1. Suppose we have a data set consisting of three continuous variables W, X and Y. We want to fit a regression model using Y as the response. Five types of plots are listed below. Which is the odd one out? (i.e. has a different purpose to the others)

(1) A trellis plot
(2) A coplot
(3) A pairs plot
(4) A Box-Cox plot
(5) A 3-dimensional scatter plot
2. Figure 1: Coplot for Question 2.

Figure 1 shows a coplot of the data in Question 1. Which of the following statements is NOT correct?

(1) The plot shows outliers that need deleting.
(2) The regression coefficient of X is positive.
(3) For fixed X, as W goes up, the response tends to go down.
(4) The plot indicates that a linear regression model is appropriate.
(5) The values of Y are less than 3.
3. Below is a plot of the yarn data discussed in class. The response is the number of cycles to failure, which is thought to possibly depend on the variables length, amplitude and load, each of which is a categorical variable having 3 levels, High, Medium and Low.

![Trellis plot](image)

Figure 1: Trellis plot for Question 3.

Which of the following statements is CORRECT?

1. The number of cycles required doesn't depend on load or amplitude.
2. The lower the amplitude, the fewer cycles are required.
3. There isn't enough information in the graph to decide how the factors load, amplitude and length affect the number of cycles required.
4. The higher (longer) the length, the more cycles are required.
5. The higher the load, the more cycles are required.

4. In the linear regression model, which of the following is the most important assumption?

1. The variances are equal.
2. The mean is a linear function of the explanatory variables.
3. The responses are normally distributed.
4. The observations are independent.
5. The errors are uncorrelated.
5. The size of the regression coefficient β corresponding to a variable X in a multiple regression:

(1) Measures the strength of the relationship between X and the response.
(2) Measures the correlation between X and the response.
(3) Measures the increase in the mean response associated with a unit increase in X, with the other variables held constant.
(4) Measures the importance of X in the regression.
(5) Measures the increase in the mean response associated with a unit increase in X.

6. The data for this question come from an ecological study in the Galapagos Islands. There are 30 observations corresponding to 30 islands. The variables measured are

Species : The number of plant species found on the island, the response,
Elevation : The highest elevation of the island (m),
Scruz : The distance from Santa Cruz island (km),
Adjacent : The area of the adjacent island (square km).

Examine the R output below and then select the most correct statement on the basis of this output only.

Call:
`lm(formula = Species ~ Elevation + Scruz + Adjacent, data = gala)`

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.25183    17.69201   0.806   0.4278
Elevation   0.27444     0.03137  8.749 3.17e-09 ***
Scruz       -0.21784    0.16426  -1.326  0.1963
Adjacent    -0.06744    0.01532  -4.404  0.000162 ***
---
Residual standard error: 60.02 on 26 degrees of freedom
Multiple R-squared: 0.7542,   Adjusted R-squared: 0.7258
F-statistic: 26.59 on 3 and 26 DF,  p-value: 4.393e-08
```

(1) The estimate of the error variance is 60.02.
(2) If the variables Scruz and Adjacent are held constant, the number of species tends to be higher in islands with higher elevation.
(3) The variable Scruz should be kept in the model.
(4) The variable Scruz is not related to the number of species.
(5) The closer to Santa Cruz, the fewer species.
7. In a regression, which of the following statements is **NOT** correct?

(1) An R^2 of 0.3 means that the model doesn’t fit and that the data must be transformed.
(2) $R^2 = 0$ if all the regression coefficients (except the constant term) are zero.
(3) The R^2 cannot go down as more variables are added to the model.
(4) $R^2 = 1$ if and only if all the data lie exactly on a plane.
(5) The adjusted R^2 adjusts the R^2 downwards to compensate for having many variables in the model.

![Diagnostic plots for Question 8.](image)

Figure 3: Diagnostic plots for Question 8.

8. Figure 3 contains several diagnostic plots for a fitted regression. What do they indicate about the regression?

(1) There are several outliers.
(2) The regression surface is not planar and the independent variables should be transformed.
(3) The errors are not normal.
(4) Nothing seems wrong with this regression.
(5) The variances are not equal.

CONTINUED
9. In a certain regression, a colleague tells us that transforming the response variable sometimes improves the fit. A Box-Cox plot is shown in Figure 4. What should we do?

(1) We should transform using a square root.
(2) We should do nothing, no transformation is indicated.
(3) We should transform using a log.
(4) We should transform using a reciprocal.
(5) We should transform the explanatory variables, not the response.

10. For the Galapagos data, we got the following output. Note that (i) the object gala.lm is the result of fitting the model using the \texttt{lm} function, and (ii) only the starred parts of the output are shown. The names at the left of the output are the names of the islands.

