set
names an input SAS data set for a choice model. This data set may have been created for example with the
%MK TROLL macro. This option must be specified.

nalts=n»
is the number of alternatives. This option must be specified.

nsets=n
is the number of choice sets. This option must be specified.

OUl= sASdata-set

namesthe output SAS data set. If out= isnot specified, the DATAN conventionis used. Thisdataset containsthe
experimental design and a variable ¢ that contains 1 for the chosen alternatives (first choice) and 2 for unchosen
alternatives (second or subseguent choice).

setvar S= variable-list
isalist of variables, one per choice set, in the data= data set that contain the numbers of the chosen alternatives.
It is assumed that the values of these variables range from 1 to nalts. This option must be specified.

StMtS= sAS-statements
specifies additional statementslike format and 1abel statements.

%MKTALLO Macro Overview

The %MKTALLO autocall macro is used for manipulating data for a choice experiment. It takes as input a data
set with one row for each alternative of each choice set. For example, in a study with 10 brands plus a constant
alternative and 27 choice sets, thereare 27 * 11 = 297 observations. Hereis an exampleinput data set. It contains
a choice set variable, product attributes (Brand and Price) and a frequency variable (Count) that contains
the total number of times that each alternative was chosen.

Obs Set Brand Price Count
1 1 0
2 1 Brand 1 $50 103
3 1 Brand 2 $75 58
4 1 Brand 3 $50 318
5 1 Brand 4 $100 99
6 1 Brand 5 $100 54

287

7 1 Brand 6 $100 83
8 1 Brand 7 $75 71
9 1 Brand 8 $75 58
10 1 Brand 9 $75 100
11 1 Brand 10 $50 56
296 27 Brand 9 $100 94
297 27 Brand 10 $50 65

The end result is a data set with twice as many observations that contains the number of times each alternative
was chosen and the number of times it was not chosen. This data set also contains a variable ¢ with values 1 for
first choice and 2 for second or subseguent choice.

Obs Set Brand Price Count c
1 1 0 1
2 1 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
7 1 Brand 3 $50 318 1
8 1 Brand 3 $50 682 2
593 27 Brand 10 $50 65 1
594 27 Brand 10 $50 935 2

Hereis a sample usage:

%mktallo (data=allocs2, out=allocs3, nalts=11,
vars=set brand price, freg=Count)

The option data= names the input data set, out= names the output data set, nalts= specifies the number of
aternatives, vars= names the variables in the data set that will be used in the analysis excluding the freq=
variable, and £reqg= names the frequency variable.

%MKTALLO Macro Options

The following options can be used with the %MKTALLO macro. You must specify thenalts=, freq=, and
vars= options.

data= sasdata-set
names the input SAS data set. By default, the macro uses the last data set created.

freq= variable
names the frequency variable, which contains the number of times this alternative was chosen. This option must
be specified.

288

nalts=n
names the number of alternatives (including if appropriate the constant alternative). This option must be speci-
fied.

OUt= sASdata-set
names the output SAS data set. Thedefaultisout=allocs.

Val S= variable-list
names the variables in the data set that will be used in the analysis but not the £req= variable. This option must
be specified.

%PHCHOICE Macro Overview

The %PHCHOI CE autocall macroisused to customi ze the discrete choice output from PROC PHREG. Typically,
you run the following macro once to customize the PROC PHREG outpui.

%phchoice (on)

The macro uses PROC TEMPLATE and ODS (OQutput Delivery System) to customize the output of PROC
PHREG. Running this code edits the templates and stores copies in SASUSER. These changes will remain in
effect until you delete them. Note that these changes assume that each effect in the choice model has a variable
label associated with it so thereis no need to print variable names. If you are coding with PROC TRANSREG,
thiswill usually be the case. To return to the default output from PROC PHREG, run the following macro.

%phchoice (off)

We are most interested in the “ Analysis of Maximum Likelihood Estimates” table, which contains the parameter
estimates. We can first use PROC TEMPLATE to identify the template for the parameter estimates table and then
edit the template. Firgt, let’'s have PROC TEMPLATE display the templates for PROC PHREG. The source
stat.phreg statement specifiesthat we want to see PROC TEMPLATE source codefor the STAT product and
the PHREG procedure.

proc template;
source stat.phreg;
run;

If we search the results for the “ Analysis of Maximum Likelihood Estimates’ table we find the following code,
which definesthe Stat . Phreg.ParameterEstimates table.

define table Stat.Phreg.ParameterEstimates;
notes "Parameter Estimates Table";
dynamic Confidence NRows;
column Variable DF Estimate StdErr ChiSq ProbChiSq HazardRatio HRLowerCL
HRUpperCL Label;
header hl h2;

define hl;
text "Analysis of Maximum Likelihood Estimates";
space = 1;
spill margin;

end;

define h2;
text Confidence BEST8. %nrstr("%% Hazard Ratio Confidence Limits");
space = 0;
end = HRUpperCL;
start = HRLowerCL;
spill margin = OFF;
end;

289

define Variable;

header = "Variable";
style = RowHeader;
id;

end;

define DF;
parent = Common.ParameterEstimates.DF;
end;

define Estimate;

header = "#Parameter#Estimate#";

format = D10.;

parent = Common.ParameterEstimates.Estimate;
end;

define StdErr;

header = "#Standard#Error#";

format = D10.;

parent = Common.ParameterEstimates.StdErr;
end;

define ChiSgqg;
parent = Stat.Phreg.ChiSq;
end;

define ProbChiSgqg;
parent = Stat.Phreg.ProbChiSqg;
end;

define HazardRatio;

header = "#Hazard#Ratio#";
glue = 2;
format = 8.3;

end;

define HRLowerCL;
glue = 2;
format = 8.3;
print_headers
end;

OFF;

define HRUpperCL;
format = 8.3;
print_headers
end;

OFF;

define Label;
header = "Variable Label";
end;

col space max 4;

col space min 1;

required space = NRows;
end;

It contains header, format, spacing and other information for each column in the table. Most of this need not
concern us now. The template containsthis column statement, which lists the columns of the table.

column Variable DF Estimate StdErr ChiSq ProbChiSq HazardRatio HRLowerCL
HRUpperCL Label;

Since we will usually have a label that adequately names each parameter, we do not need the variable column.
We also do not need the hazard information. If we move the labd to the front of the list and drop the variable
column and the hazard columns, we get this.

column Label DF Estimate StdErr ChiSq ProbChiSqg;

290

We use the edit statement to edit the template. As long as we are changing the template, we can also
modify some headers. We specify the new column statement and the new headers. We can also mod-
ify the Summary table to use the vocabulary of choice models instead of survival analysis models. So the
Stat.Phreg.CensoredSummary is aso edited. The code is grabbed from the PROC TEMPLATE step
with the source statement. The overall header “Summary of the Number of Event and Censored Values® is
changed to “ Summary of Subjects, Sets, and Chosen and Unchosen Alternatives’, “ Total” is changed to “Num-
ber of Alternatives’, “Event” is changed to “ Chosen Alternatives’, “ Censored” is changed to “Not Chosen”, and
“Percent Censored” is dropped. Finally Style=RowHeader was specified on the label column. This sets the
color, font, and general style for HTML output. The RowHeader styleis typically used on first columns that
provide names or labels for the rows. Hereis the code that the $phchoice (on) macro runs.

