1. (a) A high leverage point is unusual in terms of its X-values. It has the potential to have a big impact on the fitted model. An influential point is an observation that does have a large impact on the fitted model.

 ![Diagram](image1)

 ![Diagram](image2)

 (b) R^2 always increases when an additional regressor is added to any model. As a result, maximising R^2 would always select the model that contains all the possible regressors. Mallow’s C_p will penalise a model that has unnecessary regressors. Thus it is more useful for subset selection.

 (c) i. Cook’s distance is an overall measure of how much the fitted coefficients change if an observation is delete. This observation is having a larger overall effect on the regression surface than any other observation.

 ii. If this observation were deleted then the fitted regression surface would shift by 1.32 standard errors at this point.
(d) When fitting a glm the constructed variable plot is used to investigate whether a power transformation of a numeric regressor will improve the model. The slope of a line drawn through the points will indicate a suitable power transformation for that explanatory variable.

\[
\lambda = \text{slope} + 1
\]

(e) For contingency table data, the dissimilarity index indicates how close a fitted model is to the sample data. It represents the proportion of observations that would need to be moved to different cells for the model to fit perfectly. It is useful if there are a large number of observations and as a result interactions that are of little practical importance are showing up as being statistically significant. If the dissimilarity index for the model that does not include these interactions is small (say < 0.03) it indicates this simpler model does a good job of describing the data.

2. (a)
- mean %BF is higher (on average) for females than males
- mean %BF seems to increase slightly with increasing weight and height
- male athletes tended to be taller and heavier than female athletes
- strong relationship between Ht and Wt

(b) i. 76% of variability in \(\log(\%BF) \) can be explained by the fitted model
ii. strong evidence that not all coefficients are 0, i.e. the model has predictive value.

(c) The p-value corresponding to Ht is quite large. However, the Sex:Ht interaction is significant. As a result, we prefer to retain both Sex and Ht in the model.

(d) We can write out separate models for male and female athletes

\[
\text{male: } \log(BF) = 1.98 - 0.0139Ht + 0.0215Wt \\
\text{female: } \log(BF) = 1.67 - 0.0017Ht + 0.0215Wt
\]

For fixed levels of Sex and Ht, \(\log(BF) \) increases by 0.0215 for each increase of 1kg in weight.

For male athletes, \(\log(BF) \) decreases more rapidly as Ht increases than for female athletes.

Note that intercept values are misleading since for any reasonable values of Wt and Ht the predicted \(\log \) (BF) for males will be less than that for females.

(e) The key feature I would like to communicate is the interaction between Sex and Ht. Either of the following plots is useful in revealing the nature of this interaction:

i. Plot BF or \(\log(BF) \) vs Ht using Sex as a plotting symbol
ii. A trellis plot of BF or \(\log(BF) \) vs Ht conditioned on Sex (or conditioned on both Sex and Wt)
3. (a) In general, as time increases breakdown strength decreases. This trend is quite small for temp=180 but becomes more pronounced as temp increases and is very strong for temp=275. The trend looks like an exponential decay - this is most evident for the plot for temp=275.

The plot also indicates less variability between observations at combinations of time and temp where the mean breakdown strength is low (breakdown strength ↓ as temp ↑).

(b) I do anticipate problems with the suggested model.

i. the trellis plot indicates that variability is related to the mean value of the response and that the relationship is non-linear. This suggests it may be necessary to transform the response (log?).

ii. the relationship between time and breakdown strength seems much stronger at high temperatures. This suggests that the time:temp interaction may be needed in the model.

(c) The p-value for the period:activity interaction is very small giving strong evidence that those 2 factors are not independent.

Fit a model that does not contain the interaction term. Look at the deviance residuals to determine which counts are not compatible with the assumption of independence.

(d)

\[
\hat{\text{odds}} = \frac{\hat{\pi}}{1 - \hat{\pi}} = \frac{38}{34} = 1.12
\]

(e)

\[
\text{odds ratio} = \frac{\text{odds morning}}{\text{odds evening}} = \frac{1.12}{10/69} = 7.71
\]

(f)

\[
\log(7.71) \pm 1.96 \sqrt{\frac{1}{10} + \frac{1}{69} + \frac{1}{38} + \frac{1}{34}} \\
(1.234, 2.85)
\]

Take exponentials to get interval for odds ratio

\[
(3.43, 17.31)
\]
4. (a) Test statistic is

\[
\chi^2_0 = \text{Null dev} - \text{Res dev} \\
= 28.28 - 20.32 = 7.96
\]

\[
p\text{-value} = P(r(\chi^2 \geq 7.96))
\]

where \(\chi^2 \sim \text{Chi-square}(df = 1)\)

(b) i. \(\text{logit}(\hat{\pi}) = 15.04 - 0.232 \times \text{Temp}\)

ii. \(\hat{\pi} = \frac{\text{exp}(15.04 - 0.232 \times \text{Temp})}{1 + \text{exp}(15.04 - 0.232 \times \text{Temp})}\)

(c) i. For each increase of 1°F in Temp, \(\text{logit}(\hat{\pi})\) decreases by 0.232

ii. For each increase of 1°F in Temp, odds of thermal distress decrease by a factor of \(\text{exp}(0.232) = 0.793\)

(d) At 31°F the fitted model gives

\[
\text{logit}(\hat{\pi}) = 15.04 - 0.232 \times 31 = 7.848
\]

\[
\hat{\pi} = \frac{\text{exp}(7.848)}{1 + \text{exp}(7.848)} = 0.9996
\]

We are predicting at a value of Temp well outside the range of the data.

(e) For \(\pi = 0.9\), \(\text{logit}(\pi) = \log_\frac{\pi}{1-\pi} = \log(9) = 2.197\) Need to find Temp so that

\[
15.04 - 0.232 \times \text{Temp} = 2.20
\]

\[
\text{Temp} = \frac{2.20 - 15.04}{-0.232} = 55.3°F
\]

(f) The only thing that really stands out is that point 21 has an unusually large Cook’s Distance. We should first check to make sure there has not been an error in recording this observation. Then we should consider what effect deleting this point would have on the fitted point. Obs 21 corresponds to the highest temperature for which at least one primary o-ring suffered thermal distress. Thus if it were deleted the relationship between Temp and thermal distress would become more pronounced.
5. (a) Fit a log-linear model using counts as the response. The model must contain all main effects and use a stepwise procedure to determine which interactions are significant. The association graph is constructed by joining all pairs of factors that occur in any significant interaction.

(b) i. F and B (or any other factor)
ii. B and A given C
iii. B and C (A,C), (A,D), (A,E), (D,E)

(c) Two factors are conditionally independent if they are only related through another factor(s). They only become independent if we fix the level of the third factor(s).
 In the above graph B and A are only related through C. So if we fix the level of C, B and A become independent.

(d) Yes, this is sensible. B is not directly related to any factor in the group A,D,E,F and so it is permissible to collapse on these.

(e) If we restrict our attention to smokers we are fixing the level of factor A. As a result the graph becomes

\[
\begin{array}{ccc}
B & D \\
F | \\
C & E \\
\end{array}
\]

Thus we have 3 independent sets of factors: F, (B,C) and (D,E).