Aims of today’s lecture

- To give you an overview of the **modelling cycle**.
- To begin the detailed discussion of **diagnostic procedures**.
The modelling cycle

- We have seen that the regression model describes rather specialised forms of data
 - Data are “planar”,
 - Scatter is uniform over the plane.
- We have looked at some plots that help us decide if the data is suitable for regression modelling
 - pairs
 - reg3d
 - coplot
Residual analysis

- Another approach is to fit the model and examine the residuals.

- If the model is appropriate the residuals have no pattern.

- A pattern in the residuals usually indicates that the model is not appropriate.

- If this is the case we have two options:
 1. Select another form of model e.g. non-linear regression – see other courses;
 2. Transform the data so that the regression model fits the transformed data – see next slide.
The Modelling Cycle

PLOTS and THEORY

Choose Model

Fit Model

Transform

Examine Residuals

Bad fit

Good fit

USE MODEL
What constitutes a bad fit?

- Non-planar data
- Outliers in the data
- Errors depend on covariates (non-constant scatter)
- Errors not independent
- Errors not normally distributed

- First two points can be serious as they affect the meaning and accuracy of the estimated coefficients.

- The others affect mainly standard errors, not estimated coefficients – see subsequent lectures
Detecting non-planar data

- For the next 2 lectures, we look at diagnosing non-planar data and choosing a transformation. We can diagnose non-planar data (nonlinearity) by fitting the model, and
 - plotting residuals versus fitted values, residuals against explanatory variables;
 - fitting additive models
- In each case, a curved plot indicates non-planar data.
Plotting residuals vs. fitted values

data(cherry.df)
cherry.lm <- lm(volume~diameter+height,data=cherry.df)
plot(cherry.lm,which=1)

```r
which=1: selects the plot of residuals vs. fitted values
```
Plotting residuals vs. fitted values

`lm(volume ~ diameter + height)`

Residuals vs Fitted

Fitted values

Residuals

-5 0 5 10

Fitted values

`lm(volume ~ diameter + height)`
Additive models

- These are models of the form

\[Y = g_1(x_1) + g_2(x_2) + \cdots + g_k(x_k) + \varepsilon \]

where \(g_1, \ldots, g_k\) are transformations.

- Fitted using the `gam` function in R.

- The transformations are estimated by the software.

- Use the function to suggest good transformations.
Example: Cherry trees

library(mgcv)

cherry.gam <- gam(volume~s(diameter)+s(height),
 data=cherry.df)

plot(cherry.gam,residuals=T,pages=1)
Example: Cherry trees
Fitting polynomials

- To fit a model $y = \beta_0 + \beta_1 x + \beta_2 x^2$, use

 $y \sim \text{poly}(x, 2)$

- To fit a model $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$, use

 $y \sim \text{poly}(x, 3)$

 etc.
The model fitted by $y \sim \text{poly}(x, 2)$ is of the form

$$Y = \beta_0 + \beta_1 p_1(x) + \beta_2 p_2(x)$$

where

- p_1: polynomial of degree 1, i.e. of the form $ax + b$
- p_2: polynomial of degree 2, i.e. of the form $ax^2 + bx + c$.

p_1, p_2 chosen to be uncorrelated (best possible estimation)
Adding a quadratic term (cherry trees)

Call:
 lm(formula = volume ~ poly(diameter, 2) + height,
 data = cherry.df)

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.565533 6.722180 0.233 0.817603
poly(diameter, 2)1 80.252233 3.073459 26.111 < 2e-16 ***
poly(diameter, 2)2 15.399233 2.631567 5.852 3.13e-06 ***
height 0.376387 0.088229 4.266 0.000218 ***

Residual standard error: 2.625 on 27 degrees of freedom
Multiple R-squared: 0.9771, Adjusted R-squared: 0.9745
F-statistic: 383.2 on 3 and 27 DF, p-value: < 2.2e-16
Quadratic equation

Call:
`lm(formula = volume ~ diameter + I(diameter^2) + height,
data = cherry.df)`