proc template;
edit stat.phreg.ParameterEstimates;
column Label DF Estimate StdErr ChiSqg ProbChiSqg;
header hl;

define hl;
text "Multinomial Logit Parameter Estimates";
space = 1;
spill margin;
end;

define Label;
header = " " style = RowHeader;
end;

end;

edit Stat.Phreg.CensoredSummary;
notes "Number of Events and Censored";
dynamic ndec;
column Stratum GenericStrVar Total Event Censored;
header hl;
define hl;
text "Summary of Subjects, Sets, and Chosen and Unchosen Alternatives";
space = 1;
spill margin;
first_panel;
end;

define Stratum;
header = "Stratum";
translate val =.A into "Total";
format = 5.0;
style = RowHeader;
id;
end;

define GenericStrVar;
generic;
end;

define Total;
header = "#Number of#Alternatives";
format ndec = ndec;
format_width = 8;

end;

define Event;
header = "#Chosen#Alternatives";
format ndec = ndec;
format_width = 8;

end;

291

define Censored;
header = "Not Chosen";
format ndec = ndec;
format width = 8;

end;

col space max = 4;

col space min = 1;

control = control var;

use_name;

end;

run;
Hereisthe code that $phchoice (of£) runs.

* Delete edited templates, restore original templates;
proc template;
delete Stat.Phreg.ParameterEstimates;
delete Stat.Phreg.CensoredSummary;
run;
Our editing of the multinomial logit parameter estimates table assumes that each independent variable has a
label. If you are coding with PROC TRANSREG, thiswill be true of al variables created by class expansions.
You may have to provide labels for identity and other variables. Alternatively, if you want variable names
to appear in the table, you can do that as follows. This may be useful when you are not coding with PROC
TRANSREG.

%phchoice (on, Variable DF Estimate StdErr ChiSq ProbChiSqg Label)

The optional second argument provides a list of the column names to print. The available columns
are. Variable DF Estimate StdErr ChiSq ProbChiSq HazardRatio HRLowerCL HRUp-
perCL Label. (HRLowerCL and HRUpperCL are confidence limits on the hazard ratio.) For very detailed
customizations, you may have to run PROC TEMPLATE directly.

%PHCHOICE Macro Options

The %PHCHOICE macro has two positional parameters, ono£f £ and column. For positional parameters, just a
valueis specified (unlike keyword parameters which have the form KEYWORD=value).

onoff

ON turns on choice model customization.

OFF turns off the choice model customization and returnsto the default PROC PHREG templ ates.
EXPB turns on choice model customization and adds the hazard ratio to the output.

Upper/lower case does not matter.

column
contains an optional column list for more extensive customizations.

292

Concluding Remarks

Thisreport hasillustrated how to design a choice experiment; prepare the questionnaire; input, process, and code
the design; perform the analysis; and interpret the results. All examples were artificial. We would welcome
any real data sets that we could use in future examples. This report has already been revised many times, and
future revisions are likely. If you have comments or suggestions for future revisions write Warren F. Kuhfeld,
(saswfk@wnt.sas.com) at SAS Institute Inc. Please direct questionsto the technical support division.

For moreinformation on discrete choice, see Carson et. al. (1994) and the papersthey reference. For information
on designing experiments for discrete choice, see Lazari and Anderson (1994), and Kuhfeld, Tobias, and Garratt
(1994).

293

References

Carson, R.T., Louviere, J.J, Anderson, D.A., Arabie, P, Bunch, D., Hensher, D.A., Johnson, R.M., Kuhfeld,
W.F, Steinberg, D., Swait, J., Timmermans, H., and Wiley, J.B. (1994)." Experimental Analysis of Choice,”
Marketing Letters, 5(4), 351—368.

Cook, R. Dennis and Christopher J. Nachtsheim (1980), “A Comparison of Algorithms for Constructing Exact
D-optimal Designs,” Technometrics, 22 (August), 315—24.

Federov, Vaery V. (1972), Theory of Optimal Experiments, trandated and edited by W.J. Studden and E.M.
Klimko, New York: Academic Press.

Huber, J., and Zwerina, K. (1996), “ The Importance of Utility Balance in Efficient Choice Designs,” Journal of
Marketing Research, 33, 307—317.

Kuhfeld, W.F., Tobias, R.D., and Garratt, M. (1994), “Efficient Experimental Design with Marketing Research
Applications,” Journal of Marketing Research, 31, 545—557.

Lazari, A.G. and Anderson, D.A. (1994), “Designs of Discrete Choice Set Experiments for Estimating Both
Attribute and Availability Cross Effects,” Journal of Marketing Research, 31, 375—383.

Louviere, J.J. (1991) “Consumer Choice Models and the Design and Analysis of Choice Experiments,” Tutorial
presented to the American Marketing Association Advanced Research Techniques Forum, Beaver Creek,
Colorado.

Louviere, J.J. and Woodworth, G (1983), “ Design and Analysis of Simulated Consumer Choice of Allocation Ex-
periments: A Method Based on Aggregate Data,” Journal of Marketing Research, 20 (November), 350—67.

Manski, C.F., and McFadden, D. (1981) Sructural Analysis of Discrete Data with Econometric Applications.
Cambridge: MIT Press.

SASand SAS/STAT areregistered trademarksor trademarks of SAS Ingtitute Inc in the USA and other countries.
® indicates USA registration.

294

Multinomial Logit Models

Ying So and Warren F. Kuhfeld
SAS Institute Inc, Cary, NC

ABSTRACT Multinomial logit models are used to model rel ationships between a polytomous response variable
and a set of regressor variables. The term “multinomial logit model” includes, in a broad sense, a variety of
models. The cumulative logit model is used when the response of an individual unit is restricted to one of afinite
number of ordinal values. Generalized logit and conditional logit models are used to model consumer choices.
This article focuses on the statistical techniques for analyzing discrete choice data and discusses fitting these
models using SAS/STAT® software.

I ntroduction Multinomial logit models are used to model rel ationships between a polytomous response variable
and a set of regressor variables. These polytomous response models can be classified into two distinct types,
depending on whether the response variable has an ordered or unordered structure.

In an ordered model, the response Y of an individual unit is restricted to one of m ordered values. For example,

the severity of amedical condition may be: none, mild, and severe. The cumulativelogit model assumes that the
ordinal nature of the observed response is due to methodol ogical limitations in collecting the data that resultsin

lumping together values of an otherwise continuous response variable (McKelvey and Zavoina 1975). Suppose

Y takesvalues yi,ys, .. ., ym ON SOMe scale, wherey; < y2 < ... < yn,. Itisassumed that the observable
variable is a categorized version of a continuouslatent variable U such that

Y=yioa 1<U<a,i=1,..,m

where —oco = ap < a; < ... < a,, = oco. Itisfurther assumed that the latent variable U is determined by the
explanatory variable vector x in the linear form U = —3'x + ¢, where 3 is a vector of regression coefficients
and ¢ is arandom variable with adistribution function F'. It follows that

Pr{Y <yilx} = F(a: + 8'x)

If F isthe logistic distribution function, the cumulative model is also known as the proportional odds model.
You can use PROC LOGISTIC or PROC PROBIT directly to fit the cumulative logit models. Although the
cumulative model is the most widely used model for ordinal response data, other useful models include the
adjacent-categories|ogit model and the continuation-ratio model (Agresti 1990).

