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Technical playground
Model setup

• Let t = 0 denote the time of the first speciation event and T today.

• Let SA(t) denote the event of observing a segregating site for a subset A of lineages, i.e. SA(t) = 1 if the site
is segregating and 0 otherwise. Let sA(t) denote the probability, that SA(t) = 0, i.e. that we do not observe
a segregating site. Consequently, 1− sA(t) is the probability of observing a segregating site.

There are several events that can occur that will affect the value of sA(t).

• First regard horizontal transfers:

1. A lineage a in A copies from a lineage b not in A, an event that
occurs at the rate τDab. The probability that SA = 0 is the proba-
bility sA+b−a that b has the same state as the other lineages in A,
disregarding the lineage a it is copied into.

2. A lineage a in A copies from a different lineage a′ in A, which occurs
at a rate τDaa′. sA is then given by the probability cA−a that all the
lineages in A with the exception of a have the same state. Across
all a′ in A this becomes

∑
a′∈A−aDaa′sA−a.

3. A lineage a in A copies from itself, which occurs at a rate τDaa. sA
does not change.

4. No lineage in A copies with rate −τ |A|. 1
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•Mutation models can have the following effects

1. Every time a mutation occurs under the infinite alleles model it establishes an entirely new allele. Thus if a
mutation occurs in any lineage in A, which occurs at a rate µ|A| then SA = 0.

2. In the infinite sites model only two possible states exist, an ancestral state and a derived state. The probability
of a subset having the same state around a mutation is equal to that mutation not hitting a lineage in the
subset.

3. In a finite states model a mutation does not affect a subset A with rate −µ|A|. If it affects the subset
and SA(t) = 0, then SA(t + h) = 1. Hence, one has to consider the case that lineage a ∈ A mutates,
SA−a = 0 and lineage a attains the state of the other lineages through the mutation.

Using all of these setups one can derive and solve an ODE to compute the probabilities sA(t). The resulting
system is lower block triangular, meaning that in order to compute sA(t) for some subset A we only need the
values for all subsets B with |B| ≤ |A|.
• At some time t a lineage a will duplicate itself thus creating a new lineage b. Then the probability sab(t) = 1.

Further for arbitrary subsets A we get:

sA(t) =


sA(t− ε), b 6∈ A;

sA−b(t− ε), b ∈ A and a ∈ A;

sA+a−b(t− ε), b ∈ A and a 6∈ A.

• In reverse this property for speciation permits us to reconstruct speciation events and finding the smallest time
t for which sab(t) = 1 and sxy(t) < 1 for all other lineage pairs.

Relationship between probabilities for segregating sites and site patterns

• In general, the fraction of segregating sites of a subset A can be computed by simply summing up the
probabilities for those site patterns which are segregating for A. In consequence, sA(T ) is given as the sum of
the probabilities for those site patterns which are non-segregating.

• In a symmetric two-state-model this yields a one-to-one relationship between fraction of segregating sites and
site pattern probabilities. For A ⊆ B denote by FA;B(t) the event that the lineages in A are in one state and
the lineages in B − A in the other. Let fA;B(t) denote the associated probability. Then, we first observe,
that fA;X(t) is the site pattern probability for the site pattern where the lineages in A are in one state and
the lineages in X − A in the other. Using Möbius inversion we thus find a way to compute the site pattern
probabilities fA(t) from the segregating sites counts.

Variance and Covariance

• Bryant (2006) employed the probabilities described above to derive the parameters from pairwise comparisons.

• Though the statistical efficiency of such pairwise comparisons is not fully investigated the above calculations
permit us to derive for subsets A,B ⊆ X the variance of SA(t) and covariance between SA(t) and SB(t).

• Interestingly, these computations only need the knowledge of sU (t) for all U with |U | ⊆ |A ∪B|.
Explain that we have not investigated the statistical efficiency of using pairwise comparisons, but that we have
derived variance and covariance formulae for these estimators (not necc. shown).

Identifiability

• If we are given the true parameters τ , µ and the true exchange matrix D then the original phylogeny can be
reconstructed.

• The knowledge of the shape of true exchange matrix D permits the reconstruction of the original phylogeny
and the inference of the associated parameters τ and µ.

Results

Identifiability

• Given full knowledge of all parameters the true phylogeny can be reconstructed from the fraction of segregating
sites observed.

• If at least the shape of the exchange matrix is known then the true phylogeny and the parameters for mutation
and horizontal transfer can be recovered from the fraction of segregating sites observed.

Relation to site pattern probabilities

• Employing the relationship between fraction of segregating sites and site pattern probabilities we are able to
infer the probability of a site pattern under a symmetric two-state model.

Reconstruction methods

• The knowledge of site pattern probabilities permits the application of a least squares method.

• The fraction of segregating sites for pairs of lineages can be viewed as a measure of divergence and hence
permits the application of least square methods.

