
The R packages VGAM and VGAMextra handling

systems of cointegrated time series (Bivariate case)

by Victor Miranda
PhD Candidate, University of Auckland

Supervisor: Thomas Yee.

February 9, 2018

VGLMs/VGAMs possess infrastructure to handle systems of cointegrated time series
(SCTSs), but we are still restricted to the bivariate (Normal) case due to absence of R
software to estimate the multivariate normal, such as trinormal().

Here, using VGLMs, I show how to handle a very popular choice for SCTSs: The
Error Correction Model (ECM), as introduced by Engle and C. (1987). Pfaff (2011)
presents a compendium of techniques and methodologies to handle cointegrated time
series, with examples in R (including the aforecited), where the ECM explored in this
section is an special case. The R code choices, however, does not handle the general
case, when the off–diagonal elements of the covariance matrix are non–zero. As we will
see later in this document and compared to Pfaff (2011), VGLMs not only become the
natural choice accommodating ECMs operating the general case, but also opens further
areas for development.

Let’s start by simulating yt = (y1,t, y2,t)
T , two random walks, as follows (n = 280):

y2,t = β0 + β1y1,t + β2y2,t−1 + ε2,t, (1)

y1,t = y1,t−1 + ε1,t,

where εt = (ε1,t, ε2,t)
T ∼ N2(0,V), V =

(
σ2ε1,t σε1,tσε2,tρ

σε1,tσε2,tρ σ2ε2,t

)
, with

σε1,t = exp(log(1.5)), σε2,t = exp(0), ρ = 0.75, (β0, β1, β2)T = (0.0, 2.5,−0.32)T .

The R code is:

> library(VGAM, lib.loc = "~/phdvgam/myRlibs")

> library(VGAMextra, lib.loc = "~/phdvgam/myRlibs")

>

> set.seed(2017081901)
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Figure 1. Non–stationary (simulated) series y1,t and y2,t from Model (1).

> nn <- 280

> rho <- 0.75 * 1

> # Gaussian noise1

> s2u <- exp(log(1.5))

> ut <- rnorm(nn, 0, s2u)

> # Gaussian noise2

> s2w <- exp(0)

> wt <- rnorm(nn, 0, s2w)

> my.errors <- rbinorm(nn, mean1 = 0, mean2 = 0,

var1 = s2u, var2 = s2w, cov12 = rho)

> ut <- my.errors[, 1]

> wt <- my.errors[, 2]

> yt <- xt <- numeric(0)

> xt[1] <- ut[1]

> yt[1] <- wt[1]

>

> beta <- c(0.0, 2.5, -0.32)

>

> for (ii in 2:nn) {
xt[ii] <- xt[ii - 1] + ut[ii]

yt[ii] <- beta[1] + beta[2] * xt[ii] + beta[3] * yt[ii - 1] + wt[ii]

}

The plot of both, y1,t and y2,t can be seen from Figure (1).

To model the dynamic behaviour of (1), I will use an Order(u, v)–ECM [ECM(u,
v)], whose general form is given by (equations 4.5a and 4.5b, Ch. 4 in Pfaff (2011)):

∆y2,t = φ0 + γ1ẑt−1 +

u∑
i=1

φ1,i∆y1,t−i +

v∑
j=1

φ2,j∆y2,t−j + ε2,t, (2)

∆y1,t = ψ0 + γ2ẑt−1 +
u∑
i=1

ψ1,i∆y2,t−i +
v∑
j=1

ψ2,j∆y1,t−j + ε1,t,
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t = 1, . . . , T , where εt = (ε1,t, ε2,t)
T iid∼ N2(0,Σ), ẑt are the residuals of the static

regression y2,t ∼ y1,t, and ∆(·) = (1 − L)(·). The adjustment rate of the error from
the long–run equilibrium is determined by γ1, expected to be negative, if the system
converges from its long–run equilibrium path. Note, while the vector–error terms εt
are iid, its components may be correlated in the same time period (contemporaneous
correlation).