In an unordered model, the polytomous response variable does not have an ordered structure. Two classes of
models, the generalized logit models and the conditional logit models, can be used with nominal response data.
The generalized logit model consists of a combination of several binary logits estimated simultaneously. For
example, the response variable of interest is the occurrence or nonoccurrence of infection after a Caesarean
section with two types of (1,11) infection. Two binary logits are considered: one for type | infection versus no
infection and the other for type Il infection versus no infection. The conditional logit model has been used in
biomedical research to estimate relative risks in matched case-control studies. The nuisance parameters that
correspond to the matched sets in an unconditional analysis are eliminated by using a conditional likelihood
that contains only the relative risk parameters (Breslow and Days 1980). The conditional logit model was also
introduced by McFadden (1973) in the context of econometrics.

In studying consumer behavior, an individual is presented with a set of alternatives and asked to choose the most
preferred alternative. Both the generalized logit and conditional logit models are used in the analysis of discrete
choicedata. Inaconditional logit model, a choice among alternativesistreated as afunction of the characteristics
of the alternatives, whereas in a generalized logit model, the choice is a function of the characteristics of the
individual making the choice. In many situations, a mixed model that includes both the characteristics of the
alternatives and the individual is needed for investigating consumer choice.

*This paper was presented at SUGI 20 by Ying So and can also be found in the SUGI 20 proceedings.

295

Consider an example of travel demand. People are asked to choose between travel by auto, plane or public
transit (bus or train). The following SAS® statements create the data set TRAVEL. The variables AUTOTIME,
PLANTIME, and TRANTIME represent the total travel time required to get to a destination by using auto, plane,
or transit, respectively. The variable AGE represents the age of the individual being surveyed, and the variable
CHOSEN contains the individual’s choice of travel mode.
data travel;
input AutoTime PlanTime TranTime Age Chosen $;
datalines;

10.0 4.5 10.5 32 Plane
5.5 4.0 7.5 13 Auto
4.5 6.0 5.5 41 Transit
3.5 2.0 5.0 41 Transit
1.5 4.5 4.0 47 Auto

10.5 3.0 10.5 24 Plane
7.0 3.0 9.0 27 Auto
9.0 3.5 9.0 21 Plane
4.0 5.0 5.5 23 Auto

22.0 4.5 22.5 30 Plane
7.5 5.5 10.0 58 Plane

11.5 3.5 11.5 36 Transit
3.5 4.5 4.5 43 Auto

12.0 3.0 11.0 33 Plane

18.0 5.5 20.0 30 Plane

23.0 5.5 21.5 28 Plane
4.0 3.0 4.5 44 Plane
5.0 2.5 7.0 37 Transit
3.5 2.0 7.0 45 Auto

12.5 3.5 15.5 35 Plane
1.5 4.0 2.0 22 Auto

In this example, AUTOTIME, PLANTIME, and TRANTIME are alternative-specific variables, whereas AGE is
a characteristic of the individual. You use a generalized logit model to investigate the relationship between the
choice of transportation and AGE, and you use a conditional logit model to investigate how travel time affects
the choice. To study how the choice depends on both the travel time and age of the individual, you need to use a
mixed model that incorporates both types of variables.

A survey of the literature reveals a confusion in the terminology for the nominal response models. The term
“multinomial logit model” is often used to describe the generalized logit model. The mixed logit is sometimes
referred to as the multinomial logit model in which the generalized logit and the conditional logit models are
special cases.

The following sections describe discrete choice models, illustrate how to use SAS/STAT software to fit these
models, and discuss cross-alternative effects.

M odeling Discrete Choice Data Consider an individual choosing among m alternativesin achoice set. Let IT j;,
denote the probability that individual j chooses aternative k, let X ; represent the characteristics of individual 7,
and let Z ;;, bethe characteristics of the kth alternative for individual j. For example, X ; may be an age and each
Z;, atravel time.

The generalized logit model focuses on the individual as the unit of analysis and uses individual characteristics
as explanatory variables. The explanatory variables, being characteristics of an individual, are constant over the
aternatives. For example, for each of them travel modes, X ; = (1 age)’, and for thefirst subject, X; = (1 32)".
The probability that individual j chooses alternative k is

I, = exp(,B;CXj) _ 1
! 2;11 eXP(ﬂ;Xj) Z;L exp[(8; — By)'X,)]

B4,...,3,, aem vectors of unknown regression parameters (each of which is different, even though X ; is

296

constant across alternatives). Since Y7 | IL;;, = 1, the m sets of parameters are not unique. By setting the last
set of coefficients to null (thet is, 3,,, = 0), the coefficients 3, represent the effects of the X variables on the
probability of choosing the kth alternative over the last alternative. In fitting such a model, you estimate m — 1
sets of regression coefficients.

In the conditional logit model, the explanatory variables Z assume different values for each aternative and the
impact of aunit of Z is assumed to be constant across alternatives. For example, for each of the m travel modes,
Z;;, = (time)', and for thefirst subject, Z1; = (10)', Z12 = (4.5)', and Z,3 = (10.5)". The probability that the
individual j chooses alternative k is

o exp(O'ij) o 1
Sy exp(0'Zy) Y, expl6(Zj — Zjy)]

6 isasingle vector of regression coefficients. The impact of a variable on the choice probabilities derives from
the difference of its values across the alternatives.

For the mixed logit model that includes both characteristics of the individual and the alternatives, the choice
probabilitiesare

O, — exp(8;,X, + 0'Zj)
=
! Y exp(BiX; +0'Zy)

B4, 8,_1 and3,, = 0 arethe alternative-specific coefficients, and 6 is the set of global coefficients.

Fitting Discrete Choice Models The CATMOD procedure in SAS/STAT software directly fits the generalized
logit model. SAS/STAT software does not yet have a procedure that is specially designed to fit the conditional or
mixed logit models. However, with some preliminary data processing, you can use the PHREG procedureto fit
these models.

The PHREG procedure fits the Cox proportional hazards model to survival data (refer to SAS Technical Report
P-229). The partial likelihood of Breslow has the same form as the likelihood in a conditional 1ogit model.

Let z; denote the vector of explanatory variables for individual [. Lett; < t < ... < t; denote k distinct
ordered event times. Let d; denote the number of failures at ¢;. Let s; be the sum of the vectors z; for those
individualsthat fail at ¢;, and let R; denote the set of indices for those who are at risk just beforet ;.