•We further derived a formula to compute the covariance between sets of lineages. The covariance matrix can
be used in a generalized least square approach.

Model
•We consider a simple forward model for the evolution of an unlinked bi-allelic marker under horizontal transfer.

•Over time the marker for a lineage can change its state due to mutation or due to a horizontal transfer event
in which the lineage copies the state from another, contemporary lineage.

•Mutations occur at a constant rate. The model works with infinite site, infinite allele, and the finite state
models.

•During a horizontal transfer event one lineage transfers the state of a single site to another. These transfers
occur at a constant rate. However, the rate of transfer can differ between different pairs of lineages.

• At a speciation event one lineage duplicates its state set.

• Rather than work directly with likelihoods we instead examine the probability that a given site is segregating
for a set of lineages. This proves to be sufficient for reconstructing full likelihoods. Fig. 2. Gene loss and LGT can both account for 
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by 26-fold and the largest genome in our sample (8,317 families; 
Bradyrhizobium japonicum) by 7-fold (Table 1). 

Such burgeoning genome sizes are indeed unrealistic, but so is 
the notion that new genes do not arise during evolution. Allowing 
new genes to arise over time according to the single-origin (SO) 
model (Fig. 2b) yields an ancestral prokaryote genome that con 

tains 3,081 genes, those present in both archaebacteria and eubac 
teria (Fig. 3a). However, the SO model does not solve the genome 
of-Eden problem; it merely transfers it into the middle ages of 

microbial evolution, where ancestral genome sizes soar once more 
to 12,000-14,000 genes, sizes that far exceed those observed among 

modern organisms (Table 1). 
Thus, we either have to embrace the untenable assumption that 

microbial genome sizes were fundamentally different in the past 
than they are today or, preferably, we have to allow some amount 
of LGT. How much LGT is necessary to bring ancestral genome 
sizes into agreement with the observed contemporary range? 

We started by allowing only one LGT event per family (Fig. 2c), 
the LGT<i model. This model allows each gene to have two origins, 
one of which is an LGT. For 35% of our families, neither LGT nor 
loss is required; the remaining 65% accept one LGT. This average 

LGT rate of 0.65 LGT per family (Table 2) brings inferred ancestral 
genome sizes down to < 8,000 genes (Fig. 3b), with a maximum of 
7,607 and a mean of 2,858, closer to contemporary genomes (Table 
1) but still a bit too large. 

We tested additional evolutionary models allowing up to 3,7,15, 
or 31 LGTs per gene family. With increasing amounts of LGT 
allowed, inferred ancestral genome sizes shrink, as do the numbers 
of inferred gene losses per gene family (Fig. 2d and Table 2). 
Although most gene families do not require more than one LGT to 
map exactly onto the reference tree (Table 2), they are also quite 
small and offer little opportunity to observe LGT (SI Fig. 6). 

However, even in the extreme cases of the LGT<i5 and LGT<3i 
models, no families accommodate the maximum number of LGTs 
allowed (Table 2). Because only a very small proportion of gene 

families require many LGTs to account for their phyletic distribu 
tions, allowing more LGTs hardly changes the average LGT 
frequency per gene family (Table 2). 

Comparison of the distributions of 190 modern genome sizes with 
187 inferred ancestral genome sizes for differing LGT allowances 
using the Wilcoxon test (24) revealed that all models except LGT<3 
are rejected at a = 0.02 (Table 1). With no LGT, ancestral genome 
sizes are too large; however, with too much LGT, they become too 
small. Even for the LGT<3 model, only 8% of all families accept all 
three LGTs allowed, such that the average rate across all genes in 
the LGT<3 model is ??1.1 LGT per gene family. This amount of 

LGT is sufficient to bring the distribution of ancestral genome sizes 
into congruence with that of modern genomes. 

Too Much LGT Makes Ancestral Genomes Too Small. Allowance of 

many LGTs causes inferred ancestral genome sizes to become far 
too small in comparison to modern genomes (Fig. 3 e and d). The 

mean ancestral genome size in the models allowing seven or more 
LGTs is less than half the mean of modern genomes, and the size 
distributions of modern and ancestral genomes are different at a - 

0.05 using the Wilcoxon test (Tables 1 and 2). Furthermore, for 
genomes with < 

1,000 families, ancestral sizes are biased toward 
miniscule sizes with too much LGT allowance (Table 3). Thus, 
although the genome of Eden demands LGT to keep ancient 
genome sizes realistically small, too much LGT makes them unre 

alistically small. 
Another problem with the models allowing many LGTs concerns 

the number of losses inferred per gene. In the LGT<3i model, 92% 
of all gene families are inferred to evolve without a single loss (Table 
2), which is unrealistic, because loss events are abundant in bacterial 
evolution (25, 26). Hence, introducing too many LGTs turns gene 
loss, an important and common mechanism affecting genome size, 
into a rare event. The mean origin-to-loss ratio observed in the 

LGT<3 model is 1:1 (Table 2), twice the threshold value used for 
LGT inference in previous studies (16, 17) that constrained 
the LGT rate as opposed to estimating it. 

