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3.3 The Kimura 2ST Model

Applying Singular to the associated form of (L) returned a system of 18

polynomials which filled 24 pages of output.

The three pairwise distributions µαβ, µαγ and µβγ to a given triple leaf dis-

tribution µαβγ has four different solutions for (L) if the difference of the

probability of staying in one class minus the probability of changing classes

and the difference of the probability of no change and a change within a class

are both not zero.



♣♠♦♦
♠♣♦♦
♦♦♣♠
♦♦♠♣


←→



♠♣♦♦
♣♠♦♦
♦♦♠♣
♦♦♣♠


,



♣♠♦♦
♠♣♦♦
♦♦♣♠
♦♦♠♣


←→



2♦−♥ ♥ ♣+♠
2

♣+♠
2

♥ 2♦−♥ ♣+♠
2

♣+♠
2

♣+♠
2

♣+♠
2 2♦−♥ ♥

♣+♠
2

♣+♠
2 ♥ 2♦−♥


.

The above matrix changes describe the relationship of the obtained solutions.
Note, that the second change also changes the process on the triple tree.

3.1 The General Two State Model

For a vector µαβγ denote by tδ1δ2
the covariance between the leaves δ1 and δ2,

and by rδ1
, δ ∈ L and ∆ terms in µαβγ. If the covariances and ∆ are not zero,

then the system (L) has a unique solution up to symmetry, which is given by
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The relationship between the two solutions is visualized by
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If the solution characterizes a Markov process then either two leaves are

positive correlated with each other and negatively correlated to the third or

all three leaves are pairwise positive correlated.

The vectors, for which ∆ = 0 but tαβtαγtβγ 6= 0 did not return any solu-

tion.This observation led to the conjecture that the phylogenetic variety for

(L) under the two state model is not affine.

3.2 The Neyman Nk Model
Singular generated two polynomials, the summation condition for proba-

bility vectors under the Neyman model and a junk polynomial.

If the Hamming distances dαβ, dαγ and dβγ are not equal to 1− 1/k then the

system (L) has a unique solution up to symmetry, which is given by
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where δ = (1 − kdαβ/(k − 1))(1 − kdαγ/(k − 1))(1 − kdβγ/(k − 1)). The

relationship between these solutions is visualized by
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Either none, one or both solution describe Markov processes. Note however,
that each solutions returns its own vector µL.

2 Algebraic Questions and Tools

Inferred Questions
For which vectors µ ∈ Ck3

does (L) provide a solution?

How many solutions exist for one vector?

When does such a solution characterize a Markov process?

Used Tools
Consider (L) as the parametrization of the variety of factorizing vectors.

Via polynomial implicitization this parametrization is reversed to obtain a

set of polynomials which characterize the smallest affine variety containing

the needed variety. These polynomials are called phylogenetic invariants

(see e.g. Allman and Rhodes [2003]). Denote the variety identified by the

invariants as phylogenetic variety. For computations of the invariants the

algebra package Singular (Greuel et al. [2001]) was used.

Obtained Answers
If a solution exists for a vector µ, then it is in the phylogenetic variety.

The number of needed invariants is bounded from below by the difference of

equations and variables k3 − (k − 1)(2k + 1).

The vectors with an infinite number of solutions form a zero set in the set

of factorizing vectors. The vectors with no solution form a zero set in the

phylogenetic variety. The number of solutions for all other vectors is bounded

from below by (k!).

These results can be extented to cases with more complex tree structures.

1 General Model Definitions

Methods of phylogenetic inference derive a (ideally rooted) tree structure T% =

(V , E , %) from a given set of aligned sequences. The Maximum Likelihood

method of Felsenstein [1981] employs a Markov process X : V → S. The

sequence alignments are treated as information about the process at the leaf

set L of T%. This information is trans-

lated into a joint leaf distribution µL.

Our goal is to infer conditions on µL

under which an underlying Markov

process can be recovered. Since triple

trees are structurally unique and be-

cause Chang [1996] shows that an ex-

isting Markov process on a general tree

can be reconstructed by looking at its

triple restrictions, this work is looking

at triple trees only.
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The process is characterized by the transition matrices p%α, p%β, p%γ and the

root distribution q%. The relationship between the parameters and a vector

µ = µαβγ is given by:

µαβγ(xα, xβ, xγ) =
∑

x%∈S
q%(x%)p

%α(x%, xα)p%β(x%, xβ)p%γ(x%, xγ). (L)

This equation system is the basis of further Naturally, system (L) can be
extended to larger trees (see e.g. equation (2) in Felsenstein [1981]). Let k
denote the number of states.
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