The Breslow (partial) likelihood is

exp(6's:)
1 [Zier, exp(0'z)]%

k
Lp(0) =

1=

In astratified analysis, the partial likelihood is the product of the partial likelihood for each individual stratum.
For example, in a study of the time to first infection from a surgery, the variables of a patient consist of TIME
(time from surgery to the first infection), STATUS (an indicator of whether the observation time is censored,
with value 2 identifying a censored time), Z1 and Z2 (explanatory variables thought to be related to the time to
infection), and GRP (a variable identifying the stratum to which the observation belongs). The specification in
PROC PHREG for fitting the Cox model using the Breslow likelihood is as follows:

proc phreg;

model time*status(2) = zl z2 / ties=breslow;
strata grp;
run;

To cast the likelihood of the conditional logit model in the form of the Breslow likelihood, consider m artificial
observed timesfor each individual who choosesone of m alternatives. The kth alternativeis chosen at time 1; the
choices of al other aternatives (second choice, third choice, ...) are not observed and would have been chosen
at some later time. So a choice variableis coded with an observed time value of 1 for the chosen alternative and
alarger value, 2, for all unchosen (unobserved or censored alternatives). For each individual, there is exactly

297

one event time (1) and m — 1 nonevent times, and the risk set just prior to this event time consists of al them
aternatives. For individual j with alternative-specific characteristics Z ;;, the Breslow likelihood is then

exp(0'Z;1,)
Lp(0) = —2PW0 k)
PO = S e 0'%)

Thisis precisaly the probability that individual j chooses alternative k£ in a conditional logit model. By stratifying
onindividuals, you get the likelihood of the conditional logit model. Note that the observed time values of 1 and
2 are chosen for convenience; however, the censored times have to be larger than the event time to form the
correct risk set.

Before you invoke PROC PHREG to fit the conditional logit, you must arrange your datain such away that there
is a survival time for each individual-alternative. In the example of travel demand, let SUBJECT identify the
individuals, let TRAVTIME represent the travel time for each mode of transportation, and let CHOICE have a
value 1 if the dternative is chosen and 2 otherwise. The CHOICE variableis used as the artificial time variable
as well as a censoring variable in PROC PHREG. The following SAS statements reshape the data set TRAVEL
into data set CHOICE and display the first nine observations:

data choice(keep=subject mode travtime choice);
array times[3] autotime plantime trantime;
array allmodes[3] § temporary (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = n ;
do i =1 to 3;
Mode = allmodes[il];
TravTime = times[i];
Choice = 2 - (chosen eq mode) ;
output;
end;
run;

proc print data=choice (obs=9);
run;

Trav
Obs Subject Mode Time Choice
1 1 Auto 10.0 2
2 1 Plane 4.5 1
3 1 Transit 10.5 2
4 2 Auto 5.5 1
5 2 Plane 4.0 2
6 2 Transit 7.5 2
7 3 Auto 4.5 2
8 3 Plane 6.0 2
9 3 Transit 5.5 1

Notice that each observationin TRAVEL correspondsto a block of three observationsin CHOICE, exactly one
of which is chosen.

The following SAS statements invoke PROC PHREG to fit the conditional logit model. The Breslow likelihood
is requested by specifying TIES=BRESLOW. CHOICE is the artificial time variable, and avalue of 2 identifies
censored times. SUBJECT is used as a stratification variable.

proc phreg data=choice;
model choice*choice(2) = travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model Using PHREG’;
run;

298

Conditional Logit Model Using PHREG
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > Chisg Ratio
TravTime 1 -0.26549 0.10215 6.7551 0.0093 0.767

To study the relationship between the choice of transportation and the age of people making the choice, the
analysis is based on the generalized logit model. You can use PROC CATMOD directly to fit the generalized
logit model (refer to SASSTAT User’s Guide, Vol. 1). Inthefollowing invocation of PROC CATMOD, CHOSEN
is the response variable and AGE is the explanatory variable:

proc catmod data=travel;
direct age;
model chosen=age;
title 'Multinomial Logit Model Using Catmod’;

run;
Response Profiles
Response Chosen
1 Auto
2 Plane
3 Transit
Analysis of Maximum Likelihood Estimates
Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSsqg
Intercept 1 3.0449 2.4268 1.57 0.2096
2 2.7212 2.2929 1.41 0.2353
Age 3 -0.0710 0.0652 1.19 0.2762
4 -0.0500 0.0596 0.70 0.4013

Note that there are two intercept coefficients and two slope coefficients for AGE. The first INTERCEPT and the
first AGE coefficients correspond to the effect on the probability of choosing auto over transit, and the second
intercept and second age coefficients correspond to the effect of choosing plane over transit.

Let X ; bea(p+ 1)-vector representing the characteristics of individual ;5. The generalized logit model can be cast
in the framework of a conditional model by defining the global parameter vector € and the alternative-specific
regressor variables Z ;;, asfollows:

0
B1 }(j X. 0
J
52 0 0 .
0= : Zjp=| . Zj = Zjm—1 = 0 Zjm =
5m—1 0 0 Xj

wherethe0 isa(p+ 1)-vector of zeros. The probability that individual j chooses aternative & for the generalized

logit model is put in the form that correspondsto a conditional logit model as follows:

exp(8;X;)
>t exp(81X;)

exp(0'Z;1,)
L, exp(0'Zj)

I, =

299

Here, the vector X; representing the characteristics of individual j includes the element 1 for the intercept

parameter (provided that the intercept parameters are to be included in the model).

By casting the generalized logit model into aconditional logit model, you can then use PROC PHREG to analyze
the generalized logit model. In the example of travel demand, the aternative-specific variables AUTO, PLANE,
AGEAUTO, and AGEPLANE are created from the individual characteristic variable AGE. The following SAS

statements reshape the data set TRAVEL into data set CHOICE2 and display the first nine observations:

data choice2;
array times[3] autotime plantime trantime;
array allmodes[3] § temporary (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = n ;
do i =1 to 3;
Mode = allmodes[il];
TravTime = times[i];
Choice = 2 - (chosen eqg mode) ;
Auto = (i eq 1);
Plane = (i eq 2);
AgeAuto = auto * age;
AgePlane = plane * age;
output;
end;
keep subject mode travtime choice auto plane ageauto ageplane;
run;

proc print data=choice2 (obs=9);

run;
Trav Age Age
Obs Subject Mode Time Choice Auto Plane Auto Plane

1 1 Auto 10.0 2 1 0 32 0
2 1 Plane 4.5 1 0 1 0 32
3 1 Transit 10.5 2 0 0 0 0
4 2 Auto 5.5 1 1 0 13 0
5 2 Plane 4.0 2 0 1 0 13
6 2 Transit 7.5 2 0 0 0 0
7 3 Auto 4.5 2 1 0 41 0
8 3 Plane 6.0 2 0 1 0 41
9 3 Transit 5.5 1 0 0 0 0

The following SAS statements invoke PROC PHREG to fit the generalized logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane / ties=breslow;
strata subject;
title ’'Generalized Logit Model Using PHREG’;
run;

300

Mixed Logit Model Using PHREG
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > Chisg Ratio
Auto 1 3.04494 2.42682 1.5743 0.2096 21.009
Plane 1 2.72121 2.29289 1.4085 0.2353 15.199
AgeAuto 1 -0.07097 0.06517 1.1859 0.2762 0.931
AgePlane 1 -0.05000 0.05958 0.7045 0.4013 0.951

By transforming individual characteristics into alternative-specific variables, the mixed logit model can be ana-
lyzed as a conditional logit model.

