Applying a function to a data frame

```r
> data(cherry.df)
> apply(cherry.df,2,mean)

<table>
<thead>
<tr>
<th>diameter</th>
<th>height</th>
<th>volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.24839</td>
<td>76.0000</td>
<td>30.17097</td>
</tr>
</tbody>
</table>

> round(sapply(1:31,function(k){cherry.df[k,1]/12}),2)

[1]  0.69  0.72  0.73  0.88  0.89  0.90  0.92  0.92  0.92  0.93
[11]  0.94  0.95  0.95  0.98  1.00  1.07  1.07  1.11  1.14  1.15
[21]  1.17  1.18  1.21  1.33  1.36  1.44  1.46  1.49  1.50  1.50
[31]  1.72
```
Diagonalstic steps

We test for $<>$ using $<>$:

Planarity: Residuals vs. fitted values, Added variable plots, GAM plots, Box-Cox plot

Constant Variance: Funnel plots, weighted least squares

Normality of Errors: QQ plots, Weisberg-Bingham test (and many more)

Outliers: ...

Independence: ...
Aims of today’s lecture

▶ Introduce terminology for outliers and high-leverage points.

▶ Introduce a broad band of diagnostic tools to identify and treat such extraordinary data points.

▶ Introduce diagnostic tools to check for independence of errors.
Outliers and high-leverage points

- An outlier is a point that has a larger or smaller y value than the model would suggest.
 - Can be due to a genuine large error ε;
 - Can be caused by typographical errors in recording the data.

- A high-leverage point is a point with extreme values of the explanatory variables.
Outliers

- The effect of an outlier depends on whether it is also a high-leverage point.

- A high-leverage outlier
 - Can attract the fitted plane, distorting the fit, sometimes extremely;
 - In extreme cases may not have a big residual;
 - In extreme cases can increase R^2.

- A low-leverage outlier
 - Does not distort the fit to the same extent;
 - Usually has a big residual;
 - Inflates standard errors, decreases R^2.
Outliers

- No high-leverage points
- No outliers

- Low-leverage outlier
- Big residual

- High-leverage outlier

- High-leverage point
 - Not an outlier
Example: The education data (without urban)
An outlier too?

Number of residents per 1000 under 18 vs. per capita income

Residual somewhat extreme

predict(educ.lm) vs. residuals(educ.lm)
Measuring leverage

Fitted values \hat{y} are related to response y by the equation

$$\hat{y} = Hy,$$

where $H = X \left(X^T X \right)^{-1} X^T$,

$$\hat{y}_i = h_{i1}y_1 + \cdots + h_{ii}y_i + \cdots + h_{in}y_n.$$

- h_{ij} depend explanatory variables X, h_{ii} is called hat matrix diagonals (HMD’s), measures the influence y_i has on \hat{y}_i.
- Also distance between average x_i and average \bar{x}, measures how extreme observations are.
Interpreting the HMD’s

- Each HMD lies between 0 and 1.
- The average HMD is $(k + 1)/n$.
- An HMD larger than $3(k + 1)/n$ is considered extreme.
Example: The education data (without urban)

> hatvalues(educ.lm)
Studentised residuals

- How can we recognise a big residual? How big is big?

- The actual size depends on the units in which the \(y \)-variable is measured, so we need to standardize them.

- Can divide by their standard deviations.

- Variance of a typical residual \(e_i \) is

\[
\text{Var}(e_i) = (1 - h_{ii})\sigma^2,
\]

where \(h_{ii} \) is the \(i^{th} \) diagonal entry of the hat matrix \(H \).
Studentised residuals

- Internally studentised (or standardised in R):

\[\hat{e}_i = \frac{e_i}{\sqrt{(1 - h_{ii})s^2}} \]

where \(s^2 \) is the usual estimate of the residual variance \(\sigma^2 \).

- Externally studentised (or studentised in R):

\[\hat{e}_i = \frac{e_i}{\sqrt{(1 - h_{ii})s_i^2}} \]

where \(s_i^2 \) is the estimate of \(\sigma^2 \) after deleting the \(i^{th} \) data point.
Studentised residuals

- How big is big?

