Note: No data is supplied for this assignment. You must type your own and construct suitable data frames using the rep or expand.grid functions.

Question 1.

The data in table 1 come from a classic British study into the effect of smoking on the incidence of coronary heart disease and lung cancer.

1. Make a data frame containing the data and fit a model to explain the coronary death rate (in deaths per 1000 person years) in terms of age and smoking. Make a table of the rates. [10 marks]

To make a data frame smoke.df containing the data, we can type

```r
count<-c(2,12,28,28,31,32,104,206,186,102)
exposure<-c(18793,10673,5710,2585,1462,52407,43248,28612,12663, 5317)
smoke<-factor(rep(0:1,c(5,5)))
age<-factor(rep(c("35-44","45-54","55-64","65-74","75-84"),2))
smoke.df<-data.frame(count,exposure,smoke,age)
giving
> smoke.df
  age smoke exposure count
  35-44   0   18793     2
  45-54   0   10673    12
  55-64   0    5710    28
  65-74   0    2585    28
  75-84   0    1462    31
  35-44   1   52407    32
  45-54   1   43248   104
  55-64   1   28612   206
  65-74   1   12663   186
  75-84   1    5317   102
```

To fit the model to calculate rates per 1000, we use log(exposure/1000) as an offset. The code is

```r
smoke.glm<-glm(count~smoke*age, family=poisson, offset=log(exposure/1000), data=smoke.df)
summary(smoke.glm)
anova(smoke.glm)
```

This results in
Call:
glm(formula = count ~ smoke * age, family = poisson, data = smoke.df,
 offset = log(exposure/1000))

Deviance Residuals:
[1] 0 0 0 0 0 0 0 0 0 0

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.2403 0.7071 -3.168 0.00153 **
smoke1 1.7470 0.7289 2.397 0.01653 *
age45-54 2.3575 0.7638 3.087 0.00202 **
age55-64 3.8303 0.7319 5.233 1.67e-07 ***
age65-74 4.6228 0.7319 6.316 2.68e-10 ***
age75-84 5.2945 0.7296 7.257 3.95e-13 ***
smoke1:age45-54 -0.9868 0.7901 -1.249 0.21167
smoke1:age55-64 -1.3630 0.7562 -1.802 0.07148 .
smoke1:age65-74 -1.4424 0.7565 -1.907 0.05656 .
smoke1:age75-84 -1.8472 0.7572 -2.440 0.01471 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 9.3509e+02 on 9 degrees of freedom
Residual deviance: 3.5083e-14 on 0 degrees of freedom
AIC: 75.068

Number of Fisher Scoring iterations: 3

> anova(smoke.glm, test="Chisq")
Analysis of Deviance Table

 Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 9 935.09
smoke 1 1 29.10 8 905.99 6.874e-08
age 4 893.86 4 12.13 3.570e-192
smoke:age 4 12.13 0 3.508e-14 0.02

The interaction terms are clearly required.

To get the predicted rates, we need to subtract the offsets from the
predicted log-mean, then exponentiate:

Rate1<-exp(predict(smoke.glm) – log(smoke.df$exposure/1000))

Since this is a saturated model, we can also use

Rate2<-smoke.df$count/(smoke.df$exposure/1000)

Arrange in a table:

Result<-matrix(rate1,5,2)
Dimnames(Result)<-list(levels(smoke.df$age), c("Nonsmokers","Smokers"))
> Result
2. **Does smoking have an effect on coronary death rates? If so, does the effect depend on age?**

 [5 marks]

 Since the anova table indicates that both smoking (p=0.01653) and the interaction with age (p=0.02) are significant, smoking has an effect and the effect depends on age.

3. **If you find that it does, can you think of an intuitive reason why this might be so?**

 [5 marks]

 Smokers have a higher death rate than non-smokers but the difference gets less with age (and actually seems to reverse at the highest age group. This could be that all but the most coronary resistant smokers have died off by the time they get to 80 years of age.

Question 2

A survey to assess attitudes to AIDS education posed the following questions; (1) Do you think the Government should pay all health-related costs for AIDs victims (2) Do you think the government should allocate funds to promote safe sex practices. Table 2 gives the answers of 621 respondents to this questionnaire, classified by gender.

1. **Make a data frame and fit a suitable log-linear model to these data. Do we require a saturated model or is a smaller model adequate?** [10 marks]

   ```
   > counts<-c(76,6,114,11,160,25,181,48)
   > gender<-rep(c("M","F"),c(2,2))
   > fund<-rep(c("Yes","No"),4)
   > pay<-rep(c("Yes","No"),c(4,4))
   >
   > AIDS.df<-data.frame(counts, gender, fund, pay)
   > AIDS.glm<-glm(counts~gender*fund*pay, family=poisson, data=AIDS.df)
   > summary(AIDS.glm)
   ```

 Call:
 `glm(formula = counts ~ gender * fund * pay, family = poisson, data = AIDS.df)`
Deviance Residuals:
[1] 0 0 0 0 0 0 0 0