Analyzing the travel demand data for the effects of both travel time and age of individual requiresthe same data
set as the generalized logit model, only now the TRAVTIME variable will be used as well. The following SAS
statements use PROC PHREG to fit the mixed logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane travtime / ties=breslow;
strata subject;
title 'Mixed Logit Model Using PHREG’;

run;
Mixed Logit Model Using PHREG
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > Chisg Ratio
Auto 1 2.50069 2.39585 1.0894 0.2966 12.191
Plane 1 -2.77912 3.52929 0.6201 0.4310 0.062
AgeAuto 1 -0.07826 0.06332 1.5274 0.2165 0.925
AgePlane 1 0.01695 0.07439 0.0519 0.8198 1.017
TravTime 1 -0.60845 0.27126 5.0315 0.0249 0.544

A special case of the mixed logit model is the conditional logit model with alternative-specific constants. Each
alternative in the model can be represented by its own intercept, which captures the unmeasured desirability of
the alternative.
proc phreg data=choice2;

model choice*choice(2) = auto plane travtime / ties=breslow;

strata subject;

title ’‘Conditional Logit Model with Alternative Specific Constants’;

run;

301

Conditional Logit Model with Alternative Specific Constants
The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSqg Ratio
Auto 1 -0.11966 0.70820 0.0285 0.8658 0.887
Plane 1 -1.63145 1.24251 1.7241 0.1892 0.196
TravTime 1 -0.48665 0.20725 5.5139 0.0189 0.615

With transit as the reference mode, the intercept for auto, which is negative, may reflect the inconvenience of
having to drive over travelling by bus/train, and the intercept for plane may reflect the high expense of traveling
by plane over bug/train.

Cross-Alternative Effects Discrete choice models are often derived from the principle of maximum random
utility. It isassumed that an unobserved utility Vi, isassociated with the kth alternative, and the response function
Y isdetermined by

Y=k<e Vy=max{V,1 <l <m}

Both the generalized logit and the conditional logit models are based on the assumption that V4,...,V,, are
independently distributed and each follows an extreme maxima value distribution (Hoffman and Duncan, 1988).

An important property of such models is Independence from Irrelevant Alternatives (I1A); that is, the ratio of

the choice probabilities for any two alternatives for a particular observation is not influenced systematically by

any other aternatives. 11A can be tested by fitting a model that contains all the cross-alternative effects and

examining the significance of these effects. The cross-alternative effects pick up a variety of I1A violations and

other sources of error in the model. (See pages 175, 180, 187, and 305 for other discussions of 11A.)

In the example of travel demand, there may be separate effects for the three travel modes and travel times. In
addition, there may be cross-alternative effects for travel times. Not all the effects are estimable, only two of
the three intercepts and three of the six cross-alternative effects can be estimated. The following SAS statements
create the design variables for al the cross-alternative effects and display the first nine observations:

* Number of alternatives in each choice set;
%$let m = 3;

data choice3;
drop i j k autotime plantime trantime;

* Values of the variable CHOSEN;
array allmodes[&m] $
_temporary (’Auto’ ‘Plane’ ‘Transit’);

* Travel times for the alternatives;
array times[&m] autotime plantime trantime;

* New variables that will contain the design:;
array inters[&m]
Auto /*intercept for auto */
Plane /*intercept for plane */
Transit; /*intercept for transit */

302

array cross[%eval (&m * &m)]
TimeAuto /*time of auto alternative */
PlanAuto /*cross effect of plane on auto */
TranAuto /*cross effect of transit on auto */
AutoPlan /*cross effect of auto on plane */
TimePlan /*time of plane alternative */
TranPlan /*cross effect of transit on plane*/
AutoTran /*cross effect of auto on transit */
PlanTran /*cross effect of plane on transit*/
TimeTran; /*time of transit alternative */

set travel;

subject = n ;

* Create &m observations for each choice set;
do i =1 to &m;

Mode = allmodes[il; /* this alternative */
Travtime = times[i]l; /* travel time */
Choice = 2 - (chosen eq mode);/* 1 - chosen */
do j = 1 to &m;
inters[j] = (i eq j); /* mode indicator */
do k = 1 to &m;
* (j=k) - time, otherwise, cross effect;
cross [&m* (j-1) +k] =times [k] *inters[]j];
end;
end;
output;
end;
run;

proc print data=choice3 (obs=9) label;
var subject mode travtime choice auto plane transit
timeauto timeplan timetran autoplan autotran planauto
plantran tranauto tranplan;

run;
subject Mode Travtime Choice Auto Plane Transit
1 Auto 10.0 2 1 0 0
1 Plane 4.5 1 0 1 0
1 Transit 10.5 2 0 0 1
2 Auto 5.5 1 1 0 0
2 Plane 4.0 2 0 1 0
2 Transit 7.5 2 0 0 1
3 Auto 4.5 2 1 0 0
3 Plane 6.0 2 0 1 0
3 Transit 5.5 1 0 0 1
Time Time Time Auto Auto Plan Plan Tran Tran
Auto Plan Tran Plan Tran Auto Tran Auto Plan
10.0 0.0 0.0 0.0 0.0 4.5 0.0 10.5 0.0
0.0 4.5 0.0 10.0 0.0 0.0 0.0 0.0 10.5
0.0 0.0 10.5 0.0 10.0 0.0 4.5 0.0 0.0
5.5 0.0 0.0 0.0 0.0 4.0 0.0 7.5 0.0
0.0 4.0 0.0 5.5 0.0 0.0 0.0 0.0 7.5
0.0 0.0 7.5 0.0 5.5 0.0 4.0 0.0 0.0
4.5 0.0 0.0 0.0 0.0 6.0 0.0 5.5 0.0
0.0 6.0 0.0 4.5 0.0 0.0 0.0 0.0 5.5
0.0 0.0 5.5 0.0 4.5 0.0 6.0 0.0 0.0

303

PROC PHREG allows you to specify TEST statements for testing linear hypotheses of the parameters. The
test is a Wald test, which is based on the asymptotic normality of the parameter estimators. The following
SAS statements invoke PROC PHREG to fit the so called “Mother Logit” model that includes all the cross-
alternative effects. The TEST statement, with label 1A, specifiesthe null hypothesisthat cross-alternative effects
AUTOPLAN, PLANTRAN, and TRANAUTO are 0. Since only three cross-alternative effects are estimable and
these are thefirst cross-alternative effects specified in the model, they account for all the cross-alternative effects
in the model.
proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto timeplan
timetran autoplan plantran tranauto planauto tranplan
autotran / ties=breslow;
IIA: test autoplan,plantran, tranauto;
strata subject;
title 'Mother Logit Model’;
run;

304

Mother Logit Model
The PHREG Procedure
Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 46.142 24.781
AIC 46.142 40.781
SBC 46.142 49.137

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > Chisg
Likelihood Ratio 21.3607 8 0.0062
Score 15.4059 8 0.0517
Wald 6.2404 8 0.6203

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > Chisg Ratio
Auto 1 -0.73812 3.05933 0.0582 0.8093 0.478
Plane 1 -3.62435 3.48049 1.0844 0.2977 0.027
Transit 0 0
TimeAuto 1 -2.23433 1.89921 1.3840 0.2394 0.107
TimePlan 1 -0.10112 0.68621 0.0217 0.8829 0.904
TimeTran 1 0.09785 0.70096 0.0195 0.8890 1.103
AutoPlan 1 0.44495 0.68616 0.4205 0.5167 1.560
PlanTran 1 -0.53234 0.63481 0.7032 0.4017 0.587
TranAuto 1 1.66295 1.51193 1.2097 0.2714 5.275
PlanAuto 0 0
TranPlan 0 0
AutoTran 0 0

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > Chisgq
IIA 1.6526 3 0.6475