- The internally studentised residuals are approximately standard normal distributed if the model is OK and there are no outliers.

- The externally studentised residuals has a \(t \)-distribution.

- Thus, studentised residuals should be between \(-2\) and \(2\) with approximately 95% probability.
#Load the MASS library
> library(MASS)

internally studentised (standardised in R)
> stdres(educ.lm)[50]
 50
 3.089699

externally studentised (studentized in R)
> studres(educ.lm)[50]
 50
 3.424107
What does studentised mean?
Recognising outliers

- If a point is a low influence outlier, the residual will usually be large, so large residual and a low HMD indicates an outlier.

- If a point is a high leverage outlier, then a large error usually will cause a large residual.

- However, in extreme cases, a high leverage outlier may not have a very big residual, depending on how much the point attracts the fitted plane. Thus, if a point has a large HMD, and the residual is not particularly big, we cannot always tell if a point is an outlier or not.
High-leverage outlier

![Residuals vs Fitted](image)
Leverage-de residual plots

> plot(educ.lm, which=5)
Interpreting LR plots

- **OK**: Standardized residuals and leverage are within acceptable ranges.
- **Low-leverage Outlier**: Standardized residuals are within acceptable ranges, but leverage is high.
- **High-leverage Outlier**: Standardized residuals are outside the acceptable range, but leverage is low.
- **Potential High-leverage Outlier**: Standardized residuals and leverage are outside the acceptable range.

The graph shows a 2x2 grid with axes for leverage and standardized residuals, illustrating different scenarios for data points.
No big studentised residuals, no big HMD’s
One big studentised residuals, no big HMD’s
No big studentised residuals, one big HMD’s
One big studentised residuals, one big HMD’s

Plot of y vs. x, Example 4

- Fitted Line
- True Line

Residuals vs Leverage

3(k+1)/n=0.2
Four big studentised residuals, one big HMD’s
HMD Summary

- Hat matrix diagonals
 - Measure the effect of a point on its fitted value;
 - Measure how outlying the x-values are (how “high-leverage” a point is);
 - Are always between 0 and 1 with bigger values indicating high-leverage;
 - Points with HMD’s more than $3(k + 1)/n$ are considered “high-leverage”
Influential points

- How can we tell if a high-leverage point/outlier is affecting the regression?

- By deleting the point and refitting the regression: a large change in coefficients means the point is affecting the regression.

- Such points are called influential points.

- We do not want our analysis to be driven by one or two points!
“Leave one out” measures

- We can calculate a variety of measures by leaving out each data point in turn, and looking at the change in key regression quantities such as:
 - Coefficients
 - Fitted Values
 - Standard errors

- We discuss each in turn.
Example: Education data

<table>
<thead>
<tr>
<th></th>
<th>With point 50</th>
<th>Without point 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>-557.451</td>
<td>-298.714</td>
</tr>
<tr>
<td>percap</td>
<td>0.072</td>
<td>0.059</td>
</tr>
<tr>
<td>under18</td>
<td>1.555</td>
<td>0.933</td>
</tr>
</tbody>
</table>
Coefficient measures: DFBETAS

DFBETAS: Standardised difference in coefficients

\[
dfbetas = \frac{\hat{\beta}_j - \hat{\beta}_j[-i]}{se(\hat{\beta}_j)}
\]

Problematic: when \(|dfbetas| > 1\). This is a criterion coded into R.
Coefficient measures: DFFITS

DFFITS: Standardised difference in fitted values:

\[\text{dffits} = \frac{\hat{y}_j - \hat{y}_j[-i]}{\text{se}(\hat{y}_j)} \]

Problematic: when

\[|\text{dffits}| > 3 \sqrt{\frac{k + 1}{n - k - 1}}. \]
Coefficient measures: Covariance Ratio and Cook’s D

Cov Ratio: Measures change in the standard errors of the estimated coefficients.

Problem: when Cov Ratio greater than $1 + 3(k + 1)/n$ or smaller than $1 - 3(k + 1)/n$.

