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THE PROBLEM

The approach discussed here aims at sta-
tistically identifying those characters which are
not well explained by an inferred phylogenetic
model. This problem is part of the MISFITS ap-
proach [5] which attempts to identify the sites
which are well explained by the model and the
sites which are influenced by additional pro-
cesses.

In our original work we used the Gold confi-
dence region

CIG = p±
√
χ2
α,df

√
p(1 − p)

n
,

where χ2
α,df is the α quantile of a χ2 distri-

bution with df degrees of freedom. This ap-
proach predominantly highlights single occur-
rence sites as insufficiently explained. This nicely
conforms with methods of stability analysis such
as SLOW-FAST [1], where sites with high parsi-
mony score were highlighted and subsequently

removed. In the following figure we plotted
observed site frequency against the site likeli-
hood under the chosen model (HKY+Γ with 8
rate categories). Coloured circles correspond
to sites identified as insufficiently explained.
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However, simulations under the model indi-
cate that statistically single occurrence sites are
not necessarily outliers of the model as the follow-
ing plot shows.
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This observation leads to two questions:

• What are statistically meaningful confidence
regions for our data?

• Is the selection using confidence regions bi-
ologically meaningful?

Here, I will investigate the first question but am
happy to discuss potential ideas about the second.
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MULTINOMIAL AND BINOMIAL CONFIDENCE REGIONS

We address this problem by investigating com-
mon problems of categorical variables, and poten-
tial solutions to the problem.

One criterion to assess the quality of a confi-
dence region is to look at its coverage probability,
i.e. the proportion of times, the true parameter is
in the confidence region. This has been identified
as a problem for binomial as well as multinomial
random variables [2, 3]. INTERVAL ESTIMATION FOR BINOMIAL PROPORTION 107

Fig. 5. Coverage probability for n = 50.

Table 3
Standard interval; bound (3) on limiting minimum coverage

when np!n!1 − p# ≥ γ

! 5 7 10

lim
n→∞

inf
p'np!n!1−p#≥γ

C!p!n# 0.875 0.913 0.926

where aγ and bγ are the integer parts of

!κ2 + 2γ ± κ
√
κ2 + 4γ#/2!

where the − sign goes with aγ and the + sign with bγ.

The proposition follows from the fact that the
sequence of Bin!n! γ/n# distributions converges
weakly to the Poisson(γ) distribution and so the
limit of the infimum is at most the Poisson proba-
bility in the proposition by an easy calculation.

Let us use Proposition 1 to investigate the validity
of qualifications (1) and (2) in the list above. The
nominal confidence level in Table 3 below is 0.95.

Table 4
Values of λx for the modified lower bound for the Wilson interval

1 − " x = 1 x = 2 x = 3

0.90 0.105 0.532 1.102
0.95 0.051 0.355 0.818
0.99 0.010 0.149 0.436

It is clear that qualification (1) does not work at
all and (2) is marginal. There are similar problems
with qualifications (3) and (4).

3. RECOMMENDED ALTERNATIVE INTERVALS

From the evidence gathered in Section 2, it seems
clear that the standard interval is just too risky.
This brings us to the consideration of alternative
intervals. We now analyze several such alternatives,
each with its motivation. A few other intervals are
also mentioned for their theoretical importance.
Among these intervals we feel three stand out in
their comparative performance. These are labeled
separately as the “recommended intervals”.

3.1 Recommended Intervals

3.1.1 The Wilson interval. An alternative to the
standard interval is the confidence interval based
on inverting the test in equation (2) that uses the
null standard error !pq#1/2n−1/2 instead of the esti-
mated standard error !p̂q̂#1/2n−1/2. This confidence
interval has the form

CIW = X+ κ2/2
n+ κ2 ± κn1/2

n+ κ2 !p̂q̂+ κ2/!4n##1/2%(4)

This interval was apparently introduced by Wilson
(1927) and we will call this interval the Wilson
interval.

The Wilson interval has theoretical appeal. The
interval is the inversion of the CLT approximation

The figure shows the result for two confidence
intervals for binomial proportions. We see that
the standard interval, which is related to the Gold
confidence interval covers particularly bad for

small proportions, a property that most single oc-
currence sites share. Agresti-Coull is one of the
suggestions made by [2] for a good coverage.

I decided to use the Agresti-Coull approach to
compute an alternative confidence region for this
problem with surprisingly positive results despite
rather bluntly ignoring the multinomial nature of
the sites. The approach is skewing the proportion
parameter such that

p̃ =
np+ q2α/2

n+ qα
,

CIAC = p̃± α

√
p̃(1 − p̃)

n
,

where qα is the quantile of the standard normal
distribution for confidence level α. Using this con-
fidence region on our problem yields the follow-
ing graph:
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i.e. a much better fit to our observations from
the simulations. [2] also suggest the Clopper-
Pearson region which computes the bounds as
quantiles of a β distribution whose parameters de-
pend on the observed values.

While this approach seemingly addresses the
problem of having confidence regions that ad-
dress the similarity between data and simulation,
it is necessary to find methods that address the
inherent categorical nature of the data. [4] pro-
vides an overview of confidence regions for multi-
nomial distributions based on asymptotic proper-
ties. However, most of these properties do not
hold for the sparse categorical data we deal with.

[3] points out, that usually confidence regions
either minimise volume or maximise coverage,
with the Gold confidence region belonging to the
former, and the Clopper-Pearson confidence re-
gion belonging to the latter. [3] also suggest an
alternative confidence region, incorporating the
Clopper-Pearson approach, which turns out to
find a reasonable compromise. However, their
confidence region is one-sided and thus only of
limited use to us.

A further downside of multinomial confidence
regions is the simultaneous calculation which
makes it hard to identify sites insufficiently ex-
plained by the model, a property I consider essen-
tial. It might be more fruitful to investigate the
nature of the graphs from the regression point of
view.