The x2 statistic for the Wald test is 1.6526 with 3 degrees of freedom, indicating that the cross-alternative effects
are not statistically significant (p = .6475). A generally more preferable way of testing the significance of
the cross-alternative effects is to compare the likelihood of the “Mother logit” model with the likelihood of the

305

reduced model with the cross- alternative effects removed. Thefollowing SAS statements invoke PROC PHREG
to fit the reduced model:

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto
timeplan timetran / ties=breslow;
strata subject;
title ’Reduced Model without Cross-Alternative Effects’;

run;
Reduced Model without Cross-Alternative Effects
The PHREG Procedure
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 46.142 27.153
AIC 46.142 37.153
SBC 46.142 42.376
Reduced Model without Cross-Alternative Effects
The PHREG Procedure
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSsqg
Likelihood Ratio 18.9886 5 0.0019
Score 14.4603 5 0.0129
Wald 7.3422 5 0.1964
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSqg Ratio
Auto 1 1.71578 1.80467 0.9039 0.3417 5.561
Plane 1 -3.60073 3.30555 1.1866 0.2760 0.027
Transit 0 0
TimeAuto 1 -0.79543 0.36327 4.7946 0.0285 0.451
TimePlan 1 0.12162 0.58954 0.0426 0.8366 1.129
TimeTran 1 -0.42184 0.25733 2.6873 0.1012 0.656

Thechi-squared statistic for thelikelihood ratio test of 11 A is(27.153—24.781) = 2.372, whichisnot statistically
significant (p = .4989) when compared to ax ? distribution with 3 degrees of freedom. This s consistent with
the previous result of the Wald test. (See pages 175, 180, 187, and 301 for other discussions of 11A.)

306

Final Comments For some discrete choice problems, the number of available alternatives is not the same for
each individual. For example, in a study of consumer brand choices of laundry detergents as prices change, data
are pooled from different locations, not all of which offer a brand that contains potash. The varying choice sets
across individuals can easily be accommodated in PROC PHREG. For individual j who chooses from a set of
m; aternatives, consider m ; artificial timesin which the chosen alternative has an event time 1 and the unchosen
alternatives have a censored time of 2. The analysisiscarried out in the same fashion asillustrated in the previous
section.

Unlike the example of travel demand in which datafor each individual are provided, choice data are often given
in aggregate form, with choice frequencies indicating the repetition of each choice. One way of dealing with
aggregate datais to expand the datato the individual level and carry out the analysis asif you have nonaggregate
data. This approach is generally not recommended because it defeats the purpose of having a smaller aggregate
data set. PROC PHREG provides a FREQ statement that allows you to specify a variable that identifies the
frequency of occurrence of each observation. However, with the specification of a FREQ variable, the artificial

event time is no longer the only event time in a given stratum, but has ties of the given frequency. With proper
stratification, the Breslow likelihood is proportional to the likelihood of the conditional logit model. Thus PROC
PHREG can be used to obtain parameter estimates and hypothesis testing results for the choice models.

The TIES=DISCRETE option should not be used instead of the TIES=BRESLOW option. Thisis especially
detrimental with aggregate choice data because the likelihood that PROC PHREG is maximizing may no longer
be the same as the likelihood of the conditional logit model. TIES=DISCRETE corresponds to the discrete
logistic model for genuinely discrete time scale, which is also suitable for the analysis of case-control studies
when there is more than one case in amatched set (Gail, Lubin, and Rubinstein, 1981). For nonaggregate choice
data, al TIES= options give the same results; however, the resources required for the computation are not the
same, with TIES=BRESL OW being the most efficient.

Once you have a basic understanding of how PROC PHREG works, you can use it to fit a variety of models
for the discrete choice data. The major involvement in such atask lies in reorganizing the data to create the
observations necessary to form the correct risk sets and the appropriate design variables. There are many options
in PROC PHREG that can also be useful in the analysis of discrete choice data. For example, the OFFSET=
option allows you to restrict the coefficient of an explanatory variableto the value of 1; the SELECTION= option
allows you to specify one of four methods for selecting variables into the model; the OUTEST= option allows
you to specify the name of the SAS data set that contains the parameter estimates, based on which you can easily
compute the predicted probabilities of the alternatives.

This article deals with estimating parameters of discrete choice models. Thereis active research in the field of
marketing research to use design of experiments to study consumer choice behavior. If you are interested in this
areg, refer to Carson et al. (1994), Kuhfeld et al. (1994), and Lazari et al. (1994).

References

Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley & Sons.

Breslow, N. and Day, N.E. (1980), Satistical Methods in Cancer Research, Vol. I1: The Design and Analysis of
Cohort Sudies, Lyon: IARC.

Carson, R.T.; Louviere, J.J; Anderson, D.A.; Arabie, P; Bunch, D.; Hensher, D.A.; Johnson, R.M.; Kuhfeld,
W.F,; Steinberg, D.; Swait, J.; Timmermans, H.; and Wiley, J.B. (1994). “Experimental Analysis of Choice,”
Marketing Letters, 5(4), 351-368.

Gail, M.H., Lubin, JH., and Rubinstein, L.V. (1981), “Likelihood calculations for matched case-control studies
and survival studies with tied death times,” Biometrika, 68, 703-707.

Hoffman, S.D. and Duncan, G.J. (1988), “Multinomial and conditional logit discrete-choice modelsin Demog-
raphy,” Demography, 25 (3), 415-427.

Kuhfeld, W.F,, Tobias, R.D., and Garratt, M. (1994), “Efficient Experimental Design with Marketing Research
Applications,” Journal of Marketing Research, 31, 545-557.

307

Lazari, A.G. and Anderson, D.A. (1994), “Designs of Discrete Choice Set Experiments for Estimating Both
Attribute and Availability Cross Effects,” Journal of Marketing Research, 31, 375-383.

McFadden, D. (1973), “Conditional logit analysis of qualitative choice behavior,” in P. Zarembka(Ed.) Frontiers
in Econometrics, New York: Academic Press, Inc.

McKelvey, R.D. and Zavoina, W. (1975), “A statistical model for the analysis of ordinal level dependent vari-
ables,” Journal of Mathematical Sociology, 4, 103-120.

SAS Ingtitute Inc. (1989), SASSTAT User’s Guide, Vol. 1, Version 6, Fourth Edition, Cary: NC: SAS Institute
Inc.

SAS Ingtitute Inc. (1992), SAS Technical Report P-229. SASSTAT Software: Changes and Enhancements,
Release 6.07, Cary, NC: SAS Ingtitute Inc.