However, we firstly must verify that y1,t and y2,t are cointegrated. For this, the resid-
uals, ẑt, of the static regression y2,t ∼ y1,t must conform with autoregressive stationarity
conditions (Engle and C., 1987). This may be verified via the unit root test implemented
(by default) in VGLM–ARIMA family functions, from the package VGAMextra. In this
case, ARff() is called, along with noChecks = FALSE, requesting the unit root test. The
results, shown below, confirm stationarity of the residuals (no roots lying inside the unit
circle), that is, y1,t and y2,t are cointegrated.

> errors.coint <- residuals(lm(yt ~ xt))

> data.errors <- data.frame(est.errors = errors.coint)

> fit.root.test <- vglm(est.errors ~ 1, family = ARff(nodrift = TRUE,

noChecks = FALSE),

data = data.errors, trace = FALSE)

Checks on stationarity / invertibility successfully performed.

No roots lying inside the unit circle.

Further details within the 'summary' output.

Interestingly, however, the aforecited ECM(u, v) (cf. (2)) can be seen as a VGLM
with two–responses, ∆y1,t |Φt−1

= ∆y1,t, and ∆y2,t |Φt−1
= ∆y2,t, with bivariate normal

errors εt = (ε1,t, ε2,t)
T , hence resulting in the following VGLM associated to (2):

(∆y1,t, ∆y2,t)
T ∼ N2((µ∆y1,t , µ∆y2,t)

T ,Σ) (3)

µ∆y2,t = φ0 + γ1ẑt−1 +

u∑
i=1

φ1,i∆y1,t−i +

v∑
j=1

φ2,j∆y2,t−j ,

µ∆y1,t = ψ0 + γ2ẑt−1 +

u∑
i=1

ψ1,i∆y2,t−i +

v∑
j=1

ψ2,j∆y1,t−j ,

with Σ =

(
σ2ε1,t σε1,t, ε2,t

σε1,t,ε2,t σ2ε2,t

)
, σε1,t, ε2,t = σε1,t · σε2,t · ρ, and five linear predictors1:

ηcoint = (µ∆y2,t , µ∆y1,t , log σε1,t , log σε2,t , rhobit(ρ))T .

Thus, for illustrative purposes, an ECM(2, 2) as in (3) will be fitted to (1). Note the
use of the family function binormal() from VGAM. See the the R code in Table 1.

1rhobit(θ) = log 1+θ
1−θ , for −1 < θ < 1.
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Table 1. R code to fit an ECM(2, 2) to (1) using VGLMs and RR–VGLMs.

> ### Using VGLMs

> fit.coint1 <- vglm(cbind(dify1, difx1) ~ errors.cointLag1 + difxLag1 + difyLag1 +

difxLag2 + difyLag2,

binormal(zero = c("sd", "rho")), # 'sigma', 'rho' intercept-only.

trace = FALSE, data = coint.data)

The estimated coefficients obtained from vglm() are retrieved from the object fit.coint1,
producing the next output

> coef(fit.coint1, matrix = TRUE)

mean1 mean2 loge(sd1) loge(sd2) rhobit(rho)

(Intercept) 0.049363 0.0244895 1.3259 0.20276 4.4712

errors.cointLag1 -1.073665 -0.0019501 0.0000 0.00000 0.0000

difxLag1 -0.276705 -0.1462313 0.0000 0.00000 0.0000

difyLag1 0.078858 0.0781579 0.0000 0.00000 0.0000

difxLag2 -0.230352 -0.0691028 0.0000 0.00000 0.0000

difyLag2 0.204452 0.0800435 0.0000 0.00000 0.0000

As expected, γ̂1 = -1.07 is negative in sign (and close to unity), assuring the system
convergence to its long–run equilibrium path. Overall, results show that y1,t and y2,t are
two cointegrated I(1)–variables guaranteeing Granger causality in one direction. More
precisely, one series may be predicted with help the other.

Further improvements to be incorporated over time are: Employ the Reduced–Rank
class of VGLMs (Yee, 2015, RR–VGLMs)) to aid the number of coefficients as u and
v increase, to write, e.g., trinormal(), and then, write suitable family functions for
cointegrated time series (beyond the bivariate case).
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