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 3.87120 | 0.14434 | 26.820 | <2e-16 ***|
| genderM | -0.65233 | 0.24664 | -2.645 | 0.00817 **|
| fundYes | 1.32730 | 0.16235 | 8.175 | 2.95e-16 ***|
| payYes | -1.47331 | 0.33428 | -4.407 | 1.05e-05 ***|
| genderM:fundYes | 0.52900 | 0.26946 | 1.963 | 0.04962 * |
| genderM:payYes | 0.04619 | 0.56428 | 0.082 | 0.93476 |
| fundYes:payYes | 1.01101 | 0.35502 | 2.848 | 0.00440 **|
| genderM:fundYes:payYes | -0.32833 | 0.59339 | -0.553 | 0.58005 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.4582e+02 on 7 degrees of freedom
Residual deviance: -7.5495e-15 on 0 degrees of freedom
AIC: 61.382

Number of Fisher Scoring iterations: 3

> anova(AIDS.glm, test="Chisq")
Analysis of Deviance Table

| | Df | Deviance | Resid. Df | Resid. Dev | P(>|Chi|) |
|----------------|----|----------|-----------|------------|----------|
| NULL | 7 | 445.82 | 445.82 | 433.59 | 4.706e-04 |
| gender | 1 | 12.23 | 6 | 433.59 | 4.706e-04 |
| fund | 1 | 346.94 | 5 | 86.66 | 1.967e-77 |
| pay | 1 | 70.34 | 4 | 16.32 | 4.996e-17 |
| gender:fund | 1 | 3.20 | 3 | 13.12 | 0.07 |
| gender:pay | 1 | 1.45 | 2 | 11.67 | 0.23 |
| fund:pay | 1 | 11.37 | 1 | 0.30 | 7.484e-04 |
| gender:fund:pay| 1 | 0.30 | 0 | -7.550e-15 | 0.58 |

Seems like the 3 way interactions are insignificant. If we fit the homogeneous association model (ie no 3-way interaction), then the residual deviance p-value is 0.5834314. The model

\[\text{counts} \sim \text{gender} + \text{fund} + \text{pay} + \text{fund:pay} + \text{gender:fund} \]

also fits well with a residual deviance p-value of 0.3037501. Finally, fitting the model

\[\text{counts} \sim \text{gender} + \text{inf} * \text{health} \]
gives a residual deviance of 5.581 on 3 df, with p-value 0.1338734, so this model also seems OK. This model assumes that the conditional OR between gender and pay, given fund is 1.

2. Describe your model(s) in terms of conditional odds ratios and independence. [5 marks]
The homogeneous association model i.e. the model \(\text{counts} \sim \text{gender} \times \text{fund} \times \text{pay} - \text{gender} : \text{fund} : \text{pay} \) implies that the conditional odds ratios between gender and pay given fund are the same. The model \(\text{counts} \sim \text{gender} + \text{fund} \times \text{pay} \) is the model where gender is independent of the other two factors, and the model \(\text{counts} \sim \text{gender} + \text{fund} + \text{pay} + \text{fund}:\text{pay} + \text{gender}:\text{fund} \) is the model of conditional independence of gender and fund, given pay.

3. Give a confidence interval for the conditional odds ratio between gender and pay, conditional on fund. [5 marks]

The homogeneous association model gives

\[
\begin{align*}
\text{AIDS3.glm} & \leftarrow \text{glm} (\text{counts} \sim \text{gender} \times \text{fund} \times \text{pay} - \text{gender} : \text{fund} : \text{pay}, \ \text{family} = \text{poisson}, \ \text{data} = \text{AIDS.df}) \\
\text{summary} (\text{AIDS3.glm})
\end{align*}
\]

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 3.8521 | 0.1415 | 27.219 | < 2e-16 ***|
| genderM | -0.5976 | 0.2242 | -2.666 | 0.00768 **|
| fundYes | 1.3514 | 0.1575 | 8.578 | < 2e-16 ***|
| payYes | -1.3750 | 0.2750 | -5.001 | 5.71e-07 ***|
| genderM:fundYes | 0.4636 | 0.2406 | 1.927 | 0.05401 . |
| genderM:payYes | -0.2516 | 0.1749 | -1.438 | 0.15035 |
| fundYes:payYes | 0.8997 | 0.2852 | 3.155 | 0.00160 **|

Null deviance: 445.82335 on 7 degrees of freedom
Residual deviance: 0.30072 on 1 degrees of freedom
AIC: 59.683

The estimate of the gender-pay interaction is -0.2516, with a se of 0.1749, so a 95% CI for the log-OR is -0.2516 +/- 1.96*0.1749. We get

\[
\begin{align*}
\text{exp} (-0.2516 \pm c(-1,1)*1.96*0.1749) \\
[1] & \quad 0.5518914 \quad 1.0954925
\end{align*}
\]

so that the CI for the conditional OR is (0.5518914, 1.0954925).

Basing the CI on the model without the gender-fund interaction gives an interval of (0.5783792, 1.1400426), a very similar answer.