SASand SAS/STAT aretrademarks or registered trademarks of SAS Ingtitute Inc in the USA and other countries.
® indicates USA registration.

| ndex

ee 75

A-efficiency 69

Age, variable 215-216

aggregate data 166-168 181 210 231 306

aliased 68

aliasing structure 197

allocation study 225

alt=, defined 284

alt=284

alternative-specific effects 136-137 164 172 176 180
188 205 208 295-300

arrays 82 92 101-105 120-121 149 159-161 168 181
200 230 246 251 297-301

artificial data 66 161 200

asymmetry 143-144 187

augment= 255

augmenting an existing design 254

autocall macros 261

availability cross effects 187-190 195 211

balance 68-69 84 149 158 200 221-223

%BALEVAL macro 221

Best, variable 192

bestcov=, defined 279

bestout=, defined 279

bestout= 280

beta=, defined 279

beta= 240 270 275-276

big designs 143 250

big, how big istoo big? 108

big=, defined 263

big= 109 190 263-265

binary coding 97 125 133 163 170

Block, variable 120 123 225 234

blocking 225

blocks 119 158

blocks, statement 119 158

blocks=, defined 285

blocks= 285

Brand, variable 94-97 170 174-175 202 206-208 216
230-234 277 282-286

Breslow likelihood 186

bundles of attributes 239

c = 2 - (i eq choice) 77

¢, variable 77-78 96 101 104 124 174-175 206 210
233 287

c*c(2) 7898

c*c(3) 78

c=175

c=275

cands=, defined 263

candidate set 90 108-112 119 149-150 158 188 191

308

250 254-255
candidate set size heuristics 109
CensoredSummary 129
check the data entry 79
Chi-Square statistic 80
choice probabilities 82
Choice, variable 77
%CHOICEFF macro 240 243-248
%CHOI CEFF macro documentation 270-281
%CHOICEFF macro, aternative swapping 243 248
%CHOICEFF macro, set swapping 246-248
Choose, variable 105
chosen alternative 77
class, statement 91 109 195
class 96-97 125128 133137 146 149 163-164 170-
172 175 195 204-205 210 232 239-240 266
275291
coded 281
coding down 145-146
coding
binary 97 125 163 170
effects 133
the choice model 97 125 129-131 134 137 163 170-
172175 180-184 205 210 215 234
coding=, defined 263
Color, variable 282-283
column, defined 291
column, Statement 289-290
confounded 68
constant alternative 84 90 102 168
converge=, defined 279
converge= 273
Count, variable 230-231 286
cov=, defined 279
cross effects 169 174-181 187-190 195 202 205 208-
213217-218
customizing PHREG output 71 288-291
dataentry 75-76 94 105 122 149 162 168 181 201 214
229 295
data entry, checking 79
data processing 106 134-136 149 202 229 246
data, generating artificial 161 200
data=, defined 279 286-287
data= 78 109 240 270 280 285-287
debug=, defined 284
D-efficiency 69 90 192-193 197
degree= 131
demographic information 214
Design, variable 242
design 97 125163 170
design=, defined 285-286

design= 281-285

designs with many factors 250

detail 281

diminishing returns on iterations 192

drop=, defined 280

drop= 274

dropping variables 97 125

edit, statement 290

effects coding 133

effects 133275

efficiency 69

Efficiency, variable 242

efficient design 90 109-112

estimate= 250

%EVALEFF macro 195

examine i, statement 117

examine i wv, statement 196

exclude, ods statement 129 164 170-172 178
219

excluding combinations 190

existing design, improving 252

external attributes 214

extreme valuetype | distribution 187

factors 68

factors, statement 89 102 109 141 145 250 264

factors=, defined 263

factors= 85108 145-146 190 264

Federov, modified 110-111 241

file, statement 92

fitting the choice model 77 80 98 127-131 134 138
164-166 170-172 178 182-184 211 219 234
237 296-300 303-305

fives=, defined 267

five= 259

fixed choice sets 254

fixed=, defined 280

fixed= 280

flags=, defined 279

flags= 240 270 279-280

Form, variable 102 124 166

format, statement 136

formats 82 85 90-92 103 163 168 181 199 222 225

&forms, variable 102

fractional-factorial designs 68

fregq, statement 166 182-184 211 234 237

Fregq, variable 182

FREQ, variable 116 166 211

freq=, defined 287

freq= 287-288

frequency variable 166-168 181-184

full-factorial design 68 89-90 108 111-112 149-150
188

G-efficiency 69

generate, statement 109-111 119 158 253-255 264

309

generate=, defined 264

generic attributes 121

generic design 239

HRLowerCL 291

HRUpperCL 291

(i eq choice) 77

id, statement 97 125 164 170

identity 97 129170-172 175 205 291

1A 175 180 187 301-305

improving an existing design 252

Income, variable 215-216

independence 98

independence from irrelevant aternatives 175 180
187

Index, variable 242 274

information matrix 69

init=, defined 280

init= 272-274280

init=chain 119 158

initdesign= 119 157-158 253

initial design 157 255

initvars=, defined 280

initvars= 272-274 280

input data 75

input, statement 75

input function 96

interacts=, defined 264

interact= 151190 265

interactions 111 136 151 166 188-189 194 198-200

intiter=, defined 280

intiter= 272

iters=, defined 264

iter=109-112 192 264

kangaroos 112

keep=, defined 285

keep= 109 192 264

keep=n, defined 264

KEY data set 94 122 136 162 202 231 246 272 275
277 282-283

key=, defined 285

key= 282-285

Lsg 149-150 254-256

label, variable 77-80 90-92 97 125 129-131 134 164
170-172 175-184 199 205 210 215 289-291

large data sets 166 181

levels 68

likelihood 71 74 77-78 98 140 166 174 184-186 294-
297 304-306

linesleft=92

list, defined 270

local optima 150

Lodge, variable 122 125 137 162-164

lprefix= 97125164 170-172 205

macro variables 85 102

macro
%BALEVAL 221
%CHOICEFF 240 243-248 270-281
%EVALEFF 195
%MKTALLO 233 286-288
%MKTDES 85 108-113 140 145-152 189-193
221-225 239 243 246-267 270-277 282-283
%MK TDES10 259 267
%MKTDES6 257 266-267
%MKTMERGE 77 96 124 136 162 203 214 285-
286
%MKTROLL 95 122 136 162 202 231 246 272
275-277 281-285
%MKTRUNS 84 108 144 151 225 268-270
%PHCHOICE 71 288-291
macros
autocall 261
main effects 90 109-111 188-189 198
mautosource 261
max=, defined 270
max= 269
maxiter=, defined 280
maxiter= 241
memory, running with less 166
method=, defined 264
method= 119
method=m_ federov 109-111 253
method=sequential 157-158
Micro, variable 202-205
Y%MKTALLO macro 233
%MKTALLO macro documentation 286-288
%MKTDES macro 85 108-113 140 145-152 189-193
221-225 239 243 246-259 270-277 282-283
%MK TDES macro documentation 261-267
%MKTDES10 macro 259
%MK TDES10 macro documentation 267
%MK TDES6 macro 257
%MK TDES6 macro documentation 266-267
%MKTMERGE macro 77 96 124 136 162 203 214
%MK TMERGE macro documentation 285-286
%MKTROLL macro 95122 136 162 202 231 246 272
275-277
%MKTROLL macro documentation 281-285
%MKTRUNS macro 84 108 144 151 225
%MK TRUNS macro documentation 268-270
model comparisons 140 174 185 304-305
model estimate=(), Statement 141
model res=3, statement 109 142
model, statement 78 97-98 109 125-127 146 149-
151 163 170-172 175 195 248 265-266 270
278
model 145 248
model-=, defined 278
model= 240 270 280