```r
> influence.measures(gala.lm)
Influence measures of
lm(formula = Species ~ Elevation + Scruz + Adjacent, data = gala) :

          dfb.1_ dfb.Elvt dfb.Scruz dfb.Adjc dffit  cov.r cook.d hat inf Darwin -0.072719 -0.014078 0.24659 -0.02127 0.2588  2.091174e-02 0.4477*
Fernandina -0.096685 -0.012308 0.05945 0.86394 1.0422 1.72792e-01 0.9331*
Isabela  0.624962 -1.841755 0.14281 0.78764 -1.9425 1.138834e-01 0.4619*
SantaCruz  0.214357  1.435637 -0.69005 -0.97484  1.8863 0.1144.98e-01 0.1422*
Wolf  0.027515 -0.000537 -0.09347 0.01242 -0.0992 1.77452.56e-03 0.3316*
```

CONTINUED
Which of the following is **NOT** true?

1. The observation for Fernandina has a high hat matrix diagonal.
2. The observation for Isabella is influential because it is having an effect on the coefficient of Elevation.
3. The observation for Santa Cruz is influential because it is having an effect on the coefficient of Elevation.
4. The observation for Darwin is influential because it is having an effect on the standard errors.
5. The observation for Fernandina is having very little effect on the standard errors.

11. In a regression, an explanatory variable X has a variance inflation factor of 100, and a correlation with the response of 0.9, and a p-value of 0.3. Which of the following is **TRUE**?

1. Since the VIF is high, the variable X is very important and must be included in the regression.
2. Since the correlation is 0.9, the variable X must be included in the regression.
3. Since the VIF is high, there must be an outlier present.
4. Since the VIF is high, X is strongly related to other explanatory variables and doesn’t contribute anything extra to the prediction of the response.
5. Since the p-value is high, the variable X is unrelated to the response.

12. A model was chosen for the Galapogos Island data (see Question 6) using the following R code. (Note that setting `best=2` in this case causes R to print out the best two 1 variable models, and the best two 2 variable models.)

```
> allpossregs(Species~Elevation + Scruz + Adjacent, data=gala, best=2)

             rssp sigma2 adjRsq  Cp AIC  BIC  CV Elevation Scruz Adjacent
1   173253.86 6187.638  0.529 22.092 52.092 54.894   23972.22    0    0    0
2   369919.59 13211.414 -0.005 76.682 106.682 109.484   40757.60    0    1    0
3  100003.02  3703.815  0.718  3.759  33.759  37.962   14611.59    1    0    1
4  163527.36  6056.569  0.539 21.392  51.392  55.595   23510.95    1    1    0
5  93667.16  3602.583  0.726  4.000  34.000  39.605   14911.75    1    1    1
```

If we want to use a model for prediction, which model is indicated by this output?

1. $\text{Species} \sim \text{Elevation} + \text{Adjacent}$
2. $\text{Species} \sim \text{Scruz}$
3. $\text{Species} \sim \text{Elevation} + \text{Scruz}$
4. $\text{Species} \sim \text{Elevation}$
5. $\text{Species} \sim \text{Elevation} + \text{Scruz} + \text{Adjacent}$

CONTINUED
13. One of the following statements is **CORRECT**. Which one?

(1) If we were building a model for prediction we should always use all the explanatory variables.

(2) Suppose we are fitting a regression to estimate a particular coefficient. Using the full model is a reasonable thing to do.

(3) Suppose we are fitting a regression to estimate a particular coefficient. If we have explanatory variables in a regression that are unrelated to the response the estimates of the coefficient of interest will be biased.

(4) Suppose we are fitting a regression to estimate a particular coefficient. If we have explanatory variables in a regression that are unrelated to the response the standard error of the coefficient of interest will reduced.

(5) We can eliminate all explanatory variables in a regression whose t-values are less than 2 in absolute value.

14. The data for this question refer to 125 male fruit flies. The response is the longevity of the flies. This is thought to depend on two variables (i) the length of the thorax, and (ii) the opportunity the flies have had to mate.

The flies have been divided onto 5 groups, according to their opportunity to mate. These are designated “isolated”, “low”, “one”, “many”, “high”. The group membership as been recorded (as a factor `activity` with these levels, baseline “isolated”), as has been the thorax length (variable `thorax`). The response is `longevity` (measured in days).

The model $\text{longevity} \sim \text{thorax*activity}$ was fitted, and the output below obtained.