Cook’s D: Measures overall change in the coefficients.

Problem: when greater than $q_{F}(0.5, k+1, n-k-1)$ (median of F-distribution), roughly 1 in most cases.
Coefficient measures in R

Influence measures of
\(\text{lm(formula = educ ~ percap + under18, data = educ.df)} \):

<table>
<thead>
<tr>
<th></th>
<th>dfb.1_</th>
<th>dfb.prcp</th>
<th>dfb.un18</th>
<th>dffit</th>
<th>cov.r</th>
<th>cook.d</th>
<th>hat</th>
<th>inf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0120</td>
<td>-0.01794</td>
<td>-0.00588</td>
<td>0.0233</td>
<td>1.121</td>
<td>1.84e-04</td>
<td>0.0494</td>
<td>***</td>
</tr>
<tr>
<td>10</td>
<td>0.0638</td>
<td>-0.16792</td>
<td>-0.02222</td>
<td>-0.3631</td>
<td>0.803</td>
<td>4.05e-02</td>
<td>0.0257 *</td>
<td>***</td>
</tr>
<tr>
<td>44</td>
<td>0.0229</td>
<td>0.00298</td>
<td>-0.02948</td>
<td>-0.0340</td>
<td>1.283</td>
<td>3.94e-04</td>
<td>0.1690 *</td>
<td>***</td>
</tr>
<tr>
<td>50</td>
<td>-2.3688</td>
<td>1.50181</td>
<td>2.23393</td>
<td>2.4733</td>
<td>0.821</td>
<td>1.66e+00</td>
<td>0.3429 *</td>
<td>---</td>
</tr>
</tbody>
</table>

1.0000 | 1.00000 | 1.00000 | 0.7579 | 0.82 | 8.00e-01 | 0.18 | 1.18
Plotting influence

There will be seven plots
par(mfrow=c(2,4))
Plot the measures using R330
influenceplots(educ.lm)
Remedies for outliers

- Correct typographical errors in the data.
- Delete a small number of points and refit (do not want fitted regression to be determined by one or two influential points)
- Report existence of outliers separately: they are often of scientific interest
- Do not delete too many points.
We test for <> using <>:

Planarity: Residuals vs. fitted values, Added variable plots, GAM plots, Box-Cox plot

Constant Variance: Funnel plots, weighted least squares

Normality of Errors: QQ plots, Weisberg-Bingham test (and many more)

Outliers: Leverage-Residual plots, influence measures

Independence: ...
Independence

- One of the regression assumptions is that the errors are independent.

- Data that is collected sequentially over time often has errors that are not independent.

- If the independence assumption does not hold, then the standard errors will be wrong and the tests and confidence intervals will be unreliable.

- We need to be able to detect lack of independence.
Types of dependence

▶ If large positive errors have a tendency to follow large positive errors, and large negative errors a tendency to follow large negative errors, we say the data has positive autocorrelation.

▶ If large positive errors have a tendency to follow large negative errors, and large negative errors a tendency to follow large positive errors, we say the data has negative autocorrelation.
Diagnostics: Positive Autocorrelation

If the errors are positively autocorrelated:

- Plotting the residuals against time will show long runs of positive and negative residuals.

- Plotting residuals against the previous residual (i.e. e_i vs. e_{i-1}) will show a positive trend.

- A correlogram of the residuals will show positive spikes, gradually decaying.
Diagnostics: Negative Autocorrelation

If the errors are *negatively* autocorrelated:

- Plotting the residuals against time will show alternating positive and negative residuals.

- Plotting residuals against the previous residual (i.e. e_i vs. e_{i-1}) will show a *negative trend*.