310

modified Federov algorithm 110-111 221 253-255

morevars=, defined 280

mother logit 174 180 187 211 303-304

multinomial logit 73 77-78 98 170-172 187 295

multiple choices 225

n, variable 242

n=, defined 264 280

n= 85109 152 189-190 264 276

n=saturated 151

nalts=, defined 279 286-288

nalts= 272-273 279-280 285-287

nlev=, defined 264

nlev= 109 146 257-258 262 265

nocode 281

noexchange 119 158

None alternative 189 202 211-213 219-221

nor 97 125

norestoremissing 97 125133163 170

nosummary 100 129

notes 281

notruncate 237

noz 97 125

nozeroconstant 97 125137 163 170

nsets=, defined 279 286

nsets= 240 270 285

nvals= 141-142

ODS 71288

ods exclude, Statement 129

ods exclude statement 129 164 170-172 178 219

ods output, statement 129 192 222

ods output Statement 129 164 170-172 178 219

onof f, defined 291

options=, defined 264 281

options=eval 264

order=data 97 125 163

order=formatted 125

ordered 89 102

orthcan 281

orthogonal 68-69

orthogonal and balanced 84 149

orthogonal array 68

otherfac=, defined 264

otherfac= 250

otherint=, defined 265

otherint=151

out=, defined 265 281 285-288

out= 97109 125 163 170 265 281-287

out=allocs 288

outest= 78

Output Delivery System 71 288

output, statement 89-90 97 109-110 125 146 164
170

output, ods statement 129 164 170-172 178 219

outstat= 251

overnight searches 191

page, new 104

param=orthref 91 109

parameters 73 78-82 131-133 186-189 294-295 298
303 306

part-worth utility 73 81 132 161 166

Pattern, variable 283

permanent SAS data set 102

persist=run 222

%PHCHOICE macro 71

%PHCHOICE macro documentation 288-291

PHREG output, customizing 71 288-291

Place, variable 122-125 136-137 162-164

point=, variable 104

point= 7791-92 120

pointrep= 148

Price, variable94-97 100 123-125 129 137 162-164
170 174-175 188 202-208 234 277 282-283
286

PricelL, variable 131

Prob, variable 242

probability of choice 73-74 82-83 101-102 187 295-
298

PROC CATMOD 298

PROC FACTEX 109 140-142 145-148 250

PROC FORMAT 8285 123 162 168 181 199 202 225

PROC FREQ 116 119 129 153 164 170-172 178 194
219 223 226

PROC GLM 197-198 251-252

PROC GPLOT 74 193

PROC IML 221-222 241

PROC LOGISTIC 294

PROC MEANS 101 222

PROC OPTEX 90109-111117-119146 149 157-158
190-196 253-256 266

PROC OPTEX, common options explained 253-255

PROC PHREG 71 77 80 97-98 125-134 138 164-172
178 182-184 211 219 234 237 288 296-300
303-306

PROC PHREG, common options explained 77

PROC PLAN 89-92 102 119-120 158 190

PROC PLAN, common options explained 89 102

PROC PROBIT 294

PROC SCORE 101

PROC SORT 82 92 105 199 222 226 232 253

PROC SUMMARY 87 113116 153 166 194 210 231
262

PROC TEMPLATE 71 288-291

PROC TRANSPOSE 103-105

PROC TRANSREG 97-98 125-137 163 170-172 175
178-184 205 210 215 234 248 291

procopts=85

procopts=0ptions, defined 265

procopts=seed= 190

311

proportional hazards 71 77 184 296
proportions, analyzing 237
pseudo-factors 142 146-147 256-259 263
pspline 131
put, statement 161
put function 96
quadratic price models 189
quantitative factor 100 129-131 166 250
guestionnaire 92-93 102-105 120 158
random number seeds 85
randomization 91-92 102 119 158 199-200
read, statement 222
reference level 81 128 133 189
resolution 68
resolution |11 109-112 141-142 253
resolution IV 111
resolutionV 111
RowHeader 290
run=, defined 265
run= 239
Scene, variable 123-125 137 162-164
second choice 75-78
seed=, defined 281
seed= 85109 146 193 240 270
separators= 172 175 205
sequential algorithm 119 157-158 195
set, statement 77 104
Set, variable 75 78-79 91 95-98 104-106 120 166-
168 174-175 182 242 285
set=, defined 281 285
setvars=, defined 286
setvars= 285
Shape, variable 282-283
Shelf, variable 202-205
shelf-talker 187 199-200 213
Side, variable 162-164
size design=min, statement 109 141 145
Size, variable 282-283
size=, defined 265
size= 112 146-147 152 262 265
size=min 265
source stat.phreg, statement 288
source, statement 290
statement
blocks 119158
class 91109195
column 289-290
edit 290
examine i v 196
examine i 117
factors 89102 109 141 145 250 264
file 92
format 136
freq 166 182

generate 109-111 119 158 253-255 264
id 97125164 170
input 75
model estimate=(
model res=3 109142
model 78 97-98 109 125-127 146 149-151 163
170-172 175 195 248 265-266 270 278
ods exclude 129
ods output 129 192 222
output 89-90 97 109-110 125 146 164 170
put 161
read 222
set 77104
size design=min 109 141 145
source stat.phreg 288
source 290
strata 78 98 168 182
use 222
ways 113116
where 129195234
step=, defined 265
step=1 147
step=2 147
stmts=, defined 286
strata 78-79 98-100 166-168 181 184-186 296-297
306
strata, Sstatement 78 98 168 182
Stratum, variable 129
structural zeros 81 133 140
structure= 119 158
Style=RowHeader 290
subdesign 188
Subj, variable 75 78-79 96-98 168-169 174-175 211
subject attributes 214
submat=, defined 281
submatrix rank 195
subsequent choice 75-78 124 168
summary table 78-79 100 184 213
survival analysis 71 77 296
tabled design 149 254
temporary 92
tests 281
three=, defined 267
three= 257
ties=breslow 71 77-7898 184
time (computer), saving 166
&_trgind, variable 98 101 127-131 134 138 164-
166 170-172 176-178 182-184 211 219 234
237
-2LOG L 80174 184-186 305
two=, defined 267
two= 257-259
use, Statement 222
variable label 77-80 90-92 97 125 129-131 134 164

) 141

312

170-172 175-184 199 205 210 215 289-291
variable name 291
variable
Age 215-216
Best 192
Block 120123 225 234
Brand 94-97 170 174-175 202 206-208 216 230-
234 277 282-286
c 77-78 96 101 104 124 174-175 206 210 233 287
Choice 77
Choose 105
Color 282-283
Count 230-231 286
Design 242
Efficiency 242
Form 102 124 166
&forms 102
Freq 182
FREQ 116 166 211
Income 215-216
Index 242 274
Lodge 122 125137 162-164
Micro 202-205
n 242
Pattern 283
Place 122-125136-137 162-164
point=104
Price 94-97 100 123-125 129 137 162-164 170
174-175 188 202-208 234 277 282-283 286
PriceL 131
Prob 242
Scene 123-125 137 162-164
Set 75 78-7991 95-98 104-106 120 166-168 174-
175182 242 285
Shape 282-283
Shelf 202-205
Side 162-164
Size 282-283
Stratum 129
Subj 75 78-79 96-98 168-169 174-175 211
&_trgind 98101127-131134138164-166 170-
172 176-178 182-184 211 219 234 237
vars=, defined 288
vars= 287
very big designs 250
ways, Statement 113 116
weight=, defined 281
where, Statement 129 195 234
where=, defined 266
where= 190
With Covariates 80 140 174
zero= 129 133 180 205 277
zero=none 97 125128-129 163 170-172 180