Table 1. Modem and last-common ancestor (L-ca) genome sizes under different LGT allowances 

Inferred ancestral genome size (number of families) 

Genome Modern genomes* Loss only Single origin LGT<! LGT<3 LGT<7 LGT<15 LGT<3 

LprokaryoticCa 
LarcheabacterialCa 
LeubacterialCa 
LproteobacterialCa 
LcyanobacterialCa 
LactinobacterialCa 
LmollicuteCa 

Meant 
Ancestral vs. modern1 

2,198 
1,573 
2,297 
2,690 
2,187 
2,602 

432 
2,198 

57,670 
9,453 

53,658 
35,903 

5,526 
11,611 

1,714 
8,142 

<0.01 

3,081 2 
3,240 148 
3,573 443 

13,652 5,872 
10,509 3,598 
10,233 3,461 

660 557 
7,296 2,858 

<0.01 <0.01 

2 2 
91 91 
35 35 

3,303 2,119 
1,938 1,306 
1,691 1,044 

485 415 
2,234 1,868 
0.71 <0.02 

2 2 
91 91 
35 35 

1,517 1,147 
1,014 886 

703 520 
352 300 

1,634 1,472 
<0.01 <0.01 

*Average genome size for the group. 
*For 190 modern genomes, for 187 ancestral genomes. 
^Probability that the two samples come from distributions of equal medians using the Wilcoxon Mann-Whitney test. 
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•We restricted ourselves to this rather simple model. However, an extension to more complicated markers (e.g.,
whole genome sequences) will be considered in future work.

• Nevertheless, there are situations in which our assumptions might be appropriate, e.g.:

1. Gene content studies (e.g., Dagan and Martin ,2007; Huson and Steel, 2004a,b). Horizontal transfer in
these cases is known as horizontal or lateral gene transfer (LGT).

How much lateral gene transfer does there need to be before we have no chance of reconstructing
the ‘original’ tree (if there is such a thing)?

2. Language evolution where the sites correspond to cognates in different languages (e.g., Nakhleh, 2005;
Bryant, 2006). Horizontal transfer is here also called borrowing. One possible question one can answer in
our framework is:

Can we infer the extent of borrowing that occurred between languages given only the current
distribution of languages?

Motivation

• Usual assumption of stochastic models of phylogeny recon-
struction is that changes are solely driven by mutations.

• Under this assumption phylogenies can be reconstructed from
sequences (e.g., Steel ,1992).

• Chang (1996) proved that mutation matrices can also be re-
constructed.

• Allman et al. (2010) investigated under which conditions phy-
logeny and model parameters are identifiable from morpholog-
ical characters.
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FIGURE 5. Tree A.a

a The thick lines represent the region within which Albanian can attach without changing the quality of
the outcome (Figs. 5–9).

FIGURE 6. Tree B.

• Horizontal transfer has been observed in many studies on
molecular phylogenies (e.g., Dagan and Martin, 2007) and lan-
guage evolution (e.g., Nakhleh et al., 2005).

• Horizontal transfer distorts the phylogenetic signal. This ulti-
mately leads to the question of how much transfer is needed
such that an underlying phylogeny cannot be reconstructed.

• Tree identifiability under horizontal transfer has not been ad-
dressed yet.

• Here we investigate this question for a simple model with trans-
fer between lineages.
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FIGURE 10. The first feasible PPN based on Tree A (corresponding to solution 1 in Table 3).a

a The solid black lines are the underlying tree edges that indicate genetic transmission of character states;
those edges are directed. The dashed lines represent contact edges between language groups, which are
bidirectional (Figs. 10–14).

the sixth c. AD). However, we know very little about the prehistoric movements of
speakers of (pre-)Tocharian, and what we do know is that they were in contact with
steppe-dwelling Iranian tribes; a long migration eastward in a relatively short period
of time therefore does not seem out of the question.

The PPN in Fig. 10 also posits a contact edge between Proto-Celtic and Proto-
Germanic, which is unobjectionable, and one between Proto-Celtic and Proto-Balto-

FIGURE 11. The second feasible PPN based on Tree A (corresponding to solution 3 in Table 3).

Abstract
The horizontal transfer of genetic material clearly undermines the basic assumptions of phylogenetic inference.
Here we explore the extent to which phylogenetic inference might still be carried out even in the presence of
‘rampant’ lateral gene transfer. Our key question is identifiability: how much horizontal transfer is permissible to
still allow the reconstruction of the phylogeny?
We propose a simple model of evolution incorporating both mutation and horizontal transfer. We present various
approaches of reconstruction under the model and some identifiability results.
This poster details joint work with David Bryant (University of Otago) and Jamie Kydd (University of Auckland).
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