```
Call:
  lm(formula = longevity ~ thorax * activity, data = fruitfly)

Residuals:
   Min      1Q  Median      3Q     Max
-70.283 -14.417  -2.305  24.233  94.617

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)             -50.2420   21.8012  -2.305  0.023 *
   thorax                 136.1268   25.9517   5.245 7.27e-07 ***
   activityone            6.5172    33.8708   0.192  0.848
   activitylow            -7.7501    33.9690  -0.228  0.820
   activitymany           -1.1394    32.5298  -0.035  0.972
   activityhigh           -11.0380   31.2866  -0.353  0.725
   thorax:activityone     -4.6771    40.6518  -0.115  0.909
   thorax:activitylow     -0.8743    40.4253  -0.022  0.983
   thorax:activitymany    -6.5478    39.3600  -0.166  0.868
   thorax:activityhigh   -11.1268    38.1200  -0.292  0.771

Residual standard error: 10.71 on 114 degrees of freedom
Multiple R-squared: 0.6534,   Adjusted R-squared: 0.626
F-statistic: 23.88 on 9 and 114 DF,  p-value: < 2.2e-16
```

Which of the following is **FALSE**?

CONTINUED
(1) The model is fitting 5 non-parallel lines.

(2) There is no evidence that the slope of the “high” group is different from the “isolated” group.

(3) The line corresponding to the “isolated” group has slope 136.126.

(4) The line corresponding to the “one” group has slope $-50.2420 + 6.5172$.

(5) There is no evidence that the intercept of the “one” group is different from the “isolated” group.

15. Some additional output was obtained:

```r
> flies.lm = lm(longevity ~ thorax*activity, data=fruitfly)
> flies1.lm = lm(longevity ~ thorax+activity, data=fruitfly)
> flies2.lm = lm(longevity ~ thorax, data=fruitfly)
>
> anova(flies1.lm, flies.lm)
Analysis of Variance Table

Model 1: longevity ~ thorax + activity
Model 2: longevity ~ thorax * activity

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13083</td>
<td>4</td>
<td>24.314</td>
<td>0.053</td>
<td>0.9947</td>
</tr>
</tbody>
</table>

> anova(flies2.lm, flies.lm)
Analysis of Variance Table

Model 1: longevity ~ thorax
Model 2: longevity ~ thorax * activity

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13083</td>
<td>8</td>
<td>9658.9</td>
<td>10.521</td>
<td>5.788e-11 ***</td>
</tr>
</tbody>
</table>

> summary(flies1.lm)

Call:
lm(formula = longevity ~ thorax + activity, data = fruitfly)

Coefficients:

|                     | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|----------|------------|---------|---------|
| (Intercept)         | -48.749  | 10.850     | -4.493  | 1.65e-05 *** |
| thorax              | 134.341  | 12.731     | 10.552  | < 2e-16 *** |
| activityone         | 2.637    | 2.984      | 0.884   | 0.3786 |
| activitylow         | -7.015   | 2.981      | -2.353  | 0.0203 * |
| activitymany        | 4.139    | 3.027      | 1.367   | 0.1741 |
| activityhigh        | -20.004  | 3.016      | -6.632  | 1.05e-09 *** |
```

CONTINUED
Residual standard error: 10.54 on 118 degrees of freedom
Multiple R-squared: 0.6527, Adjusted R-squared: 0.638
F-statistic: 44.36 on 5 and 118 DF, p-value: < 2.2e-16

Which of the following statements is **FALSE**?

(1) The p-value 1.65e-05 is testing the hypothesis that the “isolated” line has zero intercept.
(2) The line

```
    thorax     134.341   12.731   10.552 < 2e-16 ***
```

in the output refers to the slope of the lines in the parallel lines model.
(3) The p-value 5.788e-11 is comparing the single line model with the non-parallel line model.
(4) There seems to be no evidence that activity has an effect on longevity.
(5) The p-value 0.9947 is testing the hypothesis that the lines are parallel.