- A correlogram of the residuals will show alternating positive and negative spikes, gradually decaying.
res <- residuals(lm.obj)

plot(1:length(res), res, xlab="time", ylab="residuals", type="b")

abline(h=0, lty=2)
Residuals against time: Plot

Autocorrelation = 0.9

Autocorrelation = 0.0

Autocorrelation = -0.9
Residuals against their predecessor

```r
res <- residuals(lm.obj)

n <- length(res)

plot.res <- res[-1]  # element 1 has no predecessor

prev.res <- res[-n]  # last residual has no successor

plot(prev.res, plot.res, xlab="previous residual", ylab="residual")
```
Residuals against their predecessor: Plot

Autocorrelation = 0.9

Autocorrelation = 0.0

Autocorrelation = -0.9
Correlogram

\[\text{acf(residual(lm.obj))} \]

- The autocorrelation function (acf, aka correlogram) investigates the correlation between a residual and another residual \(k \) time units apart.

- This is also called \text{lag} \(k \) autocorrelation.
We can also do a formal hypothesis test, the Durbin-Watson test, for independence.

The test assumes the errors follow a model of the form

\[\varepsilon_i = \varrho \varepsilon_{i-1} + u_i \]

where the \(u_i \)'s are independent, normal and have constant variance. \(\varrho \) is the lag 1 correlation.

This is the autoregressive model of order 1.
Durbin-Watson test

- When $\varrho = 0$ then the errors are independent.

- **DW** tests independence by testing $\varrho = 0$.

- ϱ is estimated by

$$
\hat{\varrho} = \frac{\sum_{i=2}^{n} e_i e_{i-1}}{\sum_{i=2}^{n} e_i^2}
$$
Durbin-Watson test

- **DW** test statistic is

\[
DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} \approx 2(1 - \hat{\rho})
\]

- Value of **DW** is between 0 and 4;

- Values of **DW** around 2 are consistent with independent;

- Values close to 4 indicate negative autocorrelation;

- Values close to 0 indicate positive autocorrelation.
Durbin-Watson test in R

```r
> library(car)
> dwt(model, simulate=T, max.lag=1)
```

<table>
<thead>
<tr>
<th></th>
<th>Positive Autocorrelation</th>
<th>Independence</th>
<th>Negative Autocorrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - d_U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - d_L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inconclusive

Positive Autocorrelation

Independence

Negative Autocorrelation
Does advertising increase sales? Residual plots
Does advertising increase sales? Residual plots

Residuals against time

Index
Residuals

Residuals

0 5 10 15 20 25 30 35
−5 0 5

Residuals against time

Index
Residuals

0 5 10 15 20 25 30 35
−5 0 5
Does advertising increase sales? Residual plots

Correlogram of residuals

ACF

Lag

0 5 10 15

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Lag

0 5 10 15

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Durbin-Watson test

```r
> library(R330)
> library(car)
> data(ad.df)
> ad.lm <- lm(sales~spend+prev.spend,data=ad.df)
> dwt(ad.lm,max.lag=2)

    lag  Autocorrelation    D-W Statistic    p-value
1      1  0.44249700      1.103870      0.006
2      2  0.07550052      1.789442      0.612

Alternative hypothesis: rho[lag] != 0
```
If we detect serial correlation, we need to fit special time series models to the data.

For full details see STATS 326/726.
Recall there was a trend in the time series plot of the residuals, these seem related to time.

Thus, time is a “lurking variable”, a variable that should be in the regression but is not.

Try model $Sales \sim spend + prev\cdot spend + time$.
Fitting the new model

```r
> time <- 1:35
> ad.lm2 <- lm(sales~spend+prev.spend+time,data=ad.df)
> dwt(ad.lm2,max.lag=2)
  lag  Autocorrelation    D-W Statistic    p-value
     1 0.12347790       1.6193240       0.152
     2-0.39255371      2.6082979       0.070
Alternative hypothesis: rho[lag] != 0

▶ Lag 1 problem resolved, time is significant variable in model.
```
Diagnostic steps

We test for $<>$ using $<>$:

Planarity: Residuals vs. fitted values, Added variable plots, GAM plots, Box-Cox plot

Constant Variance: Funnel plots, weighted least squares

Normality of Errors: QQ plots, Weisberg-Bingham test (and many more)

Outliers: Leverage-Residual plots, influence measures

Independence: Correlogram, Durbin-Watson test
Statistical outliers

http://xkcd.com/539/