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | -9.92041 | 10.07911 | -0.984 | 0.333729 |
| diameter | -2.88508 | 1.30985 | -2.203 | 0.036343 *|
| I(diameter^2) | 0.26862 | 0.04590 | 5.852 | 3.13e-06 ***|
| height | 0.37639 | 0.08823 | 4.266 | 0.000218 ***|

Residual standard error: 2.625 on 27 degrees of freedom
Multiple R-squared: 0.9771, Adjusted R-squared: 0.9745
F-statistic: 383.2 on 3 and 27 DF, p-value: < 2.2e-16
Quadratic equation

\[\text{volume} \approx -9.92 - 2.89 \times \text{diameter} + 0.27 \times \text{diameter}^2 + 0.38 \times \text{height} \]
Splines

- An alternative to polynomials are splines – these are piecewise cubics, which join smoothly at “knots”.

- Give a more flexible fit to the data.

- Values at one point not affected by values at distant points, unlike polynomials.
Example with 4 knots
Adding a spline term

Call:
lm(formula = volume ~ bs(diameter, df = 6) + height,
 data = cherry.df)

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.3679 7.4856 -2.187 0.03921 *
bs(diameter, df = 6)1 0.1941 7.9374 0.024 0.98070
bs(diameter, df = 6)2 5.5744 3.1704 1.758 0.09201 .
bs(diameter, df = 6)3 10.7976 3.9798 2.713 0.01240 *
bs(diameter, df = 6)4 31.4053 5.5545 5.654 9.35e-06 ***
bs(diameter, df = 6)5 42.2665 6.1297 6.895 4.97e-07 ***
bs(diameter, df = 6)6 58.6454 4.2781 13.708 1.49e-12 ***
height 0.3970 0.1050 3.780 0.00097 ***

Residual standard error: 2.8 on 23 degrees of freedom
Multiple R-squared: 0.9778, Adjusted R-squared: 0.971
F-statistic: 144.4 on 7 and 23 DF, p-value: < 2.2e-16
Difference in fits

![Graph showing volume vs diameter with two fits: splines and polynomial.](graph.png)
Example: Tyre abrasion data

- Data collected in an experiment to study the abrasion resistance of tyres

- Variables are

 - **Hardness**: Hardness of rubber
 - **Tensile**: Tensile strength of rubber
 - **Abrasion Loss**: Amount of rubber worn away in a standard test (response)
Call:
\texttt{lm(formula = abloss \sim hardness + tensile, data = rubber.df)}

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------|----------|------------|---------|-----------|
| (Intercept) | 885.161 | 61.751 | 14.334 | 3.84e-14 |
| hardness | -6.571 | 0.583 | -11.267 | 1.03e-11 |
| tensile | -1.374 | 0.194 | -7.073 | 1.32e-07 |

Residual standard error: 36.49 on 27 degrees of freedom
Multiple R-squared: 0.8402, Adjusted R-squared: 0.8284
F-statistic: 71 on 2 and 27 DF, p-value: 1.767e-11
Tyre abrasion data

- We will use this example to illustrate all the methods we have discussed so far to check if the data are planar, scattered about a flat regression plane i.e.
 - Pairs plot
 - Spinning plot
 - Coplot
 - Residual vs. fitted value plot
 - Fitting GAMs
Spinning

hardness
abloss
tensile
Given: hardness

abloss
Residuals vs. fitted values

lm(abloss ~ hardness + tensile)

Residuals vs Fitted

Fitted values

lm(abloss ~ hardness + tensile)
GAMs
Conclusions

Pairs plot: Not very informative

Spinner: Hint of a “kink”

Coplot: Suggestion of non-linearity, a “kink”

Residuals vs. fitted values: weak suggestion that regression is not planar

GAM plots: hardness is okay, but strong suggestion that tensile needs transforming

Suggested transformation: Looks like a cubic or a 4^{th} degree polynomial, so try these (or a spline). With a spline, the R^2 increases from 84% to 94%.